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Welcome back everyone. So, we are going to continue our discussion from the last class. 

Basically, in the last class, we discussed how to set up the equation of motion by using 

two method. The first method used method is direct equilibrium, in which we basically 

used equilibrium conditions to set by equation of motion. The second method which is 

called influence coefficient method. We saw that using both methods we can set up the 

equation of motion for a multi-degree of freedom system. 

So, we are going to do some examples today and apply both method to actual problems 

and see how to utilize those methods to set up the equation of motion for a multi-degree 

of freedom system. In the last lecture, we discussed that if we have a multi-degree of 

freedom system, how to formulate the equation of motion of a multi-degree of freedom 

system. 
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We took an example of a 3-storey shear type building, in which we said that the building 

has 3 degree of freedom represented by u1, u2 and u3. It has masses lumped at each level 

and the storey stiffness is represented by k1 k2 k3. We found out the equation of motion of 

this 3 storey building subject to external load. So, these external loads are basically P1, 

P2 and P3 applied at respective storeys, ok. 

The equation of motion that we got was of this form 
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So, we got this mass matrix. Then if there is also damper at each between each storey, 

then, that can also be formulated in this equation of motion and we can write this as 

above, with the velocities. Then we had the stiffness terms, which took the same form as 

the damping term. So, I can write this as above and then u1, u2 and u3, the displacement 

vector, and this is equal to the applied load vector. So, in general, the equation of motion 

of a multi-degree of freedom system can be written as, inertial force vector plus the 

damping force vector plus the internal force of the stiffness force vector equal to the 

applied force vector. This is the extension of the equation that we had chosen for a single 

degree of freedom system. 

And of course for the case that we have considered here, can be written as mass times 

acceleration plus damping matrix times velocity vector, and then there is internal force 

that is stiffness matrix times the displacement vector and this is the applied force vector. 

So, this is the general form of the equation of motion. 

We also talked about that this equation of motion can be derived using two methods. In 

the first method, we can simply consider the free body diagram of the system that is 

shown here. So, either we can cut the system at these 3 locations, and write down the 3 

equation of motion corresponding to each masses and that is called the direct equilibrium 

method, in which we are going to directly write down the equation of motion and then 

formulate these matrices and vectors here. In the second method, we talked about the 

influence coefficient method. 
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In the influence coefficient method we said that, I am going to formulate stiffness matrix, 

by considering the unit displacement at any degree of freedom and then finding out the 

forces required to have that unit displacement maintained at that particular degree of 

freedom and 0 displacement everywhere. The forces that we get are the column vector of 

the stiffness matrix. These coefficients are called the influence coefficient and we are 

going to repeat that for each degree of freedom to find out the whole stiffness matrix. 

So, we said that aij is nothing but force at degree of freedom I due to unit displacement at 

degree of freedom j. The same concept can also be extended for the damping matrix in 

which the same thing. So, let us say c11, c21, cN1, and the damping matrix can be obtained 

assuming cij would be the force at DOF i due to unit velocity at degree of freedom j. 

Similarly, the mass matrix can also be found out like that and mij is basically force at 

DOF i due to unit acceleration at DOF j. So, in these cases, what do we do? We first 

consider unit displacement at any degree of freedom let us say j and 0 displacement 

everywhere. We find out forces that need to be applied at each degree of freedom to 

maintain that state of deformation and that can be done using the static analysis. 

So, this is considered in the stiffness component of the structure. This is considered in 

the damping component and this is considered in the mass component. So, this 

component means that, in this the stiffness component, we only consider the bare frame. 



In the damping component we only consider the dampers, and in the mass component we 

only consider the masses in the system without the frame or the damper. 

We know we considered the representation of a multi-degree of freedom system can be 

written as a sum of 3 individual component, stiffness component, damping component, 

and the mass component. So, using this method as well we can formulate our equation of 

motion like this. 

So, in today’s class what we are going to employ both these methods: direct equilibrium 

method and the influence coefficient method, to find out the equation of motion of 

different type of systems. So, let us do the first example. 
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So, in first example I am going to consider the same example that we did last class. So, I 

have a continuous bar a rigid bar and the mass is distributed over the length L. The force 

vectors Pt and Pθ are being applied at the center of this rigid bar and the degrees of 

freedom are u1 and u2. 

These springs have a stiffness k1 and k2. The equation of motion needs to be found out 

using both method: first the direct equilibrium method, and then the influence coefficient 

method. So, let us first do the direct equilibrium method. So, as we know a rigid bar in 

two-dimension can be represented as two degrees of freedom. So, let us say, initially the 



bar was here, but at any time t, the degree of freedom u1 and u2. So, this is u1 here, and 

this is u2 here.  

So, this bar in two-dimension can rotate or can translate and to represent the motion we 

need two degree of freedom, to represents its displaced position with respect to the initial 

equilibrium position. Now, this is the deformed position. So, we need to draw the free 

body diagram of this bar in a deformed position. Now, as you know you have a spring 

here, so when it is deformed by u1, force that would be applied here would be k1 u1, and 

then there is another force which is k2 u2. 

Now, I am going to apply two pseudo quantities here. So, because this bar can translate 

and can rotate, I am going to apply the pseudo translational inertial force and the pseudo 

rotational moment against the direction of translation and rotation. So, the bar would 

have mass times acceleration at this point. Now, acceleration at that point can be written 

as acceleration at the end 1 and acceleration at the end 2 divided by 2 because it is at the 

middle point. So, this is the pseudo translational force. 

Now, it is rotating anti-clockwise. So, a clockwise pseudo moment would be applied to 

it, and that would be the moment about its center of mass, let us call this Icm, times the 

rotational acceleration, which I can write as (u2 - u1)/ L. So, the angle θ here. This is 

basically you consider (u2 - u1)/ L and the rotational acceleration would be just the 

double differentiation of that quantity right there. 

Remember that there are two forces as well here. So, you have Pt and Pθ. So, utilizing 

that, let us write down the equation of motion. Now, to write down the equation of 

motion I am going to first write down, let us consider this as end A and end B. 

Summation of moment about point B equal to 0 ( 0BM = ). 
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So, I will have  
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So, with that let me just rearrange the terms here. We will have, remember Im, the 

moment of inertia of this would be bar mL2/12. Now, I am going to substitute that in the 

equation of motion over there. So, let us do that here, 
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So, let us further simplify this one. So, this we can write it as  
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L
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Similarly, I am going to write down the equation of motion summation of 0AM = . 

Let us write that down. So, when I do that, it will have  

 2 1 2 1
2 2

2 2 2
m t

u u u u L L
I m k u L P P

L


− +   
+ + = −   

   
 



(Refer Slide Time: 19:01) 

 

So, this I can write down as, again I can simplify this as 

 
1 2 2 2

6 3 2

tP Pm m
u u k u

L

+ + = +  

So, equation 1 and equation 2 can we combined in the matrix form and written as m/3, 

m/6; m/6, m/3; and then the acceleration vector here. 

And then I have the force vector k1, 0; 0, k2. Then, the displacement vector, and that is 

equal to the force vector which comes out to be (Pt/2) – (Pθ/L) and then (Pt/2) + (Pθ/L). 

So, there is some important point to note here. If you look at it, this is a distributed mass 

bar, so the mass is distributed throughout the length. The degrees of freedom are defined 

at the ends of this bar. 

Just above k1 and k2, so if you look at it, we get the stiffness matrix as diagonal matrix. 

However, if you look at this mass matrix, it’s a non-diagonal matrix and the forces also 

you do not directly get the force Pt and Pθ. So, this is basically the implication of how 

you define your degrees of freedom, because the degrees of freedom in this case were 

directly above k1 and k2, which represents the deformation in the two springs, I get a 

diagonal stiffness matrix. 

But, if you look at the displacement here, it does not correspond to a single lumped mass. 

It is a distributed mass and it does not correspond to the direction of the applied forces 



which are moment forces moment which are Pt and Pθ. That is why again we do not get 

directly the diagonal mass matrix or a single force vector that comprises of directly the Pt 

and Pθ. 

So, this is the equation that we obtained using the direct equilibrium method. Let us 

obtain the same equation or let us see what we obtain, if you utilize the influence 

coefficient method. 
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Now, in the influence coefficient method, let us start with the formulation of the stiffness 

matrix. If you remember, to get the stiffness matrix, first we are going to apply the unit 

displacement at each degree of freedom with 0 displacement and other degrees of 

freedom and find out the columns of the stiffness vector. 

So, in the first case, we are considering u1 = 1 and u2 = 0. So, basically the deflected 

shape would look something like this. So, this is my bar here and it has u1 = 1 and u2 = 0. 

Now, to maintain the shape we would have to apply forces which would be the influence 

coefficient for the stiffness matrix. So, those forces would be at the degree freedom 1, 

the force due to unit displacement at degree of freedom 1, and force at degree of freedom 

2 due to unit displacement a degree of freedom 1. 

So, these would give me k11 and k21. Remember, in this case, we have subject to this 

deformation, k11 and k21. We have only considered the stiffness components, not the 



mass component or the applied force or anything. Now, subject to these displacements, 

we know that we have two springs as well, because we still need to consider the stiffness 

component.  

So, these forces need to be applied, but with this displacement, we know that there will 

be a downward force at k1, which would be k1 times the deformation in that spring which 

is one and then here k2 times the deformation in that spring which is 0. Again, we can 

solve this, if I write down the equilibrium summation 0BM = , I can directly get as 

k11L – k11 L = 0. 

So, k11 is nothing but k1. Similarly, if I consider summation 0AM = , I would get as 

k21L minus, there is no moment created by the force k2 because its 0, equal to 0. So, k21 

equal to 0. So, we have got the first column of our stiffness vector which is k1, 0. Second 

column to get that, let us say u1 = 0 and u2 = 1. 

So, in the second case, I will have the deformation state which is something similar to 

this one. So, u1 = 0 and u2 = 1, I will have to apply the forces which are force at degree of 

freedom 1 due to unit displacement to degree of freedom 2. Force at degree of freedom 2 

due to unit displacement degree of freedom 2. 
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And subject to this deformation state, it would have the spring forces which are 0 at this 

point, and k2  1 at this point. So, again utilizing similarly, the equilibrium of equation, I 



can get as k12 = 0 and k22 as k2. So, I have obtained k1, 0; 0, k2, and this is my stiffness 

matrix. So, although I have demonstrated for two degree of freedom, we can extend it for 

any degrees of freedom. 

Now, let us come down to finding out the mass matrix. Now, for the mass matrix, we are 

going to repeat the similar kind of procedure except, now we are going to doing the same 

thing for the acceleration not the displacement. 
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So, in the first case, I am going to assume unit acceleration at point A and then 0 

acceleration at the second degree of freedom system. So, in this case, I have unit 

acceleration at this point, and then 0 acceleration at this point. Remember we only 

consider mass in this one, there is no spring or anything in this system. So, to get the 

mass matrix, we only consider the mass component of the system. 

So, unit acceleration 1, acceleration 0. So, it would be varying somewhere linearly 

between these two accelerations. Now, because the mass is distributed, the inertial force 

on this bar, if you consider x to represent the displacement from the, or the position from 

the rightmost end, then at any point the acceleration is basically x / L times 
1u which is 1. 

So, the acceleration ( )u x  is x / L. 

Now, the inertial force would simply be, whatever the mass x; now, mass x is basically m 

divided by L. So, the inertial force at any same distance would be fI(x) equal to m / L, 



m(x) times the acceleration at that point which would be x. So, mx/L2. And now, we are 

going to write down the equilibrium equation for this one. So, what will happen? I have 

inertial forces which are distributed like this.  

And to maintain the state of acceleration, I need to apply force m1 due to unit 

acceleration at 1, and then force a degree of freedom 2 due to unit acceleration at 1. So, 

in this case, if I consider summation 0BM = , then I can write it as m11  L is basically 

equal to the net effective inertial force which would be in this case (1/2)  L  (m/ L)  

2L/3; so, the net resultant force in this case if you consider for this one would be m/L. 

Now, this force would be acting at distance which is 2L/ 3. So, that negative answer. Or, 

you could just simply write it as you know, if you take the integration of it the total 

moment would be basically m/L  x/L  x, 0 to L and that would give you m/3. Or that is 

not mL/3, let us say, it is mL/3. In this case, if you look at it you get the same quantity 

here. So, m11 is basically m/3. 
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Similarly, if I consider 0AM = , then you will get m21  L is equal to the same 

quantity, but now from the left-hand side, it is at distance L / 3. So, here you get m21 as 

m/6. So, we have got the first column m/3 and m/6, we still need to get the second 

column here. 



So, we are going to follow the same procedure and we are going to apply u1 = 0 and in 

this case u2 = 1. So, now, basically, consider inertial forces would be acting opposite to 

the direction of acceleration and I need to apply force at a degree of freedom 1 due to 

unit displacement degree of freedom 2. Force a degree of freedom 2 due to unit 

displacement degree of freedom 2.  

And then, the force that it will have here, remember, again this is u2 = 1, and the inertial 

force at any distance is same quantity m / L times the acceleration x / L. So, I again, I can 

employ the same equilibrium equation, in this case, and get as m12 is m/6 and m22 is m/3. 

So, this is m/3, m/6; m/6, m/3. 
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So, mass matrix is also obtained as this m/3, m/6 and m/6, m/3. So, we have obtained 

mass matrix, we obtain the stiffness matrix. One more quantity that need to be obtained 

is the force vector. Now, if you look at it, I have this bar here in which the applied force 

is Pt and Pθ are not applied the degree of freedom u1 and u2. So, I need it to find out the 

equivalent force system for this, so that Pt and Pθ can be basically decomposed or it can 

be rewritten, so that along the degrees of freedom u1 and u2. 

Now, let us say the forces P1 and P2, these two forces are equivalent. These are two 

systems are same systems. So, in order to achieve the same thing, what we are going to 

do? Again, we are going to write down the equation of motion, for this system. So, let us 

go ahead and write down the equation of motion. 
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So, in this case, let me just first write down P1 + P2 = Pt, because if you consider same 

thing; so, at this point the net resultant force at this point is P1 + P2. The net resultant 

moment at this point is basically P2 - P1  L / 2, and this is the net moment in the anti-

clockwise direction at this point and that is equal to Pθ. 

So, we can solve this, and we can find out P1 = (Pt/2) – (Pθ/L) and P2 = (Pt/2) + (Pθ/L). 

And this simplification we only did because our degrees of freedom or the applied forces 

were not applied at the degrees of freedom that we had considered for this problem. 
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So, now we can write down equation of motion as  
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We can compare this to the direct equilibrium method, and see, we have obtained the 

same equation of motion. So, which method to employ in what kind of problem, you 

would only learn through looking at the problem and doing or practicing more problem. 

So, sometimes one method is usually easier to apply for a specific type of problem 

compared to other method.  

And there is no fixed rule as such. So, that you would only need to plot, but remember 

that it does not matter which method you employ as long as you are doing it correctly, in 

the end you should get the same answer. Although, you might find one method to be 

little bit difficult than the other method for some type of problem. 

So, after this what we are going to do; for same problem, let us say instead of 

considering the degree of freedom, along the two spring we had considered, the degree 

of freedom as the ut, which represents the translational motion and uθ, which represents 

the rotational motion. So, that the deformed position can again the this as ut and this as uθ 

and the rest of the parameters remain same k1 and k2. 

So, in this case, again I have Pt and Pθ like that. So, you can go ahead, and you can find 

out the equation of motion, you would get equation of motion which is little bit different. 

I am not going to solve this system, I leave it for you to solve the equation of motion and 

let me just write down the final equation of motion. 
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So, we get as  
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Now, notice an important difference compared to the last equation that we had written 

here. In this case, we are defining the degrees of freedom ut and uθ, which are along the 

centre of mass and the center of rotation or we can say that it represents the degrees of 

freedom along the mass translational rotation and the rotational motion. 

So, that is why we again get the diagonal matrix in which we have the mass term and we 

have the moment of inertia about the center of mass. However, because now the degrees 

of freedom are not defined along the springs, we get non-diagonal matrix for the spring 

stiffness and the force vector, because the degrees of freedom are along the force vector, 

now we directly get as Pt and Pθ. So, we get two different equation, although they are not 

exactly different, I will just come back to that; depending upon the equation or the 

degrees of freedom that we have defined. 

Now, you might see a different formulation of equation of motion, but we will see in the 

next chapter a dynamic system is basically defined through its modes shapes and 

frequencies which are called modal properties. So, even if you see that these equations 

are somewhat in a different form, basically they represent the same system, because 



through some mathematical manipulation this can be transformed to this or this can be 

transformed to this.  

We use something a matrix that is called transformation matrix to do that. And let us 

quickly see how we do that. 
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If we consider a system, equivalent system. So, let me just take example of this one. 

Remember, we had a system, so in the deformed position it looks like this. Now, first 

time we considered u1 and u2 which were the displacement at these two locations to 

represent the deformed shape. In the second case, we considered ut and uθ to represent 

the displaced position. 

Now, can I say my u1 is ut - uθL/2 and u2 is ut + uθL/2. So, that I can write it in a vector 

form  

 
1

2

1 1/ 2

1 1/ 2

tuu
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This matrix here is called the transformation matrix. We are going to represent it as a. 

We will see that these two systems are basically equivalent, and if we need to transform 

a system from ut to uθ. So, first case let us say the mass matrix is [m] the stiffness matrix 

is [k], and the displacement vector is {u}. 



In the second case, let us say mass matrix is [m’], stiffness matrix is [k’], the 

displacement vector is {u’}. If I write it like this, so basically the equation is here {u} is 

equal to transformation matrix [a]  {u’}. I can substitute this formulation, so that you 

will look at it here and your stiffness would basically become [k’] = [a]T [k] [a] and [m’] 

= [a]T [m] [a]. 

So, these two systems, and they represent the same system and we can switch from one 

system to other system by utilizing these equations. If you have taken a course in a 

structural mechanics, you would have learned about this transformation matrices. 
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Once this is clear, remember we have been writing down our equation of motion as mass 

matrix times acceleration vector, damping matrix times velocity vector and then stiffness 

matrix then the displacement vector as P. Now, this is for any load vector P. Now, if we 

consider earthquake ground excitation of multi-degree of freedom system.  

So, earthquake loads what we are doing, let us consider the 3 lumped mass 

representation of the 3 storey shear type building. So, in this case, I will have certain 

displacement like due to the ground excitation, let us call this ug(t) and let us represent 

the ground acceleration are ug and then the relative displacement ut. 



Now, at each at any degree of freedom let us say this is the ith degree or jth degree of 

freedom. Let us say this is j, the total displacement, at the jth degree of freedom would be 

the ground displacement plus the relative displacement of the jth degree of freedom. 

Now, if we write that, we can also write down our velocity by differentiating it once and 

the acceleration by differentiating it twice. Then, substitute it in this equation of motion, 

keeping in mind this acceleration is actually the total acceleration and this velocity and 

displacement are actually relative velocity and relative displacement. 

So, in terms of vector representation this can be written as let us say vector {u}, I am 

writing down for acceleration, {ut} is equal to {ug}, which is vector of the same quantity, 

{ug} throughout in a column. Then, I have ug(t) which I can write as u1, u2, u3. So, this 

would be the relative displacement vector. 

So, because I have the same quantity ug(t), I can write this as unit vector. It is not a unit 

matrix; so, just keep in mind this is a unit vector times ( )gu t + ( )u t . Now, in this case, if 

I substitute it, I would get the final expression as this times the relative acceleration 

vector u, plus relative velocity and then relative displacement.  

This is equal to - m {l} ( )gu t  here and this is my effective force vector for a seismic 

excitation of a multi-degree of freedom system. So, I am going to write my P effective as 

- m {l} ( )gu t . 
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Now, one thing to notice here, that in this case my degrees of freedom were in the same 

direction as the ground excitation. So, it might happen that my degrees of freedom might 

not be defined in the same direction as the ground excitation. In that case, this quantity 

that I get here 1, or the unity vector, it might not be actually unity.  

And then, in that case we represent it as influence vector, which is denoted as {l} and 

which basically represents the relationship between the direction of the ground motion 

and the direction or the degrees of freedom and I will give you some examples to show 

that what I basically mean by that. 
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So, let us say, I have a building. So, in that building my ground excitation ( )gu t  is along 

the degrees of freedom so that I could write this as 1, the influence vector is 1. However, 

in the second case, let us say we have something like this, where the masses are actually 

lumped and the degrees of freedom are defined it like this u1 in this direction, u2 in this 

direction, and then u3 in this direction. So, in this case let us say, this is ug(t). 
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So, to get the influence vector, let us say for any jth degree of freedom, any jth degree of 

freedom ug(t), the total displacement as the relative displacement plus the ground 

displacement. If we write it in terms of vector, it would be total displacement vector as a 

relative displacement plus the ground vector ug. 

Now, if my degrees of freedom are not along the ground excitation, then this, we write it 

as u(t) plus some vector {l} times ug(t), not acceleration, we are still considering the 

displacement here. Now, what do we do to find out this influence vector? We apply a 

unit ground displacement in whichever direction the ground excitation is applied. 

So, you apply a unit value of the ground displacement, and then you look at it for that 

unit ground displacement, what happens to the displacement along each degree of 

freedom. For example, in this case that we have here if I apply ug equal to 1 and we are 

doing it statically. So, this is just finding out the relationship. 

So, if I apply ug equal to 1, all of this degree of freedom will move by 1. So, that is why 

my {l} becomes {1, 1, 1}. However, in this case if I apply ground displacement equal to 

1, u1 moves by 1, u2 moves by 1, u3 is 0, because there is no displacement in the vertical 

direction due to the unit ground movement of 1. So, in this case {l} becomes {1, 1, 0}, so 

that my influence vector can be written as {1, 1, 0}. 
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Similarly, let us say for the same thing, I have something like this, instead of I have 3 

masses here and instead of translational ground motion, let us say I have a rotational 

ground motion. So, θg is there. So, in this case also, we need to apply a unit rotation of θg 

= 1 and then see along each degree of freedom what is the displacement corresponding to 

this one. 

So, this would be if this height is h1, this would be 1 times, remember, if this angle is 1, 

this is 90 degree, then this angle would also be unity. So, this would be h1  1 along this 

degree of freedom. If u2 and u3 are this, this would be whatever the height that is 

considered let us say h2, h2 times 1. In this direction. and this would be whatever the 

length of this is let us say this is h3 here. 

If this is rigid, this connection here, if this rotates by θ this would also rotate by θ, and it 

would come down by the length times this angle. So, that would be h3 times 1. So, the 

influence vector here would be h1, h2 and h3. Once we get the influence vector, we can 

find out the effective force vector as – [m]  {l}  ( )gu t . 
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If it is a translational ground acceleration, if it is a rotational ground acceleration, then 

this would be – [m]  {l}  ( )g t . We can write down the equation of motion as same as 

 [ ]{ } [ ]{ } [ ]{ } effm u c u k u P+ + =  

So, we have seen that how to set up the equation of motion for a general load vector and 

for the seismic excitation by obtaining the influence vector. We learned two type of 

method to set up the equation of motion, the first one was the direct equilibrium method 

and the second was the influence coefficient method. 

So, with this, we would like to conclude this chapter. In the next chapter, we are going to 

study how to get the modal properties of a multi-degree of freedom system. 


