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Hello everyone. In today’s lecture we are going to learn about Frequency Response Factor.

And this is specific to a single degree of freedom system subject to harmonic load, but the

concept can be extended to any other loading as well, knowing that any loading to Fourier

transformation can be transferred to a sum of systems with different frequencies.

So, one of the ways to measure the dynamic effect of a load is to look at the amplification

with respect to static condition and that is what the frequency response factors are, to measure

that dynamic effect. Till now, what we have studied is that how to find the solution to the

harmonic excitation of an undamped and damped system.
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So, let us say, we have the equation of motion. We have the equation of motion for a damped

system, which I can write as and this is . Now we saw that

basically there are two part of the solution: the response for damped system and undamped

system.

For undamped system, let us write down the solution for a damped system found out that this

is the solution (refer slide). And then there was this part (refer slide) of the solution and we

said that, well there are two type of vibration: the first one is basically the transient vibration

which dies out over sufficient amount of time because of this damping term that we have

here.

And second is the steady state solution and then we turned our focus on this steady state

solution. So, in steady state solution, the system is oscillating at the excitation frequency ω

and these constant C and D were basically functions of , which is the frequency ratio,

excitation frequency divided by the natural frequency of the system.

And basically we expressed our solution u(t) and this is specifically for a steady state

solution, u(t) is equal to u0, which is the dynamic amplitude here, , where ∅ is the

phase angle. So, the dynamic amplitude is written as,
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And Rd is nothing, but it is called displacement response or deformation response factor and it

is given as this expression here (refer slide) which we can write as this,

Now, till now basically we have only considered the displacement response factor. But as you

could imagine, different kind of systems would have different response quantities of interest.

For example, right now we are only considering displacement here, but it might so happen

that somebody would like to know what the velocity modification factor is and other would

be the acceleration modification factor. So, what we are going to study now is dynamic

response factors. So, these factors combined are called dynamic response factors and then we

will obtain each of these one by one.



So, as I said, u(t) I could write as and you know that the static amplitude is

nothing but the applied the amplitude of the applied harmonic force divided by the stiffness

of the system (P0 / K). So, I can further write this as

So, what we want to do now, assume I have the displacement history here expressed as a

dimensionless quantity. So, u(t) has the same dimension as P0/K. So, I am basically

normalizing it with respect to P0/K. So, I want to obtain a velocity history. So, and the

acceleration history, which would be divided by some factor and that function we need

to obtain.

So, let us see how to do that. Now, we know that velocity is nothing but the differentiation of

the displacement. So, what I am going to do here, I am going to differentiate this equation on

the left- and right-hand side once and then see what do we get.
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So, let us differentiate it with respect to time. So, that I get here ω and this becomes

. Now, what I can further do? Divide this by and on this side I also divide

this by and I know that .

So, if I substitute that, what I will get here is this and that should be equal to,

Now this expression here, I can further write as a new expression called Rv. This Rv is called

velocity response factor or velocity modification factor.

As you see here Rv is given as nothing but frequency ratio times the displacement

modification factor. So, we got our first modification factor after Rd, that is the velocity

modification factor. Now, let us again differentiate this equation and see what we get now.

Just to mention, if you see here this is my velocity and if you look at in the denominator this,

this is the whole expression as units of velocity. That is why I tried to write it down

like that.

So, I am normalizing my velocity with respect to this quantity here. Let us again differentiate

this equation and then see what we get. So, I have this expression here, I would have
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And if I further write down , what do I basically get as acceleration divided by

P0 / m and this is equal to

So, this quantity here and let us neglect the negative term because the amplitude of sin varies

between positive one and negative ones, it does not matter anyway. What I am going to write

here, my Ra = and as you know this is also equal to if you write in terms of

velocity this would be .

So, now you can see that this has units of acceleration. So, this is a normalized acceleration

expression for normalized acceleration that we have obtained. So, as you can see, we have

obtained the expressions for the displacement modification factor, velocity modification

factor and acceleration modification factor and these quantities can be further written as this

expression that you see here.
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If I write it like this, this should be equal to Rv and this should be equal to Rd times . Now,

we already know what is the variation of Rd with respect to and we know that what

happens when is very small, when it is very high and when it is closed to 1.

Now based on that we can also obtain the variation of first Rv as a function of and

then Ra as a function of . So, let us write down these functions and see what we get.

So, I have Rv is equal to divided by same ratio here, that expression that we have been

using till now,

And your Ra is nothing but this quantity here,



Now, as you can see here my displacement modification factor was 1, when = 0;

however, if you look at this expression now, I have a term in the numerator. So, when

would be very small then the velocity would be equal to 0. So, let us see that.
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For the case when is much smaller than 1 remember that Rd, which is basically what

you see here. So, Rd as you can see even is very small, Rd tends to be 1.

However, if you look at Rv and Ra, let us see what we get. So, Rv we get as remember that in

denominator this term would become 0 plus now, I have numerator this term . So,

now, this would become 0. Similarly, Ra if you have any term in the numerator it

would again go to 0. So, this is one difference.
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Second difference is when is much greater than 1. So, it is a very large value, let us

see what happens. Rd as we know, if it is a very large value, it goes to 0 that is directly that

can be directly observed from here. So, it goes to 0.

However, Rv the velocity modification factor, if we look at it now I have terms in the

numerator and denominator as well; however, for very large value of if you look at

the denominator I have a equal to the power 2, but in the numerator it is power 1.

So, the denominator here, it actually increases at a higher rate than the numerator. So, that is

why when the value become very large it actually goes to 0 as well. Now, compare that to

third case for the acceleration modification factor, the highest power in the numerator is

to the power 2 and then the denominator also it would be 2 because this is the factor,

square to the power is square which going to be contributing to the highest power of .

So, this one tends to be 1. So, if you have system for which is very large then Ra

approaches to 1. So, these are the conditions for slowly varying force. Because my is

much smaller than 1 and these are the conclusions for rapidly varying force.



And you know we are doing just the here analytically, we could use any of the numerical

tools to plot the variation of all these and then see how they look like for different values of

damping. So, I have already done that let me just go ahead and copy that here and see how it

looks.
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So, going to copy it here. So, if you look at it here, what do we see? We can see here this is

my Rd, this is Rv and this is Ra and you can see the variation Rd starts with the value of 1 at a

small value of and then as the you increase the value it approaches to 0.

Rv starts with a value of 0 when is equal to 0 and then again for a large value of

, it also approaches to 0, but at a slower rate, but at a slower rate than the displacement.

Compare that to the acceleration modification factor Ra here it starts with 0 and that it

converges to a value of 1 for very large value of and these you can think in terms of

flexible system, rigid system, slowly varying force, rapidly varying force. So, you can think it

in those aspects. So, once we have that figured out, let us see how we find out because now

we have three modification factor Rd, Rv, Ra.
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And remember we had used Rd to find out what would be the maximum response, you can

use that. So, Rd is basically like an of a different value of frequency ratio what is the

displacement. Now in this case we want to find out what would be the frequencies ratio at

which these modification factors would have their peak values. Now remember the definition

of resonance says or definite of definition of resonant frequency is the excitation frequency at

which the response becomes maximum.

Now, one might ask well, what response as I talking about? I am talking about displacement

or I am talking about velocity or I am talking about acceleration because for different like you

know for different people different response quantities could be of interest. Acceleration

might be interest to someone.

If they are studying for a let us say, if you are trying to study the vibration in a vehicle, then

acceleration would be of interest. If you are trying to study about the displacement of the

shock absorber or absorbing system, then a displacement could be of interest or velocity

could be of interest.

So, we need to know, if we need to optimize something that, if we are talking about

resonance, then it is with respect to what quantity. So, what we are going to do here, we are



going to define three type of resonance: one is displacement resonance, then velocity

resonance and then the third one is acceleration resonance.

Now one might ask that, why would they not be at the same frequency? Like you might till

now under impression that when , you usually get the resonance like situation.

However, in reality that is not always the case, especially for system with high damping and I

will show you with an example.
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So, what I have drawn here on the same plot, in the same figure I have drawn 3 plots for the

response modification factor of displacement, velocity and acceleration. So, using the

expression for each of this I have drawn.

Now, if you look at here these quantities and this has been a drawn for ξ of 0.2 or 20 percent.

So, the first one is the displacement modification factor, and this is the value of = 1.

So, let us draw this line here, you can see the maximum for the displacement does not

actually occur at the value of .

Similarly, if you look at the acceleration here, the resonance does not actually occur at omega

by = 1, only velocity if you see that occurs at . So, let us see how we find that



out, how do we find out the exact resonant frequency at which these or the response becomes

maximum the displacement response, that velocity response and acceleration response.
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So, the expression for each of these were, let me first assume that I am writing ,

some parameter. So, I can write my Rd as

So, as you know the maximum of any function can be obtained by differentiating. So, the

maximum of any function can be obtained for example, this function Rd can be obtained by

differentiating it with respect to the parameter here with respect to r and then setting it to 0. If

we do that if you differentiate it you would be able to find out the value of r at which the

expression Rd attains it maximum value the peak value.

So, let us do that; in the denominator there would be some terms, terms containing this

expression here, we can put it here and in the numerator again we will have the same term,

but then we will have a differentiation of the term that is inside and that is exactly what we

are going to set equal to 0. So, it would be



So, what do we get as? Let us take 4r outside. So, we get as . The value of

r that I get from here would be . So, this is equal to the .

So, the excitation frequency at which this is maximum, is nothing but

(Refer Slide Time: 24:39)

So, for displacement resonance, the applied frequency is actually not equal to , but it

is . And you know one might think that because it is a damped system, the

resonant frequency should be because this is equal to .

However, as per this expression, it does not happen; it is that the resonance actually happens

at this frequency. And once you substitute it back to the expression, you can find out the

maximum value of Rd as well.



And you can do that calculation, I am just going to write down the final expression for Rd,

which is,

So, this is the frequency excitation for resonance of the displacement response quantity, and

this is the maximum value of the displacement response in terms of the response modification

factor.

So, similarly we can repeat this procedure for velocity modification factor and as well as

acceleration modification factor and we will see that for resonance. So, let us now consider

velocity, where Rv is nothing but,
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And if you do that, you will get excitation frequency, at the velocity becomes maximum is

actually and the Rv or the maximum value of the velocity response in terms of Rv is



actually 1/2ξ. Similarly, for acceleration, if ; so, again follow the

same procedure by differentiating it with respect to r and setting it equal to 0.

So, that would give you ω, the excitation frequency at which resonance or the acceleration

resonance happens is actually equal to . And the maximum value of the

acceleration in terms of Ra = , this expression right here which is nothing but

same as the expression we had obtained for Rd.

So, what we have derived in terms of different response quantities, what are the conditions

for the resonance. So, what are the excitation frequency at which resonance happens and at

that resonance frequency what is the amplitude the displacement amplitude, the velocity

amplitude and the acceleration amplitude.

Now if you look carefully for a small value of ξ, if ξ is let us say smaller than 20 percent,

which is the case actually for most of the structural engineering systems, you would see that

all of these excitation frequencies are actually almost equal, because this term the ξ2 term is

like you know 0.04. So, when you take the square root it becomes further smaller.

So, you do not see much difference in terms of acceleration response factor or velocity

response factor or displacement response factor and neither their resonant frequency, they are

also approximately equal.

Let us move on to next topic, what we are going to do, we are going to utilize certain

property of this response modification factor to come up with the method to obtain the

damping from experiments. This method is called half power method or half power

bandwidth method.
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So, let me write it here, half power bandwidth method and let us see what happens now. We

know that Rd, the displacement modification factor. This displacement modification factor,

this curve if I draw it here for certain value of damping, you know that it looks something

like this. So, this is Rd here, this is equal to 1 or let us say write it here again.

This is the frequency ratio on the horizontal axis, this is 0, this is 1, this is 2 and so on, this is

3 let us say. Now, this is the value or the maximum value of Rd max. Now what happens in

experiments, many times we apply what we call a sine sweep. So, what a sine sweep is

actually? Sine sweep is it is a sinusoidal function with varying frequency. So, it starts with

some frequency and then it the frequency actually decreases or increases. So, sweep means

that it sweeps through all the range of frequencies.

Now, what that does? If you have a system, if this excitation is applied to a spring mass

system, what will happen. This system now it is not a constant frequency, remember we had

this . Now this ω is excitation frequency which is varying.

So, when I apply the sine sweep through experiments to a spring mass system or any type of

a dynamic system, then the response or Rd, when I calculate it, actually varies with the

frequency. So, you can do the experiment and you can obtain a curve like this.



The other way of doing this would be type of experiments, for example, if your machine that

is applying the excitation does not have a capability to apply sine sweep then basically what

you do, you obtain this curve displacement modification factor, what do you do actually? You

first apply , then and then so on, .

So, that basically you apply this at all frequencies and then for each frequency you basically

try to obtain Rd, which is the maximum displacement response and that you can measure from

the experiment, what is the maximum deformation in the spring or the system and just

divided by this u0 for all of them. So, you can do for all of them and then you can again

obtain points on this and then you can plot this function Rd versus .

Once have this plot, you know that it would look something like, this at some value of

excitation frequency it would achieve its maximum. Now, this response modification factor

has a unique property.
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If you consider an amplitude where Rd is actually Rd max/2 and let us say draw horizontal line.

So, you already know Rd max from experiment, you divide by , it will cut your response

modification factor curve at 2 points.



Let us say, one is corresponding to frequency and second is , these are the two

excitation frequency and of course, this is divided by . So, let us see what happens. So,

what I am exactly, now let me express this mathematically, what I am saying that Rd is Rd max/

. So, let us say, this Rd gives me some frequencies.

Let me write here, this is as and this would give you Rd max/ and

what is the value of Rd max. You have previously obtained it as the value of Rd max as
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So, basically when you solve this, you will get a quadratic equation in r2, it would have some

r4 terms, then r2 terms and then some constant equal to 0. So, that would be basically a

quadratic equation in r2. So, let me write that out, if I expand this, I would get basically r4 and

you can do this calculation yourself and check if you are getting the same expression or not,

r2.



This is the expression that you will get and when you solve this equation, what you will get

as r as equal to, remember r, I have considered as or let us say here we will get

.

Now in this expression you can neglect the ξ2 term here with respect to 1 and same inside this

root, so that you get r2 as . So, r would be equal to and through power

expansion, we know that, if the second term here is very small, I can write this as .

So, I have now 2 roots, which this is nothing, but . So, this gives me 2 roots, and

. The smaller value, let us say is which is 1–ξ, the higher value is 1+ξ and you can

subtract from the second term to the first term, to get .
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So, basically once you draw horizontal line and it cuts at two frequencies, which are basically

the roots of those, this width here is nothing but 2ξ here you have just proved that here. So,

this is here 2ξ and you can read this from your graph.



So, you know and , ξ you can easily calculate and you can also find out right

here. For a small value of it would be simply the value at which it is maximum or many

times what you might also do, you can approximate .

We assume that this frequency is symmetrically located. So, you can write this as ξ calculate

this as and if you want you can further write this as . So,

once you cut this curve through a horizontal line at Rd max / 2, it will give you two values of

frequencies and utilize those two values of frequency to get the damping in the system.

So, this is called half power bandwidth method, which is utilized to get the basically damping

in the system for some harmonic excitation. So, remember that, there was another method

that we had done in the damped free vibration in which we had used logarithmic decrement

method and we had utilized the logarithmic decrement method to get the damping in the

system.

Here, another method is there which we use in utilizing the harmonic excitation of single

degree of freedom system to obtain the damping in the system using this method.

So, these two methods can be conveniently utilized to experimentally obtain the damping in

the system. So, I hope this method of obtaining damping is clear to you. So, we are going to

conclude our lecture.


