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Welcome back everyone. In the last few lectures, we saw that how to set up the equation 

of motion and saw how to find out the free vibration response of a multi-degree of 

freedom system. Now, we discussed about damped system as well as undamped system. 

We learnt few methods when we were discussing single degree of freedom system such 

as how to estimate damping in a system. 

Now, we are going to adopt that procedure for a multi-degree of freedom system and see 

how we can utilize different type of damping models to represent viscous damping in a 

multi-degree of freedom system. So, in addition to talking about the significance of 

damping in the multi-degree of freedom system, we are also going to look at few ways in 

which we assign damping to a multi-degree of freedom system which includes Rayleigh 

damping as well. 
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Let us start the lecture. If you remember typically for single degree of freedom system to 

find out damping what we had done, experimentally we had considered first free 



vibration response. I am giving initial displacement and then taking the ratio of the 

successive peaks amplitude and find out the damping using logarithmic decrement 

method. 

In the other method for find out damping we had found out the peak response of a single 

degree of freedom system as we change the excitation frequency. So, let us say this is 

n




and this is the peak acceleration a here. So, we had obtained a frequency response 

curve like this. Whatever peak response we have such as r. we basically have to draw a 

horizontal line which was at a value 
2

r  and wherever it cuts the frequency response 

curve we needed to find out a  and b . 

Utilizing these a  and b , damping could be determining as-  

2

b a

n

 




−
=  

This was called as Half-power Bandwidth method. Now the question is when we have 

response of a multi-degree of freedom system, the response is not due to a single mode. 

Either the first mode or second mode, the response is always due to contribution of all 

the modes. 

So, can we utilize these methods to find out the damping of individual modes? So, we 

need to modify these methods a little bit or we need to adapt these methods little bit to 

find out the damping of a multi-degree of freedom system for a particular mode and the 

limitations of these methods are that typically we cannot find out damping of all the 

modes but may be only for first mode. 
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Why is that? When we consider response of a multi-degree of freedom system or the 

acceleration response at some place. Typically, what happens? as I have mentioned the 

fundamental mode is the mode for which the frequency is lowest, or the time period is 

highest. 

So, let me write it like this 1 2 ................ n    . So, 1 2 ......... nT T T  . So, through 

these methods if I measure acceleration response histories at some point due to 

contribution of all the modes.  

So, it would be something like this, but as the time progresses, because of the damping 

what happens? In the previous chapter where we have discussed that the damping 

actually damps out the higher frequencies first and the lower frequencies later. 

So, after some time the response that is remaining is primarily because of the first mode 

or the fundamental mode for which the frequency is the smallest. So, utilizing that may 

be let us say after this point we can find out the damping using logarithmic decrement 

method here or we can also find out from the frequency response curves, but in this case 

again considering the steady state response where the contribution of all the higher 

modes have actually damped out. 



So, these two methods we can only find out damping for possibly the fundamental mode, 

or the primary mode or the first mode. If we need to find out the total response, then we 

need these damping value for each and every mode.  

And how do we get that? We cannot simply assume it to be 0, and the only information 

is that we have the damping may be from the experiment for the first mode or may be 

what do we do, we can also assume that the second mode might be like somewhere close 

to the first mode. 

And the damping might be similar, but the thing is that we only know that damping for at 

max one or two mode. So, are there any methods through which knowing the damping 

for one or two modes can allow us to find out damping for all other modes? So, that is 

the problem statement here. 
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So, to overcome this limitation what do we do? We consider proportional damping. 

Now, let us see what is proportional damping? It is a mathematical way to find out the 

damping for several modes by using the damping for one or two modes. Now, we need 

this damping matrix, or we need the damping ratio. The basic requirement is that the 

damping matrix should be classical or we should be able to diagonalize the damping 

matrix. 



Now, we know that mass and the stiffness matrix are symmetric, and they can be 

diagonalized. So, if we can write down our damping matrix as a linear multiplication of 

let us say mass matrix. 

   C m=  

   C k=  

The resulting damping matrix would be diagonal matrix if we can find out this vector 

alpha ( )  here. Similarly, I can write down this as some multiplication of the stiffness 

matrix again my damping matrix would be diagonalized because my stiffness matrix is a 

symmetric matrix. 

This the first approach is called Mass Proportional Damping. The second approach is 

called Stiffness Proportional Damping. But the question might come what is the physical 

significance? I mean how can we simply assume it to be like you know proportional to 

mass or a stiffness matrix. 

Well, it may be stiffness proportional matrix can be justified saying that my damping 

matrix in the end is basically represents the relative velocity between two points and the 

stiffness matrix is represents the relative stiffness between two points like a storage 

stiffness. 

However, how do we justify the mass proportional matrix because it is basically means 

that whatever your masses are, this damping is basically proportional to the mass matrix 

or if a heavier mass is there it, would provide you some resistance. So, this represents the 

aerodynamic damping. 

So, directly we cannot say any physical significant, but we have mathematically. We can 

write down our damping matrix as a linear multiplication of mass or stiffness matrix and 

we can find out those vectors to see if that indeed would give us a diagonal matrix that 

can somehow represent the damping. 

And we can equate the damping in a particular mode using this approach to the damping 

for the mode that is available, and the rest of the damping can be found out. So, let us 



look at one at a time. Let us first look at mass proportional damping. So, for mass 

proportional damping    C m= .  

So, if I diagonalize this, I can write down the diagonal C matrix as alpha times diagonal 

M matrix or if I write it in terms of element. All you need to do is to multiply premultiply 

with the transpose of the model matrix and then post multiply with the modal matrix. So, 

this is the relationship you will get as 

n nC M=  

Now that is the case then the damping ratio for the nth mode can be found out as- 

1
.

2 2 2

n n
n

n n n n n

C M

M M

 


  
= = =  

The only unknown here is alpha ( )  and how do we get alpha ( ) ? Well, let us say 

from experiment we know the damping for nth mode which would be in most cases the 

primary mode but let us for the numerical aspect we specify for any other mode. 

So, let us say we specify the damping for the ith mode and that is equal to 
1

.
2

i

i





= . i  

is known to us from modal analysis. So, 2 i i = . 

And once alpha ( )  is known from the calculation for one of the mode, for the rest of 

the modes the damping can be found out as 
1

.
2

n

n





=  and if you look at the variation 

of the damping here. Let us say this is n  versus n . 

So, this is like a hyperbolic distribution where basically n  is equal to
1

.
2 n




. So, if we 

specify for first mode here, the damping in the rest of the modes would be smaller than 

the first mode. So, this is the mass proportional damping. Now, let us look at the stiffness 

proportional damping in which basically the damping matrix is beta a constant time the 

stiffness matrix    C k= . 



So, that constant is beta ( )  here. I can write for the nth element of the diagonalized 

damping matrix now as n nC K= . Where, 2

n n nK M = .  
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So, I can write that. So, the damping in the nth mode can be written as- 

2

2 2 2

n n n
n n

n n n n

C M

M M

  
 

 
= = =  

So, my damping in the nth mode can be written as 
2

n


 . So, again like we did for the 

mass proportional damping if we assume damping for the jth mode or if we know the 

damping for the jth mode, then 
2

j j


 = .  

So, 
2 j

j





=  and once beta ( )  is known from the damping specification for one of the 

modes for the rest of the modes, we can find out 
2

n n


 = . And if we look at the 

variation for this if this is n  here and this is n  here, this is actually a linear variation 

between n  versus n  where the slope is actually
2


. This is stiffness proportional 

damping.  



Now as I said we cannot directly justify in some sense that these actually represents 

some damping mechanism, but in the end, we have to specify the damping to the system 

to using some mechanism through which we can fix the damping value for the modes 

that we know the values from experiments and for the other modes, we have to specify 

using some mathematical formulation. In reality the damping is neither mass 

proportional and neither stiffness proportional. 
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But if we write it the overall damping matrix, then the linear combination of both mass 

plus stiffness proportional maybe then we can say that the damping is being contributed 

by the mass and the stiffness solvers. So, this would be closer to the reality than the 

previous two damping mechanisms that we have consider. 

So, in this case my damping matrix is written as a linear combination of mass and the 

stiffness matrix      ( )C m k = + and again because mass is a symmetric matrix, and 

the stiffness is a symmetric matrix. For typical structures damping matrix can also be 

diagonalized here and it can be written as- 

n n nC M K = +  

  

 



Or 

              
T T T

C m k       = +  

n n nC M K = +  

So, that is where I get this from just considering the nth diagonal element. 

So, again  

1
. .

2 2 2 2

n n n
n n

n n n n n

C M K

M M

   
 

  

+
= = = +  
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So, let me rewrite it again. 

1
. .

2 2
n n

n

 
 


= +  

So, this is the expression. Now, we have two unknown constants   and  . So, we need 

two equations. So, now we need specification of damping or assumption of damping for 

two of the modes. 

So, either we can find it based on some experimental evidence or we can just assign it 

some values which represent some representative value of the actual damping in the 



system. So, what we are going to do? We are going to consider specified damping in two 

modes. Let us say those are ith and jth mode.  

1

2 2

1

2 2

i i

i

j j

j

 
 



 
 



= +

= +

 

So, now what you have two simultaneous equations in terms of    and   and it can be 

solved and once the   and   are known. Then utilizing this expression here 

1
. .

2 2
n n

n

 
 



 
= + 

 
, I can find out damping for any other mode. In this case for a 

special case let us say when i j = , the solution for   and   can be written as- 

2 2
. .

i j

i j i j


   

   
= =

+ +
 

Now if you look at the variation for the Rayleigh damping, remember for mass 

proportional damping it was varying like this, and for the stiffness proportional damping 

it was varying like this. For Rayleigh damping it is basically sum of both damping 

mechanisms. It actually varies like this. 

So, this is mass proportional, and this is stiffness proportional, and this is Rayleigh 

damping. So, the Rayleigh damping overcomes few limitations of the mass proportion or 

the stiffness proportional damping which are if we assign certain value, it is stiffness 

proportional damping. It would mean that if multiple degree of freedom system has large 

number of modes, the damping would increase with the mode frequency, and it would 

become unbounded after certain point. 

Similarly, for the mass proportional damping if we specify based on some modes which 

is not the primary mode, then what will happen? Greater than intended damping would 

be assigned for a smaller mode. However, through Rayleigh damping we can consider 

the modes to which the damping needs to be assigned and all the frequencies that would 

lie between, then damping would be bounded for those. 

So, there are extensive research on the different damping mechanisms, but for the 

purpose of this course we are only going to study up to this and what we are going to do? 



We are going to do one example to see how we implement these damping mechanisms. 

So, if we have the damping values for few of the modes or assume it, we can find 

damping for other modes. 
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So, let us do an example. In this example, a three-story building is given to us, there are 

some masses and stiffnesses. This is m1, m2 and m3. So, in general we need to find out the 

mode shapes and the frequency, but for this case those are given to us. 

n  = 11.57, 31.62, and 43.2 
sec

rad
 

And the mode shapes are also given to us. 

 1

0.289

0.5

0.577



 
 

=
 
  

,  2

0.577

0

0.577



− 
 

=
 
  

 and  3

0.289

0.5

0.577



 
 

= −
 
  

 

So, the mode shapes are also given, and it even said that for the first two modes, the 

damping values are given as 5 percent ( )1 2 5% = = . We need to find out what will be 

the damping ratio for the third mode ( )3 . 

Let us discuss the solution to this problem. Remember the damping values are same. So, 

we can just use these expressions here to find out   and  . When we substitute- 



2 2 11.57 31.62 0.05
. 0.847

11.57 31.62

i j

i j


 

 

  
= = =

+ +
 

2 2
. 0.05 0.0023

11.57 31.62i j

 
 

= =  =
+ +

 

So, for any other mode damping can be found out as- 

3 3

3

1
6%

2 2

 
 


= + =  

So, we saw that utilizing the frequencies and the mode shape if we assume the damping 

values for the two mode shape, the damping for the third mode can be determined using 

the Rayleigh damping. 
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And one more thing to notice here in this case remember Rayleigh damping is something 

like this. We had assumed for the first mode. Let us say the second mode is around here 

and let us say third mode is around here. 

So, the third mode which is outside this range, the frequency would be greater than 1  

and 2  the damping is around 6% right compared to the first two mode which is around 

5%. If we had considered, for the first mode and some third mode or the fourth mode and 



wanted to find out the damping in between of the modes, that would be always smaller 

than the assumed damping. 

So, keep that in mind. So, with this discussion we are going to conclude our discussion 

on damped free vibration. In next class, we are going to start a new chapter on Forced 

Vibration. 

Thank you. 


