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Welcome back everyone. So, in this lecture we are going to see how to obtain response of a

single degree of freedom system subject to Harmonic loading. We will first start with

undamped system and then find out the solution of the differential equation and then we are

going to look into damped system. So, let us get started.

So, till now, basically what we have studied on this response of single degree of freedom

system. Let me draw that chart. So, let us say we have a single degree of freedom system

right. Now, in terms of the response of a single degree of freedom system we could have free

vibration or we could have forced vibration.

Now, in free vibration it can be characterized or categorized as undamped free vibration and

then there would be a damped free vibration. For the forced vibration it can be categorized

based on the what kind of force that is being applied on the single degree of freedom system.



So, we could have for example, harmonic or periodic excitation alright and then we could

have say arbitrary excitation. For example, it could be a pulse. So, pulse excitation like sine

pulse or triangular pulse or a step function like that or we could also have random excitation,

example could be seismic excitation like you know and wind and others.

Now, we have already studied the free vibration of damped and undamped systems. So, today

what we are going to start? We are going to see how to obtain the response of a single degree

of freedom system subject to forced vibration and more specifically, in this chapter we are

going to focus on harmonic or periodic excitation.
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So, let us start with that. Now, in terms of periodic excitation, any excitation or function can

be characterized as periodic if I can write as-

Where, is the period of function f and j is the integer. So, j could be from to all

the integers. So, let us say I write it as .



So, if any system can be written like this, it would be characterized as a periodic function.

And harmonic functions are the functions, which can be written as some constant time sin or

cos.

So basically, if I have functions like something times sin or something times cos, these are

called harmonic functions. Now, as you would have noticed all harmonic functions are

periodic however, not all the periodic functions are harmonic. Now, we will start with

harmonic excitation.

So, one might ask a question that what is the uses of studying the response of a single degree

of freedom system subject to harmonic excitation. In reality forces are not always harmonic

and in reality, forces are not always single degree of freedom system. But the idea is that we

are going to start with simple understanding and then we are going to build on that platform

to understand more complicated system subject to a more complex excitation.

So, basically the idea is that if you understand the response of single degree of freedom

system to harmonic excitation it would assist you in understanding or provide you insight

how the system would behave to other type of excitation. So, I mean if you know Fourier

transformation, remember from your mathematics class, you know that any periodic function.

So, let us say I have any function that I have written above, if it is a periodic function,

it can be written as sum of many harmonic excitation. So, we will be going to start with

harmonic excitation and once we understand the behaviour subject to harmonic excitation it

would also give us insight into understanding to any type of periodic functions.

So, we know that any periodic function can be expressed as-

This is from your mathematics class. So, if the excitation in reality is being applied as in

harmonic excitation.
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For example, few examples could be like you know machine foundation. So, you could have

machine foundation where the load is applied as harmonic excitation or you could have any

unbalanced rotatory load and we are going to model that actually in this chapter. These can be

directly model as harmonic excitation.

And even if it is a periodic excitation but not harmonic, I could still obtain the response as

sum of several harmonic excitation. So, if we understand the response to simple harmonic

excitation then I would be equipped with knowledge to interpret response to any other

periodic function as well.

And same goes for earthquake as well. So, earthquake in reality might be a random

excitation. So, earthquake is composed of several frequencies. You will see that later when

we will get into that. If the power spectral density, there is a term called power spectral

density which basically defines how much of energy is actually situated at each of these

frequencies.
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So, let us say this is my ground excitation and I am representing it with some random

function which is neither periodic neither harmonic. Even this has basically distribution of

these frequencies here and depending upon which frequency is predominant. I could have like

this up to infinity.

And this is basically power spectral density and this is frequency. So, if I understand the

response of single degree of freedom system to individual excitation frequency. Then it

would even help me in analyzing or interpreting the behaviour of the structures subject to

earthquake excitation as well.

So, I hope this provides you background that why we are doing response to harmonic

excitations first and how it would be useful in subsequent chapters. So, in terms of harmonic

excitation we are first going to start with an undamped system and then we are going to a

damped system.
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So, first let us do undamped harmonic excitation. So, if it is undamped, I know that my

damping term in the equation of motion would be 0 for the single degree of freedom system.

So, we know that our equation of motion is general equation of motion is this.

Now, if the damping is 0, I can simply delete damping this term and then I would be left

with-

Now, any harmonic excitation can be represented as-

or

So, first we would be doing and the response subject to would also not

defer by much. So, this excitation which I am representing as , is the

force amplitude of the force that is being applied.



So, this is the peak value or amplitude of the applied force. And, note here, now I have an

additional frequency ω and this is different from the natural frequency of the system which

was . And we saw that for this system, I could simply get it as .

Now, ω is different from this , ω is basically the applied frequency of the harmonic force

that is there and it is called excitation frequency or the forcing frequency. So, we would be

referring it further as either excitation frequency or forcing frequency.
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And if you plot this function it would look like a simply sinusoidal function.

Which let us say starts here. So, I can plot it like that. So, this is my applied force and this is

time here. This is the forcing time period or excitation time period which I can write it

as .
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So, differential equation becomes-

Now I need to solve this differential equation. So, we are going to employ the same

techniques that we have used in previous chapters to solve this second order linear

differential equation.

So, how did we solve it? Basically, we said that the total response can be represented as sum

of particular solution and sum of complementary solution.

And this complementary solution had two unknown constants. So, this particular solution is

any unique solution that can satisfy this equation and complementary solution was the

general solution to the homogeneous part of this equation.

So, if you set the right-hand side equal to 0 and then whatever the solution you got that was

basically the complementary or homogeneous solution. It had two unknown constants and



those unknown constants were determined using initial conditions. So, let us assume our

initial conditions are given in terms of initial displacement and initial velocity .

Now, let us see how do we solve this. So, basically in terms of particular solution here, I

would write this as-

Let us say I want to get any unique solution that satisfy this equation. Now, what I see here

on the left-hand side of this differential equation, I have a term which is and then a

double differential of term and then sum of that is actually equal to some sin function time

with some constraint.

Now, let us say, if I assume-

I know that the sum of term and would be again some constant time .

Keeping that in mind I have selected this as particular solution. The only thing that needs to

be found out here that, what is the value of C?

So, if I substitute this here, I can write it as-
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So, if we compare the coefficient of . We get the value of C as-

So, the particular solution I have obtained as-

Now, the second thing that remains is the complementary solution which is nothing but

solution to this equation here.
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And that we saw in previous chapters can be directly written as-

So, I can write the total solution as particular solution plus the complementary solution and

this can be written as-

Now, I have two unknown constants here, A and B which can be found out by substituting at t

equal to 0, initial displacement and the initial velocity . So, you will need to

differentiate it and then substitute again t equal to 0.

If you do that, you will see after substituting these conditions-



So, this is the final solution for undamped vibration subject to harmonic excitation which is

. Now, what you see here? There is one thing an important thing to note here we

have in the response now two frequencies. Let me just write it here again we have two

frequencies first frequency is basically the natural frequency of the system and then the

second frequency is actually the applied frequency of the force or the excitation

frequency.

So, one question might arise if you try to plot this system at what frequency would the system

vibrate? Would it vibrate at or would it vibrate at ω you know? And, then the question

also becomes that what do these frequency actually mean? What is the physical significance

of this frequency? So, let us draw each term that we have here and then see how do they look

like.
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So, I am trying to draw here the displacement. I am not going to say if it is the total

displacement, it is like one of these displacements, let me first just say that it is a

displacement quantity. Now, first I am going to draw this term here

then I am going to plot this term

here.

So, if you plot what you going to see, it vibrates at its own frequency which is the

natural frequency of the system and let us say it looks something like this with some initial

conditions. Remember that I do not have any damping so amplitude is going to remain

constant here and it will keep on vibrating like this with time period equal to .

Now, I have another term, the term and let us plot and see what do we get. So,

let us say it looks something like this. Now, you might argue that why the first looks like

this and why not the other way well it depends on the relative ratio of the .

So, just for demonstration I am assuming that let us say it looks like this. So, let us say this is

my and this is my . So, these are the two components of the response that we get

subject to the harmonic excitation of single degree of freedom system. So, we can say that

two components of the vibration response.
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The component 1 is basically vibrates at the natural frequency of the system and

component 2 basically vibrates with the whatever the applied frequency ω. This

response is called forced response or steady state response and we are going to come

back to that why do we call it steady state response and this is called transient response .

So, for this I have drawn and . So, if I try to again draw the total response which is

, it would look something like this. Let me just first draw it so, it is going to look

something like this. This is not to scale of course.

You can perhaps plot this kind of graph using MATLAB. So, this is the total response. So,

this is state transit response plus steady state response which is basically some of

these two responses. So, what it is basically doing? It is taking the transient response which is

and then it is vibrating along this steady state response.

So, the sum of two function would look like this. This is basically the total response of the

system. So, there are certain characteristic of each of these responses. If you look at the

transient response.
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So, as I said this is the transient response and this is the forced or more commonly it is

called steady state response . And these terms are better explained when I will get into

damped forced vibration however, note here, the transient response depends on initial

conditions and .

However, force or steady state response does not depend on initial condition and that you can

easily imagine. For example, let us draw the spring mass representation. If you apply a force

which is harmonic force. The body would have some response whether there is no initial

velocity and no initial displacement as we have applied force.

And that is the steady state response due to this force. Now, for the transient response it

depends on the initial condition however, even if the initial conditions are 0 this force

would still provide some response to the system that would oscillate at the frequency .

And how much of that response contribute to the total response? Well, it would depend on the

which we would see later.

Now, in reality what happens? The transient response it seems that it would remain constant

and it would not decrease with time. Say, if you look at here let me go back to this graph



here. So, if you look at the amplitude actually remains constant and it does not change

with time.

However, in reality all the system would have certain amount of damping and what that

damping actually does, although not evident from this undamped the equation from the

undamped vibration, the damping would reduce this transient response to 0 after sufficient

amount of time.

However, the forced response or the steady response due to applied force would still remain

and that is why it is called transient. Transient means something that is between a state or a

changing state. So, let us say it was with some initial condition and then finally it achieves a

steady state which is the forced response.

So, in between whatever the response system has is called the transient response which

actually dies down in a damped system, but you cannot evidently see here. So, when we will

do the damped system, we will see that this response actually dies down.

Now, in dynamics mostly we are concerned with the steady state response because in reality

all the system would have some damping and the effect of applied force is measured in terms

of steady state response.

So, we are going to neglect this (transient response), not neglect this but we are going to turn

our focus to steady state response because as we will see for the damped system from their

mathematical equation for the . This transient response actually dies down. So, let us

look at the steady state response. And I am going to write this although as , but

remember that I am only considering the steady state response part of total response, because

this is what would be important.

However, you have to keep in mind, that initially the system would have some transient

response and steady state response. So, look at what is the steady state response. I can write

steady state response as-
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Now, if you remember from this equation of motion let us say this was the original equation

of motion correct.

Let us say, I ignore the dynamic effect in the system, so I basically ignored this term

here. Can I say the static displacement subject to a force which is varying with time?

Now, you have to understand what do I mean by this? It simply means that there is no mass in

the system so that is why there is no dynamic effect. If I am applying a sinusoidal force the

deformation is basically whatever the force is applied divided by k.



Now, let us say if a spring is given to you and said like a force is applied. You would

simply find out that the displacement as , but if the force is varying with time then at

each and every instant displacement would be simply , if no dynamic effect is

considered.

So, this is static displacement here is basically, whatever the sinusoidal force you are

applying the here, if that is applied without any dynamic effect of the mass then what is the

displacement? So, it is different from the ramp loading in which we said that we are applying

a force and the final displacement was basically , if this (rising time) was large

enough with respect to the time period of the system.

In this sinusoidal variation of the force, we are saying that mass term is 0, so the resultant

displacement is . Now the significance of this is that if there was no mass in the

system and if I had applied a sinusoidal load, the peak displacement of that is-

This is same that I have here.

So, I am going to write the dynamic displacement as-



So, you need to understand what is this . is basically the maximum value of the

static displacement for a time varying load. Otherwise, you would argue that what do you

mean by the maximum displacement of the static load.

Because, if you apply a load which is varying with time and there is no mass, then at each

instant of time you can divide that load by the stiffness k to get the displacement at time t, but

that is still the static displacement because there is no mass in the system.

And this represents that peak static displacement subject to the sinusoidal or the

harmonic excitation. So, I hope that is clear to you. Now if I have this term here ok.
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Let us see what does it mean. For example, you see here that the term or the frequency

ratio. Depending upon the value of frequency ratio the value of would change.

For example, let us consider two extreme cases. Let us say when ω or the applied frequency

is smaller than , then what will happen? This denominator



term would be positive and would have same sign as . So, vary

accordingly to whatever the variation of the right-hand term.

So, vary as same as whatever the value of applied force in the same direction.

So, if this and are of same sign. It means that they are In phase. However, let us

consider the second case when , then you will see that denominator is

negative and then varies as negative of which is again negative of .

So, in that case and are of opposite sign and it is said out of phase. Physically

what it means? Basically, that you apply a force in the first case. If you apply a force to the

right then your system also moves to the right. In the second case, if you apply the force to

the right the system moves to the left. You might have a doubt well how is that physically

possible?

Remember that we are not considering here monotonic load. We are considering here a

sinusoidal load. So, depending upon the frequency ratio , once the motion is started

it might not be in the same direction at any time instead as the applied force. So, if my force

is positive, it might be moving to the negative direction and that depends on the ratio of

.

So, let us see if we can formulate some mathematical expression to actually represent

dynamic displacement. So, remember, is my dynamic steady state displacement. And

although in further lectures when we discuss I am not going to always refer it as a steady state

displacement, but it should be understood. You should understand that I am talking about a

steady state displacement by just looking at the expression of .



So, this is the dynamic steady state displacement. Now can you imagine if I again have a

dynamic steady state displacement which is varying as a function of . It would again

have some peak value, so it would have some amplitude. Can I write-

Where, is the dynamic amplitude or the dynamic displacement amplitude. Now, what is

the here? If you compare this equation here and this equation here basically is-
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Now, if you plot this expression , how does it look like ok? We talked about the phase, let

us see how does it look like. First let me draw here. This is my frequency ratio . So,

horizontal axis is frequency ratio and the vertical axis is .

Now, I know that at very small value of this . So, start from

1.

As I increase the value of , so what happens? The value of the ratio actually

increases because, as you increase the , the denominator decreases. So,

the overall which is 1 inverse of that value would increase. So, it increases something

like that. I do not know how it would increase.

Other extreme is that is a very large value. So, it is infinity. In that case

. So, it will start somewhere from here and as you decrease the value of then your

denominator would actually increase, but in the negative direction.



And can I say when then the value becomes unbounded . So,

becomes unbounded here on positive side and unbounded here on the negative

side. So, the graph would look something like this. The actually depends on the

frequency ratio.

So, it depends on the frequency ratio . And whether is positive or negative

that also depends on . So, what I would do? I do not need that to plot this . Now, I am

just trying to plot here-

I am adding a new term φ here which called phase angle and is nothing, but the absolute

magnitude. So, I have I had originally this term, but is actually the absolute magnitude of

this term here.

So, would always be positive. This is the mode of this function here. If that is there then

you would ask me that how does the is actually taken into consideration because



initially it was coming due to this . Precisely for that I have this angle φ here. Remember

we said that when then varies as the same positive as .

If then varies as negative of that. So, to take that sign into consideration. I am

writing this term here-

Where, I have taken magnitude of that-

Now all the sign is now being taken care of by this φ or the phase angle.
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So, this is this term here and the phase angle now I am defining-



Which makes sense. If you look at it here, I would again have the same expression.

I remember that now this is always positive, because already I am considering as

magnitude. Now, if-

So, this is in In-phase and this is out of phase. When I say

In-phase and out of phase is basically the displacement with respect to the applied force

. Once I have this information let us plot.
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Let us plot both and φ the phase angle and this then see how do they look like. I know

that both of them depends on the frequency ratio . So, is nothing but, it is the



magnitude or the absolute modulus of this function. So that would mean that this function

here (In the previous graph for ) would simply invert to the positive side of the axis.

So, let us try to draw that. So, I have this on vertical axis. I am plotting here and then

below this I am also plotting phase angle which is φ and both these x axes are basically

.

The vertical axis in this case for the φ is 0°, 90° and 180° and here (vertical axis of ) it is

0, 1, 2, 3 and so on. So, if I simply take the mod of this function, I again starts at 1 for a

very small value of . Let me just write down the expression anyway for your

convenience.

So, , and it is unbounded at value of . So, it will start at 1 and

then it will go like this. In the second case, what happens as you increase the value of it

starts from here it will start at value of approaching to infinity and then it would

decrease as you start and at some point it is going to cross the x axis and then go to 0 for a

very large value of .

Now, compared to that I have the phase angle φ which is, if , it is 0° and if it

it is 180°. So, we have talked a lot about and φ, let us see what is the physical

significance of these two quantities. Now, as we said-



is nothing but the dynamic amplitude divided by the static amplitude.

So, if the force had been applied statically, whatever the amplitude of that function is let us

say and if the system had mass and then the force is being applied, whatever the

displacement that you get is dynamic displacement. Then the ratio of both two (dynamic and

static displacement) is defined as and it is called displacement or deformation response

factor.

And we will see later that there are different type of response factors. Right now, we are only

dealing with deformation response factor, which represents what is the amplification in the

response. Amplification or reduction whatever happens with respect to the static system,

is a measure of that amplification or reduction.

And phi represents that if the force is applied, then with respect to the applied

force whether the response or the is in with In-phase or whether it is out of

phase. So, it represents phase of with respect to applied force. So, if my force is

moving right whether the displacement is also in the right direction or whether it is opposite

to the applied force in the left direction, so the phi represents that.

Now, this plot of or the displacement response factor here it gives several useful

information in terms of dynamic response, because that is what we are trying to study here

right. So basically, if I have a system and a harmonic load is applied on that, based on the

frequency ratio , I would see what happens to which is the displacement response

factor.
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So, let us come to this graph here. If the value of , I do not see any amplification

right, that means , so it means dynamic is equal to static. So, let us

consider first case; that .

It means that ω is very small. The applied frequency is very small. When the applied

frequency is very small it means that it is a slowly varying load. In that case or

dynamic displacement is equal to static displacement.

So, if the load is applied very slowly, we do not see any amplification in the system with

respect to the static displacement, and that should be intuitive to you is not it. I mean if you

are applying load at very very small frequency then the system would move in tandem with

whatever the force you are applying without having the much dynamic effect of the mass.

And that is why your dynamic displacement is equal to a static displacement.

Now, in the second case when is very large that means, a rapidly

applying force or rapidly varying force. In that case . That means, dynamic



displacement is equal to 0. It implies that for a rapidly varying force, you do not see any

response in the system.

So, if you try to imagine this, basically you have a system on which you are applying a very

fast-moving load. This system would not even actually respond to this. That is what basically

it means, the displacement would be equal to 0. So, these were the two extreme cases. Now, if

third case if , which basically corresponds (in the graph) to let us say this point

here then .

So, I do not get any amplification in the response. So, the dynamic behaviour actually does

not lead to amplification, but it actually leads to reduction in the response. As we will see

later this is very useful in design of some systems.

For example, let us I have a system, a static system a building just sitting there. Would I not

be happy that if I apply some force or the frequency on my structure, and the response

become actually less than the response it would have if the load had been applied statically. I

would be very happy. So, that depends on the applied frequency and this actually properties

utilized in vibration isolation, we will come back at later. So, my for dynamic

is actually less than static.
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And of course, then the case where then , so the response becomes

unbounded. So, these are the four typical cases which you might experience in real life based

on how the frequency of the applied force varies with respect to frequency of the system and

that decides what is the response of the system.

Now, we talked about, this case here when , the response becomes unbounded. We

are going to define the frequency or the applied frequency which is called resonance

frequency.

So, this would be the forcing frequency or excitation frequency at which the of the

displacement response factor becomes maximum. So, whatever the value of applied

frequency at which it becomes maximum is called the resonant frequency and this

phenomenon is actually called a resonance. Many of you might be aware with this

phenomenon.

Now, in this case what happens? So, the resonance is basically maximum, it happens when

, so applied frequency is actually equal to the natural frequency of the system, so my



become maximum. Now, when this happens at this point actually the solution that we

have obtained for is not valid anymore and we actually obtain a new solution.

So basically, what I am saying, in this case the solution that we had obtained for our equation

of motion this is not valid any more. Only at this point. It

was valid at all other part. So, we developed a new solution, when this happens. For this case

what do we do?
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Basically, remember our particular solution initially we had assumed .

Now, . So, this is . And our homogeneous solution or the

complementary solution was .

Now if you look at this carefully, this is now not a unique solution anymore, because

this term because your , now it is a part of this term here.



Initially, they were different . This was a unique solution, but now

because I have an term and then it is part of this complementary solution.

So, for these types of cases, what we do? The solution is obtained by assuming-

If you substitute this in this equation you will obtain as particular solution and you

can do that calculation yourself. You can obtain that as-

The total solution you can write it as-

So, you can see where , the solution or the response does not suddenly become

unbounded. If you obtain the response for the initial condition and . You will get

some expression. And what I want to do? Let us say both these parameters .

You can get the response as-

And if you try to plot this function. You can use MATLAB to plot it, it would look like

something like this.
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Let me just plot it here it would be easier to do. So, my response does become unbounded,

but I cannot represent my solution using the previous equation I have to derive the new

solution for , because of the reason that we just discussed here that particular solution

is not a unique solution anymore.

And what happens over the time, the amplitude keep on increasing. If you plot it, the

amplitude will keep on increasing and it would become unbounded but it does not become

unbounded suddenly. Now try to imagine this scenario in reality. In reality assuming that, it is

an undamped system. Which is in self would might not be true, all the system would have

some amount of damping. But let us say I do have a system which has very small value of

damping that can be neglected.

Even given that fact, what will happen as the real system will starts to vibrate and the

response start to become unbounded. What will happen if the displacement exceeds the

certain value? For example, if it is a brittle structure like concrete, it will start to break.

Concrete will start to get damage and it will start to break at certain value. So, you do not get

actually infinite response, but what happens for the brittle system as the concrete gets

damage, its stiffness changes. So, your actually changes. So, although initially you had



applied a response , for which initially applied frequency become initial value of

. It started the resonance and the system starts to get damage.

So, this changes. So let us say this is after some time . So now this is

different from the national frequency of the system. So basically, this system would come

out of the resonance, because the frequency of the system itself changes due to unbounded

deformation once it starts to develop.

Other solution could be if it is not brittle, but let us say it is very ductile for example, a steel

building or some steel structure. Then it would yield at certain point, so again the stiffness

would change and the changed frequency again would not be equal to the applied frequency

and then it would come out of resonance and again we can go back to the original solution.

So, I hope this discussion give you some idea what happens in an undamped harmonic

motion of a single degree freedom system where basically undamped system is an

assumption, in reality all the system would have some damping.

So, in next lecture we are going to see what happens when the system has damping. We are

going to look into mathematical formulation and then the physical interpretation of the result.

So, this lecture we are going to conclude it here.

Thank you.


