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Lecture - 15
Non-periodic Excitations
Pulse Excitations

Welcome back everyone, today we are going to discuss the idea of impulse and how the
response of a system subject to pulse forces can be approximated using the same expression,
which only depends on the area of the loading and not the shape of the loading over a specific

value of ¢,/ T, ratio.

So, let us see how we can get solution for the response of a single degree of freedom system

subject to impulsive forces.
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So, today we are going to see, how to obtain the response of a single degree of freedom
system, subject to different type of pulse excitation. Till now what we have done, we found
out what is the response subject to step force or step excitation, in which a force is applied
over a duration of 7, and then it is taken off and then we found out what is the response of a

single degree of freedom system.



So, basically the procedure that we describe, we have to consider the forced duration or
forced phase of the response and then free vibration phase. So, for any pulse type motion, we
can divide our response into forced response and free vibration response; basically to
represent when the force is applied on the single degree of freedom system and when the

force is removed.

Now, today we are going to discuss different type of pulse excitations, examples of which
could be observed in real life. So, one of those pulse excitation is triangular pulse. So,
basically you have a force of amplitude P, and then it decreases with time and then goes to 0
over the time duration #,. So, as I said, this is a force that is applied suddenly and then it goes

to 0 over time duration ¢,.

Basically, one of the examples where this type of pulse excitation could be observed or where
the loading could be represented as a triangular pulse is basically blast loading. So, if you
have a surface blast what happens, the shock wave actually travels like this and when it hits a
structure, it applies a pressure loading on that structure. The time variation of that pressure

loading can actually be approximated using a triangular pulse.

So, let us see how do we find out response to triangular pulse excitation. So, we are going to
divide our force p(f) or the excitation p(¢) in two phases; first phase is the forced phase, which

we are going to write as P, (1 — #/t,).

This is for time duration the smaller than z, and for greater than ¢,, this is basically 0. Now, to
get the response, we are going to first find out the response during the forced vibration phase

and then during the free vibration phase, using the initial conditions at the end of forced

vibration phase here. So, that would be u(z;) and u(ty) .

So, the procedure remains same, you could either use Duhamel integral to find out the
response or you can just utilize the classical method of solving differential equations. So,

what I am going to do? I am just going to write down the final solution.
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So, let us first consider the forced vibration case. I can write down my u(?); if I consider as

Duhamel integral, I can write this down as

u(t) = £ j[l—tijsinwn(t—r)dr

mam

n

Remember I am not doing anything new, I am just finding out what we have discussed that,

u(t) due to an arbitrary force can be found out using this expression here.

This Duhamel integral here in which we write down

u(t)= ﬁjp(r) sinw, (t —7)dt

n 0

So, this we had derived in the first lecture of this chapter. So, we are just basically utilizing

that. So, once we substitute the values, we can go ahead and find out the response as

t sinw,t
u(t)=u,,|l-—-—cosw,t+
Iy ,t,



So, this is for the forced vibration phase. Now, what will happen, at the end of the forced

vibration phase, it would have acquired certain displacement and velocity.

So, when the load become zero, it still has that velocity and displacement. So, it is going to
go into free vibration without any application of external load and it will keep on vibrating

with that, because there is no damping in the system.
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So, basically what I am saying for the free vibration phase, let us get the response. So, for the

free vibration case, I can just write down my response as

u(t,)

n

u(t)=u(t,)cosw,(t—t,)+ sinw, (t—1t,)

This is the free vibration response with initial conditions are now provided at ¢ = #,, not £ = 0.

So, remember the original equation used to be



u(0)

u(t) =u(0)cos, (t)+——sinw, (t)
©

n

And this was the expression for u(f), when the initial conditions were provided at = 0. Now,

the initial conditions are at ¢ = ¢,. So, basically I am going to find out my response using this

expression here. So, we can substitute the value of u(z,) and u(t,) from this expression here,
substituting it here and then we can simplify it and get the final response of the system, which

I can write it as

sino,t sino, (t—t,)

u(t)=u,, —Cosm,t

w,t, w,t,

n

So, now we have obtained the response for forced vibration phase and the free vibration

phase.
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So, one of the things that we need to find out is when subjected to a triangular pulse, let us
say, P, and ¢, what is the peak response of the single degree of freedom system? So, this is an
important parameter that we need to find out and to find out we first need to consider whether
the peak response occurs during the forced vibration phase or whether it occurs during the

free vibration phase.



Because depending upon that, I will have to find out the maximum value of u during the
forced vibration phase or maximum value of u during the free vibration phase. So, for the
free, for the forced vibration phase basically what you need to do? We can define our R,(?) is

basically u(f) / uy,. So, we will get this expression here, which I have here.

i t
Rl(t)=@={l—ti—cosa)nt+ 2O }
d

ust 0 a)n td

And to find out at what time this is maximum, basically I need to differentiate with respect to

time and equate it to 0.

And then find out ¢ equal to ¢,,,, from that expression when I substituted equate it to 0. Then I
am going to substitute this time back to this expression here to find out the R,,,,.. Basically,
what do I get? R, as in this situation 2 - ¢,, / ¢,, where ¢,, is the value of the ¢ that I get when I

substitute dR / dt = 0.
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And the value of z,, that I actually get, I am going to write that as well. So, ¢, basically I get it

-1
as (Z,/m)tan"(2nt, /T,) . So, this expression here becomes



Now, as you can see from this expression here, my R, is only a function of ¢,/ T, which is the
same conclusion that we had obtained for other type of pulse motion, which was the step
force. So, even for the sin force, again ¢,/ T, is the important parameter, based on which my
peak response depends. So, this is for the case when I am assuming that my maximum

response occurred during the force vibration phase.

Let us say, that is not the case. So, what I am saying here basically; let me say this, I am
representing the displacement on y-axis and time on x-axis. I am also drawing the static
displacement curve, which is basically starts from Py/k, the peak value. So, this is basically

uyo= p(t)/k, this is the time variation.

So, it might happen that the maximum response can occur during the forced vibration phase
or it can occur during the free vibration phase. So, in that case, let us say it occurs during the
free vibration phase, the response would still be increasing something like this and
somewhere during the free vibration phase, I get the maximum response. So, at the end of the

forced response, whatever response that I will get, would not be the maximum value.

That would be the value, which would further be increasing during the free vibration phase.

So, in this case basically ¢, < ¢, and ¢,, is basically obtained during the free vibration phase.
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This is opposed to the case when my maximum response occur during the force vibration
phase. In this basically what happens, it goes something like this. So, during the forced
vibration itself, the maximum response occurs and it keep on going like this. So, again this is

my u(f) = p(t)/k, this is Py/k and this is the u(¢) curve and this is my ¢, and this is #,.

So, in this case, which is the case that we have just discussed; the maximum response occurs
during the forced vibration phase. If that is not the case; then let us see what happens, if the
maximum response occurs during the free vibration phase. So, to find that T, what we need to

do.



(Refer Slide Time: 15:13)

1/%\ lr_ i — .

s
Frea vil
Ri= ul) - L [Ufwmq)sﬂmdf (LJﬂ-u-aﬁz)muj‘(/DA»JI.'}"J

(Usr) Un ly
dhog b
&

b= T me\( - W0sHald |

2

SN =Ml

For the free vibration R(¢), I need to write is as u(t)/u, this is for the free vibration phase. So,
let me write it here and I can substitute the expression here to find out the expression which I

get it as nothing, but this expression here.

u(t 1 . .
R(t)= ut) _ ——[(—cosw,t,)sinw,t —(w,t, —sinw,t,)cosw,t]
ule a)n d
Now, again even for this, we are going to follow the same procedure, dR/dt for the maximum

response during the free vibration; I am going to equate it to 0, then find out the value of ¢

equal to #,, at which the maximum response occurs.

And then substitute it back to this expression here to find out the R,,,,. So, the ¢, I will just

give you the answer; the 7, that we get here is basically

T _ l1-cosw t
tm =" tan 1 ‘ n'd
2n sin,t, —o,t

n"d

So, if I substitute this ¢ equal to 7, back in this expression R(¢), I would get the sorry, this

should be here R,,,,., | would get the R,,,,, here.
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You can go ahead and then again plot basically for each phase. So, for forced vibration phase
and then the free vibration phase, both condition you can find out what is the R,,,,. and R,,,,.
and then to find out the overall response, you can take the maxima of both values. So, let me
first draw it the, R value for both of these expressions, you know you can do it numerically or
you can do it analytically. So, this I am going to write down the horizontal axis as. This is

basically ¢,/ T,, because that is the parameter on which my R,,,. depends on.

So, what happens in this case. For the first case, I am first going to plot the forced vibration
response; if my maximum occurs during the forced vibration response, I will see that the
curve looks like something like this. And for the free vibration response; if I try to find out, it

would look like something like this. So, this is basically R,,,.. and R,,,,..
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This point at which these crossovers basically is, you can find that as the crossover point as ¢,
/' T,=0.371. So, when t,/ T, is less than 0.371, the maximum response is governed by R,,,..;
when it is greater than 0.371, it is governed by the R,,,,, the forced vibration response and

then you can find out the overall maximum response of the system.

Now, note that this is different from the case for the step excitation, for which the z,/ 7, if it
was a smaller than 0.5; then my free vibration response governed. So, in that case my R,
govern and when it was greater than, then the forced vibration governed. So, this value is
actually a different. So, once you have the R value, basically given the plot of R as a function
of t;, / T, and R is nothing, but peak dynamic displacement divided by the peak static
displacement, which is Py/k.

And if we have this R curve for any pulse type excitation, given the property 7, and the
property of the system 7, we can find out what is the R value and then we can find out the

what is the maximum dynamic displacement. So, there are several curves like this.
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So, some of those curves that you can encounter in real life or let us say sin pulse excitation;
you could also have double triangular excitation, something like this or you could have
different type of pulse excitation. And like it is not possible to do all, find out the response to
all of those you know excitations; but it is worth noting that how to develop the solution. So,

you understand the procedure.

So, we have discussed a step force excitation and we have discussed triangular. So, we are
not going to discuss these; but you can refer to any standard text book to find out the
basically R for each. So, response modification factor as a function of #,. So, this is P here,

this is Py, this is p(¢) here.

Again I should not say like this, let us say it is like this. So, it is p(¢) and this is #, here. So, for
all of these cases, you can find out what is the value of R versus ¢,/ T, and it could be of any
general shape and that is what is important to understand and also how the response would

differ for different type of pulse excitations.

Once that is known, then the procedure is similar to find out the maximum dynamic response
in the system. Now, we are going to switch over to different, special situation of these pulse

excitations and then see how does that actually affect the response.



(Refer Slide Time: 22:13)

\'u’m

=L >-b% peat ampprse 0ty cw‘/7 Y e ki F'VML
1

] RN f, \ -
T | -

i e

|

7\

We saw that for all these pulse excitations, when ¢, / T, was greater than 0.5. So, in those
cases we saw that, the maximum or the peak response occurs during the forced vibration
phase. And if it occurs during the forced vibration phase. So, if it occurs during this phase
here or this phase here or this phase here; then it what is the shape of the pulse it matters a lot,

it plays a big role in finding out the peak dynamic displacement.

And that we can demonstrate by comparing the curves for. So, let us say I have three type of
excitation; one type of excitation is the step excitation, in which the force is P, and duration
is ¢;; second type of excitation is sin excitation, which again the peak is P, and this is 7, and

the third type of excitation is actually triangular excitation, which is ¢, and peak P,,.

Now before getting into the mathematics of it, can you imagine if you have been given these
three type of pulse excitation; just by looking at the nature of the curve, which is going to
provide you the maximum response? Think about it for a second and then see how to find

out.
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Well, if my ¢, is greater than 0.5 or let us say the peak response occurs during the forced
vibration phase; then the peak response depends on the shape of the curve and which would
be higher among the three, depends on the how fast the load is applied for each of these

cascs.

So, if you look at it, for the step type excitation, the load is applied here suddenly; compared
to the half sin pulse excitation, in which it is little bit more gradual compared to this one. And
then if you consider this triangular pulse, then the peak excitation or the forces, the rate of

increase of force is again smaller than these two.

So, if the peak is say, then analytically I can say that my step excitation or the step force
would provide the maximum response in the system. And you can go ahead and compare the
curves of R versus ¢,/ T, and that would be pretty much evident. So, if you try to plot this, let
us say this is the R value and this is ¢,/ T,. So, we know that for a step excitation, the R or the
maximum response can reach up to 2 or the dynamic displacement could be up to 2 times the

static displacement.

So, I am going to plot it here and this looks like something like this. And this value here is

actually 0.5; let us say this is 1, this is 2, this is 3.



So, this curve we had already derived and you can go ahead and see that if that is the case or
not. And if you consider the sin pulse excitation or triangular excitation, again it would
increase like this with smaller initial slope and it would give you a dynamic response, which

is higher than the static, something like this.

And for triangular it will start again like this, but again little bit smaller slope and then it
would give like something like this. So, both of them are smaller. And I am just drawing it
from the expressions that you would get and you can refer that to any text book, but this is

typically how it looks like.

So, you can see that depending upon the shape of the curve, it matters a lot if the forced
vibration response occurs during the force vibration phase or for case where ¢, is greater than

0.5.
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Now, let us consider a case in which ¢,/ T, is actually very small. In that case basically what I
am saying that either it is so small that the peak response would occur during the free

vibration phase.

So, the peak response would occur during free vibration phase. And if the duration ¢, is very

small compared to 7,; then what we can write, the total response u(f) as whatever the



response due to unit pulse times the whatever impulse due to the load or the pulse or the force

that you are applying, the pulse force you are applying.

So, let us say I have some random distribution. Let us say something like this, of ¢, here and
peak is Py, this is some general shape. If #, is very less, what will happen; the response would

actually occur much after the time ¢, during the free vibration phase.

So, in that case, let us first calculate what is the area of this P, versus ¢, curve. So, the and

that we define as an impulse. So, I can say this would be
I= j p(t)dt
0

Now, if the duration is very small, we know that it can be treated as an impulse and the
response can be obtained as / times the response due to unit impulse function, which is
nothing, but mw, sin(w,f) or you can use the same expression, if you assume that due to

impulse, you get initial velocity.

So, but no initial displacement remember, impulse only provides initial velocity; so this gives

= [/ m. And if you consider a free vibration response with 0 initial displacement,
it would again give you the same expression. So, u(f) = (I / mw,) sin (w,t). So, for cases
where the pulse duration is very small compared to the time period of the system, the

response can be represented as this.
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And in this case if you look at this, does it matter whether it is a sin pulse or a triangular pulse
or a step force; as long as / is same for all three cases or the area under the force time curve is
same or the total impulse is same for all three cases, it does not matter whether it increasing
at a slower rate or whether it is increasing at faster rate or basically what is the variation of

the or the shape of the pulse.

So, that is an very important conclusion. So, you can go ahead and you can find out the
response using this and this is basically the upper bound of the response considering the

assumption that all the forces actually concentrated # = 0, which is if #, is very small.

Then we do not have to consider time variation of this one; I can just consider this whole
impulse to be situated at # = 0 and this is the response that we get. So, again we can go ahead
and we can compare the responses, two different type of pulse. Now, let us again consider
three type of pulses, which is basically a rectangular pulse P,/ 2 and this is 7, and this one is a
sin pulse, which is here is basically T1Py/4 and this is here is z, and then I have a triangular

pulse, which is Py, t,.

Now if you look at carefully all three curves, the total area or the impulse for all of these are
same as (1/2) P, t,, this is same for all three. So, the impulse is same for all three. And if you

try to plot u, / (P, / k). So, if I try to plot this as a function of ¢ / ¢;; the curve actually looks



something like this here, this is 2 here. So, the initial line is actually same for all of them, this

curve is actually also touches this one.

So, it goes something like this here. This might not be exact representation; but this is let us
say for comparison purposes. So, what do we see when ¢,/ T, is up to, it is a very small; this
is actually 0.5. When it is half of this, 0.25, in that situation, the u, / (P, / k), it is same for all

the pulse type motion.
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So, when ¢,/ T, is smaller than 0.25 then the shape of the curve does not matter, as long as the
area under the force variation is same for all three pulses and the total response only depends
on the total impulse. So, as long as you can calculate impulse as a time integral of the force
and if this situation is satisfied here; then your response only depends on the impulse and not

the shape of the pulse. So, this is an important conclusion.

So, I need every time you are given a problem in which we have been asked to find out what
is the response to a any arbitrary impulse. Let us say this is here z,, you first find out what is ¢,
/ T,. If it is a smaller than 0.5, then you can just go ahead and use this expression; you do not
have to utilize the expression for R, from different curve to find out what is the response. This

would be our reasonable approximation.



So, these basically we have discussed response to single degree of freedom system to
different type of pulses and the methodology to get the response for forced vibration and free
vibration and then the peak response. Now, let us consider a case which is all too common in

reality; cases in which you have a ground excitation.
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So, when you have ground excitation being applied as a pulse force. So, let us see what
happens in those cases and one of the very common example is actually when you have a sin
type curve here. So this could represent simple bumper on a road or it could represent any

type of non-continuous or non-periodic curvature in the road. So, let us say this is basically

u, (¢ . o ipel
represented as £ () . So, the acceleration due to ground excitation, if it is represented as

u, () =u,,sin(znt/,)

We are going to represent this I1 ¢, / T,, because this is how we represent a half sin pulse
excitation. This is for # smaller than ¢, and this is equal to 0 for ¢z greater than ¢,, where ¢, is
basically time taken to cross this ground curvature. So, let us say if | have a vehicle, which is
moving over with velocity V' and this whole length is given to me as L; then ¢, simply
becomes L / V, the length of the this curvature here divided by the velocity of the vehicle V.

And I can represent in terms of excitation something like this, this should be IT1 ¢/ #,.



So, this is how we represent the this curve here. So, if the ground excitation is given and
remember that here this is in terms of displacement; this is in terms of displacement and we

can differentiate and find out what is the ground excitation in terms of time.

But let us say with this for this case, this is how it is. And we could have this available the
ground excitation and then let us say this is some function of u,, times sin of some function,

we do not care. Now, we know that for this type of excitation , what is the peak response.
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So u, which is the peak dynamic displacement times the peak static displacement; we know
that for pulse type excitation is represented is as R;. Now, u,, is nothing, but peak force due

to ground excitation divided by «.

Now we have derived, there is a ground excitation; then how can we write down the effective

forces - ""Hz0 ; this is the peak value of the ground excitation, divided by £. And this can be

2

u,=-u, /o . . .
st0 g n We can drop the negative term, it is inconsequential here.

further written as,
e . . o’u, u
So, utilizing this I can write my R, = u(f) / u,y= " ° 4%,

I have just substituted the value of u,,. So, if R, is given for any type of pulse excitation that

is being applied through the ground with peak ground acceleration of “0 1 can go ahead



and find out what is the peak displacement in the any vehicle that is going over that ground
excitation or any system to which that ground excitation is being applied, utilizing the R, for

that particular pulse type ground excitation.

So, it could be something like this or it could be also like this, we do not know it here. But
this expression is for all the general, any type of ground excitation which can be
approximated as a pulse type excitation. One more thing we can see here if we have an
undamped system; for an undamped system we know that, I can write down this expression

here equal to 0.

Remember this is for undamped system for the ground excitation. And this is the same

expression that we utilize when we write this u(¢) as relative acceleration times the ground

excitation and which comes on the right hand side to give the - Mg

But I can write this for any type of single degree of freedom system subject to ground

excitation. And if you utilize this, I can say that total acceleration as — (k/m) u(t), which is

2
nothing, but - @, u(?) .
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So, the peak value would also be related of both these quantities, the total acceleration and

the relative displacement. So, I can further write this as peak value of the total acceleration

2
equal to @ato and I have dropped basically the negative term here.

So, this is the peak dynamic displacement, this is the peak total acceleration. And I can go

ahead and substitute this expression here, so that my R, also becomes

2 ot
R _ a)nuO _ Z’tO
= =

g0 ugO

So, if the ground excitation is given in terms of any of the pulses, this the sin pulse or the
triangular pulse and if we know the R for any of those and it could be a finite general shape. I
do not have to go ahead and solve the differential equation; I can just utilize the R value to
get the these quantity peak dynamic displacement and then peak value of total acceleration in

the system.

And this is something similar to what we did for earthquake excitation; only thing in this one

is that my R, has changed now to this type. One more thing to remember; you might get

"ot
confused that, we used to write down transmissibility as ° €0,

Well, remember when ¢ is 0; so we have talked about undamped system, 7R is basically equal

’ 2
to R, And that you can get from the expression remember, 7R = R, I+25(0/o,)

b

remember what was the expression for 7R in the numerator, I had this term, I had that term

here and then divided it was R, basically.

If damping is 0, then this term is 0 and then basically this becomes equal to R,. So, that is
why we get the same expression. So, with this the theoretical discussion on the non-periodic
excitations are now concluded. What we are going to do now? We are going to discuss two

small problems and then we are going to discuss the solution of those problems.
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So, let us say this is example 1 here; what do I have basically? I have a building, which is a
one story building and it has been idealized as a 4 meter high frame. So, this is a building
here, which I am idealizing as a single story frame; this is total as 4 meter. And it is given that
the beam is almost rigid, and these columns are actually pinned at the base. So, this is like a

fixed connection and pin connection at the bottom.

And the properties of the columns are provided. So, the properties are columns are given as /,
= 2772 cm*. The section modulus which is basically the moment of inertia divided by the
distance of neutral axis, as given as 252 cm’; the elastic modulus of steel material for these

columns, which are these columns are made up of is 200000 MPa.

And this system basically has natural time period of 0.5 second, that is also given to you. So,
what has been asked that, a pulse type of square pulse load of 20 kN is applied, the time
duration of this is 0.2 second and what do you need to find out the response quantities, which
are basically the peak displacement of this due to this loading and also the peak stress in one

of these columns. So, the peak stress in those columns.

So, these are all the data that have been given to you and you need to find out the response of
the single story frame subject to this square type pulse motion, rectangular pulse motion. So,

pause here for a second and then try to solve this problem.



Let us now discuss the solution for this problem. Remember as we discussed whenever a
pulse type excitation is given and the property of the structure is given; the first step is to find
out what is the value of ¢, / T,, because based on ¢,/ T,, we might decide not to utilize the R,

at all.

Because if ¢,/ T, is very small, let us say smaller than 0.25; then we can just assume it to be
an impulse and then calculate the area and find out the response using the expression (1 /
mw,) sin (w,t) and if it is greater than that, then we will have to resort to using the R, verse

the response spectra, the R, versus ¢,/ T, curve.

So, t; / T, here is 0.2 times 0.5, which is 0.4 and this is greater than 0.25. So, we cannot
assume that the applied forces as a behaves like an impulse and we need to find out what is
the R, value. Now, you can go to the chart the response spectra that we have or for
rectangular pulse we know that when ¢,/ T, is smaller than half; then the R, is basically given
by this expression, R, is given by this expression 2 sin(Il ¢#,/7,) and if you substitute all

values, you will get this one as 1.902.

Now to find out the value of a static displacement, so that we can find out the dynamic
displacement; first I need to find out the equivalent lateral stiffness of the system, lateral
stiffness of the system. And that I can find out as k equal to; remember I have two columns

and the columns have boundary condition as fixed here and pinned here.
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So, for fixed pin condition we know, that it is 3E// L* and you can substitute all values of £ /
and L’ and you can find out the this one; this comes out to be around 260 kN/m and we have
to, well this would be 2 multiplied with this and if you multiply this, this comes out to be 520
kN/m.

So, you can now go ahead and find out the peak static displacement, which is P,/ k; I know
that 20 kN load was applied. So, this divided by 520 x 10°, which basically gives me a value
of 3.85 cm. Now, we know that if I have a single degree of freedom system represented
through this frame and if I have a displacement let us say something like this; then the force
equivalent to static force is nothing, but the lateral stiffness times the peak value of the lateral

forces, lateral stiffness times the peak dynamic displacement.

So, the dynamic displacement here is R; X u,, which is 1.902 x 3.85 and this is equal to 7.32
cm and we can use that to find out what is the maximum; what is the maximum lateral force

in the system, that is not difficult to do. Let us see how we do that.

So, either we can do this or what we can also do; remember if we have some situation like
this, where this one is getting displaced by u,. So, basically I am saying this getting displaced
by u,. The moment at this point can be written as whatever the lateral stiffness times basically

uy.



So, this is the rotational stiffness that I need to write down as u,. So, I can go ahead and
substitute the value and then I can find out what is the maximum response of the system.

Now, this 0, &, is nothing, but the lateral stiffness times L.

So, you can go either of these approaches; you can also you can either go ahead and find out
what is the lateral stiffness times ku, or you can based on moment you can also find out.

Remember that you will get exactly the same value; because &, is nothing, but k& x L.
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So, when you do that, the value that you would get, M = 76.1 kN-m and the force f,,, you will
get as the P, X R,, which is 20 x 1.902 and this comes out to be approximately as 38.0 kN.

Now, remember that this is the force in the total. So, this is the or this is the force in both
columns. So, if you want to consider force in one column, you will have to divide it by 2. So,

this you need to divide it by 2 to find out basically whatever the force you get and that would

be 19 kN.

And same for the moment, moment you can also get as 19. So, the moment now at the top of
one of the column would be 19 times whatever the length of that column is, which is

basically 76 kN-m, which will basically same as this one.



So, this is 76 here. So, once you know the moment in any section; how do you find out? The
stress is nothing, but moment times ¢ divided by /, where c is the distance from the neutral
axis and if you want to find out the maximum basically stress; then this ¢ becomes the half of

the section depth.

So, in this case that would be the section modulus, I can directly write this as this value and
this gives me a stress of 301.9 MPa. And this is the procedure that we basically utilize. So,
this is a very simplistic version of what is actually done during the analysis and design

practice.

But remember if you have given something like this and you have been told that the yield
strength of the steel is 450 MPa, just for example. And these steel columns, this steel building
is actually subjected to that pulse load; basically you are going to follow this procedure, you

can be find out what is the maximum stress due to the applied load.

And then you are going to compare with respect to yield stress and then you are going to
make the conclusion whether the structure is safe or not, whether it is going to yield or not.

So, this is the procedure that we follow.
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Now, let us consider a second example. The second example that we have overhead tank. So,
this is an overhead tank, on which a force is being applied at the top and the properties are

given this is 20 meters and the mass is also being given as 50132 kg.

So, lateral stiffness is given as 1600 kN/m and you can calculate the time period as 2II

Vm/!k =111 second and the damping is also given 1.24 percent. Now, the p(?) is basically
an arbitrary force for which the variation is given to me. So, it is something like this, a linear

variation up to a peak value of 200. So, this is p(f) and the units are in kN.

So, it goes up to 200 over a time duration of 0.02 second and then it is given like this, at 0.05
this is 80 and then 0.06, this is 20 and this ¢, here at which it becomes 0 is actually 0.08
second. So, basically what we need to find out is the maximum force in this alright, in the
system and the basically maximum base shear and the maximum moment for this overhead
tank. Now, for this type of arbitrary force, as we discussed the first step is basically find out

whatis¢,/ T,.

So, ¢, 15 0.08, T, 1s 1.1. So, definitely this is much smaller than 0.25. So, this can be treated as
an impulse load and we can find out the area under this curve. And there are multiple ways to
do that, you can consider to be made up of this triangle and then some of the area like this or
you can consider it to be made up of multiple using trapezoidal rule, you can find out the total
area. So, [ am going to write it, as remember this is nothing, but 0 to 0.8 second p(¢) dt and

this you can write down first, all these separations are equal 0.02.

So, I can take that out and then I can write it as 0 + 2 x 200 + 2 x 80 + 2 x 20 +0; and this

gives me as 6 kN-second.
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So, now remember what is, what was the expression if it is a pure impulse? The u(¢) is equal
to (I / mw,) sin (w,f). So, the peak dynamic response is nothing, but (/ / mw,), which I can

write it as // k and w,, | can write it as (/ X 2I1/ k x T,,).

So, we are going to substitute the values and then see what do we get. So, (6 x 10° x 2 II)
/(1600 x 10° x 1.11) and this gives me a value of 2.12 centimeter. So, once we have the
dynamic displacement; remember this is the water head tank, let us say it is deforming like
this by u,. So, the total force at the base would be the lateral stiffness times the dynamic

displacement.

And we can substitute those values here, 1600 x 10° x 0.212 and this we will get as 33.9 kN

and once we have the basically the base shear; we can also find out moment.

Remember how it would look like, if you have this force being applied here, your shear force
is actually varies like this. And the moment would actually vary start from O and with a
constraint slope due to, constraint value of shear force increases up to value M here which is

nothing, but whatever the shear force is times the height of this, which is 20.

So, moment is 33.9 x 20, which gives me a value of 678 kN per meter. So, for this arbitrary

excitation using the principle of dynamics, we have found out what is the total base shear and



total base moment. And then we can go ahead and design the system subject to these forces

and moments. So, with these two examples, we are going to conclude this chapter.

Thank you very much.



