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Energy in Forced Vibrations

Hello everyone, in today’s lecture we are going to see the energy concepts related to

excitation mostly a harmonic excitation of a single degree of freedom system. We are going

to look into how the energy transfer takes into place. So, how much of energy is being input

in the system and if it’s a damped system, then how much of that energy is being lost to that

damping or the energy dissipation. We are also going to see how to obtain the equivalent

viscous damping or a damped system?

Now as you know that viscous damping is not always a realistic mechanism for any structure,

but what it provides us a linear damping model that is suitable for mathematical solution

purposes. So, we prefer to use viscous damping. So, we will see that today as well how to

actually equate a system that has viscous damping to a realistic system and how to obtain the

coefficient of viscous damping.
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So, till now we have been studying basically, how to find out the solution to this equation

subject to this type of harmonic excitation. Now what happens in many scenarios that in

order to apply this harmonic load. It can be applied either using a motor which is constantly

vibrating at frequency w with amplitude Po, or it might also be applied with let us say an

actuator in a laboratory.

Now, if you look at it an actuator is nothing, but a device that is used to apply load for let us

say we have a column here and we can apply what kind of displacement history or load

history you want to apply through this actuator. Now it might not always be possible in a

laboratory setup to apply huge excitation or harmonic excitation using these actuators.
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So, what we are going to learn today, how to apply basically harmonic excitation using

vibration generator. Now these vibration generators it could be a deliberate design to actually

produce vibration to a structure and the practical example would be where you would actually

like to find out the modal properties using the vibration generators. And other could be cases



of unbalanced load. For example, if you have a rotating machinery and if its unbalanced load

is there, then it would apply some force.

A very common example that many of you see in your houses is actually, if you have let us

say washing machine. So, many of the washing machine. Now they have like you know come

up with different technologies to balance the load, but usually what happens due to clothes

rotating inside the mass distribution is not symmetric about the centre, and that leads to

unbalanced load and consequently due to the frequency unbalanced load there is a basically

load that is applied to the supports here. And that you can observe in any common scenario,

where the washing machine is being operated.

Or we could actually design a vibration generator in which for example, let us say here, I

have two rotating masses which are vibrating about so, these are connected through a

common sleeve here at the centre and these are rotating at an angular frequency of w so, that

after time t, the angle traversed through these masses are wt and let us say the masses are m/2

and m/2. And let us say this radius here is r.

So, as we know if we have a mass rotating about the fixed rotator about the fixed axis, it

would apply a certain centripetal force. So, if this mass is rotated it would apply a centripetal

force, which is directed along this radius.
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And the magnitude of that centripetal force is actually basically mass times the square

of the angular frequency times the radius of rotation.

Now, if you look at it the system here, the horizontal component of these centripetal forces

are going to cancel off. However, the vertical components are actually going to add up. If you

take the vertical component, it would be

So, net horizontal force is actually equal to 0, but net vertical force is this which is nothing,

but

And basically the rotation is actually through an external source let us say it could be a like

an electricity source of motor that applies these rotational velocity so, these two masses.

Now what happens? If you take this rotating setup of unbalanced load and if you attach to

any kind of a structure let us say here ok what will happen? It will be depending upon at what

frequency it is operating it will apply this much of excitation. So, if you consider something

like this Posin(wt).

If you attach this vibration generated to any structure it would apply the same amount of

force to that structure and then the response of that structure subject to this excitation force

can be found out using the conventional methods, that we have discussed previously except

there is one small difference here.
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If you see , which is a function of excitation frequency. So, initially remember

when we had Posin(wt), Po was independent of any excitation frequency, here it is a function

of the excitation frequency.

So, as we increase the excitation frequency our amplitude also increases and that is also the

reason we cannot apply a very small amplitude load here or we can say like we cannot apply

a load statically because to apply a load statically, I have to have the frequency w which

needs to be very small.

So, for a static I need to have w very very small and that would lead to Po which is very very

small. So, the Po would be very small so, the response of the structure would be like you

know very small or like you know it cannot be realistically measured. So, that is why it is

difficult to apply static load using this method of vibration generator.

Now given that it depends on the excitation frequency, let us find out if I attached to a

structure and that structure is now being idealized. For example, let us just leave it here ok let

us say this is now being idealized as a spring mass damper system alright ok and with mass

M and to which I am applying P that is equal to mw2rsin(wt).



So, do not confuse between this small m and the capital M the response that we found out is

for the capital M, but the excitation frequency is applied using this small m. So, in this case

the u(t) would be found out as
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Now, if you look at here

So, for a frequency dependent force for a force whose amplitude is actually frequency

dependent like in the case of vibration generator this is the expression that we get for peak

dynamic displacement. Now similarly we can also obtain the expression for basically the

acceleration.

Now, as you know acceleration



where Ra is acceleration modification factor that remember these all comes from the previous

classes that we had discussed if you remember basically,

So, basically, we are using the same expression the amplitude here f

So, I can further write this as

So, the variation of uo and the acceleration would actually if you try to plot it now, it

would become a diversion function.
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So, let us say I am trying to plot here . It will start from a value of 0 for a very

small value of damping it would look like something like this because I have Ra which is

actually which used to approach to 1 for large value of (w/wn), but now I it is multiplied with

(w/wn)2. So, now at large value of Ra it actually approaches to infinity.

Now the question becomes where do, we actually use these kinds of things. So, we utilize

vibration generator as we discussed to provide harmonic excitation to different type of system

which are usually not possible you using actuators in a laboratory set up.

So, let us say and this actually has been done, let us say our goal is to apply harmonic

excitation to a structure like multistorey building, which is outside and or like you know a big

dam that is there. So, I cannot take an actuator and like an even if I wanted, I could not apply

that kind of force.

So, what I do I apply and like you know in this case I need to attach this vibration generated

to either building or the dam and then keep increasing the frequency and we will see that at

certain frequency. The response will start to gradually increase and that is basically the time



period of the, or the natural frequency of the structure if the damping is very small ok. So,

that is a basically a beneficial use of vibration generator.

In many cases you have unbalanced machinery for example, let us say you know we talked

about washing machine.
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I could have an air conditioning unit, which is like you know supported at these two points or

it is supported to let us say wall and then again it is rotating. So, you know there are different

applications of this kind of vibration generator.

Now we utilize the vibration generator to find out what is the modal property so, we want to

find out wn and damping in the system. And for that what do we do actually? We perform

using this vibration generator we apply the excitation.

Now, at resonance if you remember for a small value of , I could write as

Now the easiest way to find out damping is to find out remember this



So, let us say if I can find out what is the amplitude and frequency (w/wn) in the system

through this vibration generator. So, then and if I can find out (ust)o somehow then I should be

able to obtain .
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The problem with that is we do not a priory know what is the value of (w/wn) plus as

previously described, it is very difficult to apply static load using vibration generator.

So, in realistic situation what do we do? We actually obtain frequency response curve in

which what do we do? We let us say rotate this vibration generator so, that it applies at certain

frequency, to a structure or it could be like you know any type of a structure, but let us say we

are considering a single degree of freedom system.

When this load is applied, we can find out for this frequency wn and remember for this

structure wn is fixed I am only varying the excitation frequency, I can find out what is the

peak response either I can do it in terms of displacement or I can do it in terms of

acceleration.



So, I do it for one frequency wn then I again rotate the same machinery add different

excitation frequency. So, let us say it is a higher frequency and then again, I will do the same

thing I measure what is the peak response either in terms of let us say displacement or

acceleration. Usually what happens? Acceleration can easily be measured using

accelerometer in a using you know instrumentations. And in many cases finding out the

displacement is little bit difficult.

So, we measure actually the acceleration. Now remember for all these cases my acceleration

is for the force amplitude right, that depends on the excitation frequency. So, in order to find

out the acceleration that is independent of the frequency of the force amplitude, we divided

by that frequency. So, we divided by we divided by so, that whatever we get is

actually independent of the frequency.

And then we do it for several such several such excitation and then we try to plot the response

and see the variation. Once the variation is obtained then we can go ahead and use the half

bandwidth method to find out the damping.

Formula you already know it is

and either you can directly find out the frequency here (w/wn) at which your response is

maximum or you can take average of

So, these techniques can be employed without having to find out the response at the

maximum value of wn. So, using this technique experimentally, we can find out the model

properties.

Once this is clear, let us move on to the next topic which is basically as we discussed we need

to measure in laboratory acceleration displacement. So, the question comes how do we



actually measure it and what instruments to be use and what are the principle behind those

instruments ok? So, the first thing that we are going to discuss is in vibration measurement

instrument.
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Vibration measurement instrument; we are going to viscous acceleration measurement

devices ok many times it is commonly called as accelerometer. So, we will first talk about

acceleration measurement. Now acceleration in the laboratory is measured using as I said

something called accelerometer.

In its simplest form an accelerometer is nothing, but a spring mass damper system, which is

inside a small rigid box, this box is something like this. And if I have to measure acceleration

to any point on the structure all we do, we just take this small box and then connect it to that

rigidly to that surface. So, this provides us whatever the acceleration of the connecting point,

and how do we do that let us see.

Basically, let us say if it is connected to even a top of a structure like this ok so, let us say it is

connected at this point ok. So, in terms of excitation it is nothing, but ok a spring mass

damper system. So, I can further rearrange this and I can write this as let us say support

excitation in terms of .



So, this system basically like that it does not matter which point you attach this accelerometer

it is basically a spring mass damper system being exited through a support excitation and this

is a representation that we have been discussing till now.
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Now, we know that for this case our u(t) can be written as

So, this is acceleration here it is in the form of

Now, you might argue that the support excitation is not harmonic and I completely agree with

you.
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But like we have previously discussed even if you have a random excitation like an

earthquake ok it is made up of several such frequency. So, the goal here is that if we can

understand or find out the response to one such frequency and then combine all those

frequencies then we should be able to find out the total acceleration at that point.

Now, if you look at here ok. So, I want to devise a instrument which is given displacement

history like this

I can further write this as remember

Now this expression is nothing, but



So, I can write this expression I can write the expression for
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Now if you look at this expression carefully this is what we want to measure is not it? We

want to measure at whatever excitation the support is being going through. So, we want to

measure the support excitation. So, the question is how do we do that? How do we measure

the excitation? So, that support excitation actually is nothing, but the displacement multiplied

with some factor. If you take like these factor Rd and with a phase difference of .

Now, we can say that in this case that my u(t) right now depends on the frequency. So, the

displacement actually is depending upon the frequency because Rd also depends on the

frequency and also depends on the excitation frequency. So, if I design this instrument, it

would give me different values of and the value of Rd, but I will not be able to sum those

up.



So, if somehow if this term here and this term here let us say are independent of are

independent of the excitation frequency then the instrument could provide me different values

let us say w1 due to a frequency w. So, I can write this

Similarly, the expression for u2(t) can be found out and the total response can be written as,

So, the instrument or the instrument accelerometer should be independent of the frequency

that it is being excited. So, it is like you know goal is to design and instrument such that to

make it independent of Rd and because then each harmonic component we can record

with the same modifying factor the and with the same time lag.

So, even in that case if my earthquake is excitation consists of like many harmonics we can

record the u(t) with the same shape as the support motion. So, the shape of the function

would be same if it is independent of that. So, all it would need is that a constant factor times

this Rd and that constant factor can be found out as an instrument factor of the accelerometer.
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So, this is our goal make Rd and as independent of the excitation frequency and that we

can do if you look at if you remember the plot for Rd and . If you remember for different

value of damping look like this for very large value of damping actually it is started to

become like this.

Similarly, this for 0 value damping there was a sudden rise 0 that is in 90 180 and for large

value of damping it was almost like this. So, what do we see that if my damping is 0.7 and

(w/wn) is a smaller than 0.5 if a smaller and if this is curve here let us say for middle

curve,



For these conditions my Rd is approximately equal to 1 and is actually linear or I can say

in this case it would be almost equal to you know a constant. So, is a completely straight line.

So, if that is the case then what will happen?
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This would be another constant and this would be 1. So, all value of displacement, if you

remember the expression here, If this is is actually linear then could be a constant and

Rd=1. So, then whatever the support excitation is actually the displacement that is measured.

And now let us say I have this spring mass system and there could be a digital recorder or it

could be like you know, simple paper recorder let us say, this paper is something like this.

And let us say I have this system here and the excitation will let us say being applied here.

So, what happens as you apply the excitation and this this role this is a paper role here ok. So,

as it vibrates it would actually record this displacement here and if this single degree of

freedom system satisfy this condition, then the same displacement whatever we are recording

here can be converted to acceleration it is actually acceleration.



So, in this case we can measure it like that ok and that is the basic principle of a

accelerometer.
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Now let us move on to the final topic of this chapter which is basically energy calculations in

a in damped harmonic motion.

So, we know that for viscous damping we had represented our fD or the damping force

And we also know that the energy dissipated through any force is basically force times that

displacement over and the integration of that basically over a certain time. So, if I want to

find out what is the energy dissipated due to my viscous damper I can write this as
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And let us say I want to find out ED over a cycle during steady state harmonic motion. So, I

am only focused on steady state harmonic motion, in that case over a period it will be 0 to T

times fD times du. Now this t is basically I can further is

Also,

Thus,

So, this is the energy dissipation over a single cycle during a steady state.

This expression can also be written as if you substitute the value for the damping coefficient c



what is the utility of this expression we will see later

So, remember these two expressions and these were simply arrived by considering fD and

integrating it over a certain time, to find out the total energy dissipation. Now I want to know

that with respect to the, remember that it is a forced harmonic motion. So, even at steady state

I am basically inputting energy into the system.
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Basically, how I am in putting energy into the system? Is it through . And I want to

see where is that energy going. So, let us find out how much is the energy that is being input

inputted into the system during a steady state.

So, I can find that over a cycle suppose be and I can write this is



And you know you can integrate this expression over the limits and then you can find out

what is the final expression I am just going to write it as

And if you remember the expression

Thus,

So, I am going to substitute there the expression for Rd and see what to we exactly get.

Now compare this expression to the expression we had got earlier. The energy dissipated in

viscous damping over a cycle is same as the energy that you are inputting into the system. So,

what does it mean? Well, when steady state is achieved during the force harmonic response of

a damped system whatever the energy that is dissipated in the viscous damping is actually the

energy that is being inputted into the system.

So, that is why all the energy that you are inputting in that to the system its being lost into the

damping. So, whatever the amplitude we had achieved by the steady state that would



continue. So, there will not be any change in the amplitude of the motion at the steady state.

And this is also the reason why it is called steady state. So, the input energy is actually lost in

the viscous damping alright and amplitude remain constant. Now you might be curious about

that what happens to the spring energy the internal energy which is basically Es ok.
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So, remember even in steady state your spring is undergoing deformation and then mass is

undergoing velocity. So, they would have the potential energy, which is basically the spring

energy I can write as

Similarly, the kinetic energy you can write it as let us.

Again you can substitute this expression and integrate it over the limits what you are going to

find out that these expressions are 0.

So, what do we see actually that over a cycle of vibration during the steady state, the change

in potential energy or kinetic energy are equal to 0. So, that is what happens during steady



state to the change in the energy of the spring or energy of the basically the kinetic energy of

the mass. Now, let us have a look at that.
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We said that our damping force is represented as

this is of course, a linear viscous damping that we have assumed, I want to have a look at

how the variation I know variation of the variation would look like if I draw it with respect to

velocity right this is fD and this is a variation would be linear right.

So, that’s why it is called linear viscous damper , but I want to see what happens variation if I

consider with respect to displacement. Because displacement you can easily visualize it is

going from initial displacement its maximum displacement and then oscillating about its

equilibrium position.

So, I want to find out that relationship fD and the displacement u. So, let us see how do we do

that. So, we are going to draw the graphical representation of fD, now this is equal to
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And if I rearrange these terms if I rearrange this term

This is nothing, but the equation of an ellipse. If you remember the equation of an ellipse.

So, this looks like an equation of an ellipses. So, if I try to plot fD versus u remember the

intercepts are basically whatever is the denominator of those respective variables. So, it

would look like something like an ellipse with intercept on the x axis this one as coordinate

would be (u0,0). And this coordinate here would be (0, cwu0).



And what would be the total energy dissipated here, it would be basically the area under the

curriculum, but this was the expression for the energy dissipation right.
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So, the area under this ellipse is basically π times the first intercept, let us say u0 times the

second intercept. So, it comes out to be which is the same expression that we had

earlier try. So, even through the graphical representation we are getting at the same

expression.

Now in reality what happens, when we have a structure or any element . So, if even if we

have like you know something like this, we said that, when we apply force on this frame ok is

can be represented as a mass spring damper system.

So, we said that a structure would have some damping and strictness and the total mass was

concentrated here. So, in general any structural element would have some stiffness and some

damping small or high depends on the element itself, but it would have some damping.

Now if you know basically the fs verses u for a linear system it is basically simply on straight

line ok. So, is reality would happen that when you measure especially in an experiment, in

experiment you do not measure like you know.



So, if you take a component let us say column and you start applying a force and you start

measuring like you know the force behavior, it would be basically the sum of this spring

force. So, this is here sum of these force and damper force ok. So, basically sum of these two

forces and which would look like something like this ellipse rotated by this straight line.

And how the curve would look like you know? How smoother look like depends on the

actual behavior of the structure. So, this is the total force in that structural element verses u

ok. If its a non-linear element what you might see actually is that it might also look like

something like this.
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This is called viscous behavior and this is called hysteretic behavior. Whether it would look

like this on this depends on the element properties, but for our cases our assumption is that it

looks like something like this. And this you can observe when you if you have to perform

experiment at some point you will see that, your force deformation loops for a regular

structural member would look like something like this.

So, the question comes in many of the situation it will not be actually something like to

viscous it would be like a hysteretic damper now for this system I know how to solve for the

viscous linear viscous damping I know how to obtain the solution we have an analytical



solution available and it’s much easier and computationally efficient if I can somehow

analyze or simplify this system to this without losing too much of accuracy.
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So, for that for those situations we do something what is try to find out the equivalent viscous

damping. So, that I can represent a system of a very general force deformation loop

something like this to a viscous damping like this. So, for this what do I need to do, I need to

find out a stiffness at certain value of displacement let us see this is the displacement

amplitude.

So, we need to find out and then what do we do? Whatever the energy that is dissipated in

this random loop equated to a linear viscous damping loop that we had obtained here using

our own formulation. So, let us say we get k from. So, this is what we got from experiments

and we want to idealize this to this.

So, once we got this from experiment, we can find out what is the k using the is points here

and here extreme points and we can find out how much is the energy dissipated in on loop let

us call this as ED. So, the way to go about this is let us say in this case again have the same

thing and I am representing this as ED the damper the energy dissipation into damper.

Now in this situation. Basically, what I am doing? Whatever the energy dissipation I get from

the experiment I am equating it to the energy dissipated in a viscous loop which is nothing,



but remember there is no energy dissipation in the this linear elastic linear behavior of the

spring. So, whether it is rotated by an angle does not matter the total energy dissipation is

going to be same and I am going to use the second expression

Now, if you look at it carefully if you look at it carefully this is nothing, but twice of the

strain energy right twice of the strain energy. So, this is here is Eso, twice of the peak strain

energy of the system that we get from the experiment. So, this can be further written as

where ED is the experimentally determined value of energy dissipated in a single loop here ok

and Eso is basically the strain energy that is calculated using the effective stiffness and the

amplitude. If I can find this out, I can represent this system using the system that we have

derived all the equation for, which is the linear viscous damper. And how did we do that?
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We do that did that by equating the energy dissipation in this linear viscous damping system

to the experimentally obtain energy dissipation.

And typically what happens when we perform the experiments we usually do it as the natural

frequency of the structure. So, in this case what we do? Typically it is obtained at w=wn and

this case it could be written as

And this you know I mean this is very famously used in like you know many of the

equivalent linear analysis, equivalent linear analysis we mean that when we actually have in

like an in reality we have a non-linear system, but we want to equate it to a linear system. So,

that it is like an amenable to analytical solution and it is more computational efficient we

utilize this expression to find out the equivalent damping equivalent viscous damping alright.

So, this finishes the last topic ok of this chapter, which is the forced harmonic motion. Next

class we are going to start a new chapter alright.

Thank you.


