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Let us start our today’s lecture for this NPTEL video course on geotechnical earthquake 

engineering. We were going through module number seven; that is seismic hazard 

analysis. 
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Let us have a quick recap, what we have learnt in our previous lecture. We have seen 

why deterministic seismic hazard analysis is not sufficient enough, and we need to go for 

another method or more realistic method, where all the uncertainties involved during the 

earthquake process can be taken care of. So, that is why, the PSHA or probabilistic 

seismic hazard analysis has been arrived at; where we can take care of uncertainty 

involved in the occurrence and the magnitude of these earthquakes, and also the 

probability of occurrence of all these hazards, which is not possible in the DSHA, 



because which consider only the single maximum earthquake for estimating the hazard 

parameter. 
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We have seen a comparison like this as well; that is, in DSHA, we consider the single 

scenario, which is the worst case scenario always. So, it is based on the single value of 

magnitude, which is M max, which is based on the single distance, which is R minimum. 

And the combination of these two maximum magnitude and minimum distance gives us 

the hazard parameter; whereas, in PSHA, we have seen that we need to consider the 

various scenarios like we should consider all the magnitudes; we should consider all 

distances and also all the effects to obtain that hazard parameters to consider the 

uncertainty involved in this process. 
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We have also mentioned in previous lecture that, for PSHA or probabilistic seismic 

hazard analysis, the pioneering work, the credit goes to Cornell. In 1969, this method 

was first established through this bulletin of seismological society of America paper 

BSSA paper. 
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For PSHA, the basic inputs, which are required like seismicity model based on the 

seismicity distribution in space and time; magnitude-frequency distribution; and, the 

maximum possible earthquakes. Also, we have seen GMPEs or ground motion prediction 



equations, which are related to magnitude and hypocenter, which is nothing but the 

attenuation relationship using both this magnitude and hypocenter parameter and site 

response model. So, these are input values. In output, what we get? We get that particular 

hazard parameter, which we are trying to find out; that value exceeding a particular 

ground motion level within the time period of T with a probability of occurrence of some 

P. 
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What are the various steps of PSHA? There are major four steps again. Like DSHA, we 

have seen also for PSHA four major steps. The differences are like here we have to 

identify first the sources or the boundary within which we will consider all the sources. 

Now, here not only the minimum distance we need to consider, but all the distances from 

site to source; and, the recurrence, that is, concurrence of an earthquake greater than a 

particular chosen magnitude by our engineers say 4.5 magnitude earthquake or 5 

magnitude earthquake and their number of occurrences with respect to that magnitude 

we need to plot. Then, the peak acceleration, that is, the chosen hazard parameter versus 

distance based on various attenuation relationship for different sources needs to be 

plotted. And, within each of them, we need to find out the uncertainty based on the 

probability distribution function or the chances of probability of occurrence of a 

particular event within that source. Finally, we have to estimate what is the probability of 

exceedance of a particular event to occur at that site based on various GMPs. 
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For that, the first step we have seen, identify the source. Once we identify the source, we 

are not sure that which point of the rupture will be more crucial; not each and every point 

as we have given equal weight age in the case of DSHA. In PSHA, we need to consider 

which are the more prone for the rupture. 
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For that, we need to plot a probability distribution function using the histogram process; 

the center of each histogram based on the various distances from site to sources like this 

and plotting it in this fashion. 
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For that purpose, we can divide the source. If it is a linear source in this fashion, by 

drawing the concentric circles considering this site as the centre point, using equal 

increment of this radius, we can divide the entire source. And, from the center of each 

source, we can find out various distances and give or assign some weightage of these 

equal intervals L i by L. 
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Similarly, by dividing the entire length into equal number of segments and giving the 

weightage to them, we can draw the histogram of source to site distance. 
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For areal source, we can divide the area into a number of smaller equal areas like this; 

and, we can find out various distances to their centers and plot that histogram. 
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Similarly, for volumetric source also, we can divide the entire volume source into a 

number of equal small volumetric segments; and, we can find out various distances from 

center of each volume to the site and create the histogram of that source to site distance. 
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Suppose if we have unequal or random or haphazard shape of the source; in that case, we 

have to assign the weighting factor corresponding to different segments. And, that 

different weight factor we have to use to calculate the fraction of the total area, which is 

getting involved or we are plotting in the histogram. 
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Whereas, for obtaining the maximum magnitude, it is the same methodology, is used as 

we consider for DSHA also; like either using empirical correlations based on rupture 

length, rapture area, maximum surface displacement; or, based on theoretical 



determination, based on seismic moment criteria or the slip rate correlations, we can find 

out what are the maximum value of M. 
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Now; obviously, at given source, at one particular source, several magnitude of 

earthquake may occur in the first and chances of occurrence of low magnitudes are quite 

often or frequent; whereas, large magnitude occurrence of earthquake chances are very 

rare or less frequent. So, using that, Gutenberg and Richter proposed that we can plot 

these number of occurrences of earthquake with respect to their magnitudes. 
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In this fashion, like y-axis can be number of occurrence of a particular magnitude of M 

versus that magnitude M. Suppose we are considering for our design say magnitude 

more than 5; let us say, we are interested; all the magnitude more than 5 we need to plot 

and their number of occurrences. So, obviously, less magnitude of earthquake will occur 

more number of times and higher magnitude of earthquake occurs less number of times. 

So, typically, a behavior from historical data we will find, which is kind of an 

exponential like this in a normal plot of that number of occurrence versus magnitude. So, 

if we plot it in the semi-log plot like log of number of occurrence of that magnitude of 

earthquake versus magnitude, it will be kind of a linear relationship like this. 
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The same thing we can plot it in this fashion considering the mean annual rate of 

exceedance, which is nothing but lambda M, which is defined as that number of 

occurrence of earthquake divided by that over the time period T, which is considered, 

which will give of course per year basis, which is nothing but mean annual rate. So, that 

log of lambda M versus M will give us the same trend, same relationship – the linear 

relationship like this. 
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Then, we have defined another parameter – return period or recurrence level, which is T 

R, which is nothing but inverse of the mean annual rate of exceedance of that event. So, 

1 by lambda M will give us… So, for example, log of lambda M, value of 0.01 indicates 

T R value of corresponding to 100 years, because 1 by 0.01 is nothing but 100 years; that 

means, mean rate of exceedance of a particular earthquake say magnitude 5 is 0.01 at a 

particular source. For the same source, in 100 years, that 5 magnitude will occur once is 

the same word telling in the different way. So, this is the same plot, same y-axis in 

different directions increasing; that is, lambda M increasing vertically up, T R increasing 

vertically down is shown over here. 
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Now, Gutenberg and Richter proposed this law; that is why it is called Gutenberg-

Richter recurrence law; that is, how many times that earthquake is going to occur; its 

written period or recurrence is given or known as Gutenberg-Richter recurrence law 

based on this distribution, which is represented by this simple form of equation – log of 

lambda M equals to a minus b M. These coefficients a and b need to be obtained from 

the collected historical earthquake for a particular location or particular region. So, based 

on that, for each and every region in the earth, we can find out Gutenberg-Richter 

recurrence law. Like for India, for Gujarat region, we have obtained this Gutenberg-

Richter recurrence law. We will see that example later on. So, this a parameter and b 

parameter needs to be obtained based on local seismic events historical collected data. 

And, this is the plot of log of lambda M versus M. And, 10 to the power a denotes 

corresponding to magnitude 0; that is, the intercept here; and, b is the slop of this line.. 

So, with that, we completed our previous lecture. 
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We are continuing in our today’s lecture now. Today, what we can see over here, once 

we learnt the Gutenberg-Richter recurrence law, which is given in this form; in this 

equation, lambda M is defined as the mean annual rate of exceedance of that magnitude 

M. And 10 to the power a is the mean yearly number of earthquakes of magnitude 

greater than equals to 0, because it is the intercept in that corresponding to M equals to 0. 

And, b represents the relative likelihood of large and small earthquake, because as we 

can see, this gives the slope. These slopes automatically if it is the stiffer, that means that 

occurrence of large earthquake are much lesser; if it is a flatter, then chances are more. 

So, that is why it gives… It represents the relative likelihood occurrence of large or small 

earthquake. 

And, it implies that earthquake magnitudes are exponentially distributed. As I have 

already mentioned, because if you plot this linear relationship, you will get in semi-log in 

this fashion only if the original distribution in normal scale is something like this 

exponential. So, what we can do, the same equation Gutenberg-Richter recurrence law – 

another way to write it as l n. This is natural log. This is log to the base 10; and, this is 

natural log of lambda M equals to alpha minus beta M. Just we are changing the scale 

from log to the base 10 to natural log. 
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Then, what we can say? Lambda M from first equation is 10 to the power a minus b M 

when we are using this, because this is log 10. So, lambda M equals to 10 to the power a 

minus b M, which can be expressed as equals to exponential of alpha minus beta M 

because, here from this relation, we can write lambda M equals to e to the power alpha 

minus beta m. That is what I have written. Hence, if you see the similarity, what we can 

write? Alpha is nothing but 2.303 times a; that l n comes into picture. l n versus log to 

the base 10 – that relationship, that number comes into picture. And, beta is nothing but 

2.303 of b. So, for an exponential distribution, this distribution can be represented as f of 

m equals to beta e to the power minus beta m. That will be the relationship. 
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Now, let us see earthquake source characterization – how to characterize this. If the 

earthquake smaller than a lower threshold magnitude m naught are eliminated, then the 

mean annual rate of exceedance can be written as proposed by McGuire and Arabasz. In 

1990, this expression was proposed. That lambda m, which is nothing but the mean 

annual rate of exceedance of that event can be proposed as mu times e to the power 

minus beta times m minus m naught; that is, instead of minus beta m, now, we are using 

minus beta times m minus m naught; where, this m has to be greater than m naught. So, 

what is m naught? 

Let me explain it little clear way. It says it is the lower threshold magnitude; that means, 

m naught is that value of the earthquake magnitude below which we are not concerned 

about; that is, as an engineer, suppose we are doing the hazard analysis; say, we are not 

bothered about the earthquake, which are having magnitude say less than 4.5, because it 

hardly damages our civil structures. See if it is so, then that 4.5 will be the minimum 

threshold magnitude. You are interested more than 4.5 whatever earthquake has 

occurred. So, why you will then take for your Gutenberg-Richter relationship estimation, 

all the earthquake magnitude say 3, 3.5, 4. Why we should take that? We should not take. 

So, that is why, it is mentioned over here. You can select a threshold lower parameter of 

magnitude m naught based on the design criteria; and, you can neglect all those values of 

earthquake, which are less than that m naught. So, you are going to consider only those 

earthquake, which are more than m naught. And, for that, you identify what is the annual 



rate of exceedance, because this annual rate of exceedance may change automatically if 

you delete some of the data points from your historical data set below of certain 

magnitude; where, this mu is nothing but e to the power alpha minus beta m naught. That 

we have already seen in terms of exponential. 

And, the lower threshold magnitude is set at values from about 4 to 5. As I have already 

said, it depends on the designers or it depends on the importance of the structure, 

etcetera. Suppose if it is a residential building not that so important thing, you can select 

even a higher magnitude. If it is very important structure say bridge say dam, etcetera; 

where, we should go for deterministic seismic hazard analysis; but, parallely, you can go 

for probabilistic seismic hazard analysis also in a logical way, but to select a threshold 

parameter say 4; like that. So, this depends on the engineers choice, engineers 

experience. 

Now, this F M – that can be expressed as probability of occurrence of a particular 

magnitude of earthquake, which is less than of a magnitude m at that site given that 

magnitude must be more than that threshold value of earthquake. What does it mean? We 

need to find out that probability distribution function. For that, it is nothing but the 

probability of occurrence of an event, which is having for example, let us say, this 

magnitude say 8 earthquake. We are going to design our site for a future structure, which 

has to withstand earthquake magnitude let us say maximum value of 8. And, our 

threshold value let us say it is 4.5. So, it will be that probability of occurrence of 

magnitude, which will be less than 8; but, that magnitude has to be more than that 4.5. 

That is what it says. We are clear about this probability. So, as you can see, obviously, to 

study this probabilistic seismic hazard analysis, it is assumed that you know the basic 

concepts of probability. This is one important thing I want to highlight over here. 

Knowledge of basic probability distribution everything is necessary for this course for 

this chapter to understand. So, I will request all the viewers, those who do not have the 

basic background of probability, may go to any standard probability distribution book 

and may learn very basics of the probability distribution; and then, can consult this video 

lecture of this particular topic on probabilistic seismic hazard analysis, which is 

necessary. 

So, now, by defining that, what way we can write this equation? We can write it in this 

form, that is, lambda of m naught minus that lambda of m by lambda of m naught, which 



is nothing but 1 minus e to the power minus beta m minus m naught. So, the resulting 

probability distribution of magnitude for the Gutenberg-Richter law with the lower 

bound – this lower bound m naught – can be expressed in terms of cumulative 

distribution function, which in short, we call as CDF. Cumulative distribution function is 

nothing but the first derivative of this distribution function with respect to that chosen 

magnitude. So, d of dm by F of M of m – this function; if you differentiate, you should 

get this expression, that is, beta e to the power minus beta m minus m naught, because if 

you differentiate this one with respect to m, that is what we should get. So, this is known 

as cumulative distribution function for the probability distribution function. 
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Now, using that concept, let us take one example problem. Suppose for the worldwide 

seismic data, based on that, taking care of the circumpacific belt region of former 

earthquake, previous researchers had proposed the Gutenberg-Richter relation with the 

values of a and b like this; that is, log of lambda M equals to 7.93 minus 0.96 M. This is 

the a value 7.93 and b value of 0.96 for this circumpacific belt based on the worldwide 

data. Now, if we want to apply this Gutenberg-Richter recurrence law with this known 

value of a and b, let us find out various magnitude of earthquake and their mean annual 

rate of exceedance and the year. So, if you plot M equals to 6 in this equation, what value 

of lambda M we will get? It is coming 148 per year. So, T R is coming 0.0067 year. This 

is written period. If you put M value of 7, then lambda M is coming 16.2. We can just 

calculate this very easily. T R will come as 0.062. If you put M equals to 8 lambda M is 



coming 1.78 per year and T R is coming 0.562 year; that means, 8 magnitude of 

earthquake will have a chance of occurrence in half a year. That is what it means. 

If we put M equals to 12 just for the sake of analytical computation; in this equation, if 

we put M value as 12, what we can see? The lambda m values – you will get some value 

by putting in this equation; and, T R value you are getting 2.29 year; that means, what 

does it signify? It signifies the magnitude of 12 or more will occur every 2 year interval. 

But, is it true? No, never; it cannot occur like that. Suppose if I put M equals to 15, I will 

get another value say something will come. Does that mean magnitude of 15 will come 

in that number of period of interval? No; then, what to do. So, we will see that how we 

need to consider or remodify this upper limit or upper value of the magnitude in this 

Gutenberg-Richter equation. So, this equation what we have talked about? Here we have 

talked about the lower threshold, lower magnitude that is based on our interest on design 

parameter that is above which the problem to our structures starts coming in. Based on 

that, we have to select that minimum value or threshold value of magnitude. 

Now, also, we have to select the maximum value, because otherwise, it will give us this 

kind of unrealistic data; that unrealistic data obviously, is not having any meaning in the 

calculation of this probabilistic seismic hazard or recurrence period. It does not give us 

any data, because if I use M 20, which will never occur – magnitude of 20; but, still it 

will give some value. So, we have to know where we should stop; where is the upper 

limit to stop in this Gutenberg-Richter recurrence law, so that we have both lower 

threshold and upper threshold to continue further for the calculation of this written period 

or the mean annual exceedance. 
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So, for worldwide data like for circumpacific belt, the Gutenberg-Richter equation or 

recurrence law has been proposed like this that log of lambda M equals to 7.93 minus 

0.96 M. So, how we can use this equation? Like for selected value of the magnitude of 

earthquake say M equals to 6, lambda M you can easily calculate using this equation – 

this Gutenberg Richter recurrence law; you will get the lambda M. And correspondingly, 

you will get the T R value, which is nothing but inverse of this lambda M. Similarly, for 

other magnitudes also, you can calculate these values. 

Now, you can see from this equation. Suppose if we use M equals to 8.635 in this 

equation; the lambda M value comes to be 0.437 per year, which gives us T R value of 

2.29 year. So, what does it mean? Is it means that magnitude of greater than 8.635 will 

occur every 2 years? So, let us see what is the applicability or ranges of applications of 

this magnitude. Earlier we have mentioned about that, while developing this Gutenberg-

Richter recurrence law, we have taken a minimum threshold value about which we are 

interested. Now, we will see up to which magnitude this Gutenberg-Richter recurrence 

law is applicable. 
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So, now, let us look at this distribution of earthquake magnitude data; that is, again that 

y-axis is log of lambda M and x-axis is M. Now, every source has some maximum 

magnitude when we are arriving at the Gutenberg-Richter recurrence law. So, for each of 

the sources, we know about the maximum magnitude. So, distribution must be modified 

to account for this maximum magnitude; that is, we should not use that proposed 

Gutenberg-Richter recurrence law for any magnitude, because that magnitude may not 

occur in that region from the possible sources for that particular site for which we are 

analyzing. So, we have to take care the maximum magnitude, which each of the source is 

already recorded or having the data. So, that is why, it says distribution must be modified 

to account for this maximum magnitude. And, bounded Gutenberg-Richter recurrence 

law hence comes into picture. Why it is called bounded? Because we are fixing that law 

at the maximum value of say M max, which is responsible for a particular site. 

So, instead of going this equation linearly increasing like this at any value of M, we have 

to bound it at some maximum value, so that beyond that value, this equation is not 

applicable. So, that is the applicability of the maximum magnitude. Lower value – of 

course, we have earlier itself put a boundary for the lower or M minimum or M 

threshold; that is based on what value we are interested for our seismic hazard analysis 

and so on. So, the bounded Gutenberg-Richter recurrence law will look like something 

like this. So, lambda M now will take the shape of mu times e to the power minus beta 

times m minus m naught minus e to the power of minus beta of m max minus m naught 



divided by 1 minus x e to the power minus beta times m max minus m naught. So, in this 

case, what we can see? This term has been introduced. Earlier, this m naught was 

present; m naught is nothing but the minimum value or threshold value of magnitude 

about which we are interested; it can be 3.5; it can be 4; it can be 4.5 depending on 

designers choice or engineers choice. Now, this M max has been introduced, which has 

to be taken care of and correspondingly for any value of M. Whatever value of M you 

are interested to find out the lambda M, that you can use this equation . 
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Now, let us further proceed to earthquake source characterization through this value of 

mean annual rate of exceedance, that is, lambda m, which is expressed now as per the 

McGuire and Arabasz, 1990 equation as given by this expression. As I have just now 

mentioned, in this case, what is the range of applicability of this magnitude m? That 

should be within this m max and m naught; that is what it means. So, this equation is 

applicable for this range of m; m is earthquake magnitude. So, the cumulative 

distribution function or probability distribution function for the Gutenberg-Richter law 

with the upper bound and lower bounds like these two: this is the upper bound; this is 

lower bound – can be expressed as like F of M of occurrence of magnitude M will be 

probability of occurrence of any magnitude M, which is less than that particular value, 

which you select for the design say small m, where this small m should lie between the 

maximum value and the threshold value or minimum value. So, that will be expressed as 



1 minus e to the power minus beta times m minus m naught by 1 minus e to the power 

minus beta m max minus m naught. So, this F M of m is expressed in this fashion. 
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Now, if we talk about the distribution of earthquake magnitudes like what are the 

characteristics of earthquake recurrence law, we can see that paleoseismic investigations 

– all the investigations are taken into care of while developing any earthquake recurrence 

law. So, show similar displacement in each earthquake; individual faults produce 

characteristic earthquake; characteristic earthquake occur at or near M max; and, could 

be caused by geologic constraints; and, more research and more field observations are 

required; that is, today, what earthquake recurrence law we are proposing? That is not 

absolutely true forever; that means, that recurrence law is bound to get changed with 

time. So, in this year 2013, whatever earthquake recurrence law, whatever we are getting 

for various areas based on the historical earthquake data collected; that is obviously, 

bound to change with due course of time as many more earthquake records are or 

statistics are recorded and taken care of while proposing that earthquake recurrence law.  

So, we should remember that, there is always an open-end scope of research in this 

problem; that is, for any particular area, earthquake recurrence law or Gutenberg 

earthquake recurrence law can keep on changing with time. So, whatever today we are 

getting, maybe (( )) small period of time say 1 year or 2 year. But, it may change over the 

time span of say 5 years or 10 years when many more earthquake data have been 



collected over the period of time, which are having a probability to change that 

earthquake recurrence law of Gutenberg-Richter. 
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Now, let us look at this characteristic earthquake recurrence law, what we have 

mentioned. These are various seismicity data, which we are collecting from paleoseismic 

data points, whatever is recorded or instrumented or visualized or mentioned in several 

sources. So, based on that, you can get this information. And, from the geologic data of a 

site also, you can get some information. Suppose from the fault characteristics, etcetera, 

we have seen how we can estimate the magnitude. So, based on that, you can have all 

these data points when you are going to propose any earthquake recurrence law. And, 

you have to fix a boundary of M max whatever for that particular site or for that 

particular region you have already information with you. 



(Refer Slide Time: 34:58) 

 

Now, let us talk about the predictive relationships like standard error. It is used to 

evaluate the conditional probability. How we can find out the conditional probability? 

Suppose this is the probability distribution function for any particular parameter; say, as 

we have already mentioned, this is kind of attenuation relationship we proposed in this 

form like log of that parameter; it can be peak ground acceleration; it can be spectral 

acceleration; it can be peak horizontal velocity; various parameters, which you are 

interested about. These are dependent on the log of R value – the distance; as the 

distance increases, they are going to decrease; that is nothing but attenuation. 

In this, at a particular value of R equals to say R star at which you are interested; and, let 

us say this curve is designed for or this curve is obtained for a magnitude M equals to M 

star; like for any relationship we have seen, we generally use M equals to M max in 

deterministic seismic hazard analysis. So, like that. And, this R we use for deterministic 

seismic hazard analysis as R mean. So, for a particular value of that curve of at M equals 

to M star for a chosen parameter with attenuation relationship, now, if you select a value 

of R; along that R, if you find out the probability distribution function – this is 

conditional probability – that is, probability of occurrence of that parameter; it can be 

PGA; it can be spectral acceleration; as I said, whatever you choose. So, probability of 

occurrence of that parameter greater than some particular value; say you are interested to 

know that probability of occurrence of PGA of say more than 0.3 G, where it occurs. So, 

that is what it says. 



So, probability of occurrence of PGA greater than some particular value for a given M 

equals to M star and R equals to R star; that is what it shows. So, what does it mean? If 

the probability distribution is something like this, with the mean value of l n Y bar like 

this; because we know this peak is nothing but mean value of the probability distribution. 

So, probability of occurrence of greater than that Y star… So, we have to find out the 

value of Y star from here; let us say this is the value of Y star. So, this is the line, which 

we are having Y equals to Y star. So, more than that, whatever probability we have – the 

shaded area; this green color shaded area will give us value of that probability. Similarly, 

suppose if our chosen value is less than the mean value; then, obviously, Y equals to Y 

star will be somewhere here; and the probability – the same probability will be the 

shaded area – green shaded area over here; same thing. So, these are nothing but the use 

of this conditional probability. 

Why it is called conditional probability? Because this is true for a given condition that, 

probability of occurrence of this event greater than Y star for a given condition that M 

should be equals to M star and R should be at R star. Suppose we select different R; 

instead of R star, let us say it is R prime. So, the curve will come over here. So, 

corresponding probability distribution function will be something different. Then, the 

probability value also will be different for another given R value. Why it is called 

conditional probability? Similarly, for M equals to M star; that is, whatever value of M 

you are using to arrive at this attenuation relationship or you are using for this 

attenuation relationship should be used. So, that condition is nothing but to be used for 

obtaining this conditional probability. 
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Now, let us look at these points of temporal uncertainty. So, what is temporal 

uncertainty? In the Poisson process of probability distribution, it describes number of 

occurrences of an event during a given time interval or special region. So, what does it 

mean? The number of occurrences in one time interval are independent of the number 

that occur in any other time interval. And, probability of occurrence in a very short time 

interval is proportional to the length of the interval. So, that means automatically, if you 

have a longer interval of any earthquake, if you have a more probability; can you see 

how we relate also the duration of earthquake through this Poisson’s probability 

distribution function? And, probability of more than one occurrence in a very short time 

interval is negligible; which is quite obvious. So, we will see what is Poisson’s 

distribution now. 
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Poisson’s model of probability distribution, which is well-known function; as I have 

already mentioned for this course, you should have a basic knowledge of the probability. 

So, once again, I am repeating it; I am not going to discuss detail of this model, where 

from it came, etcetera; you are advice to look at any standard book of statistics or 

probability for the details. So, let us see how the applications of this model in our 

geotechnical earthquake engineering or earthquake engineering we make use of. So, this 

Poisson’s model provides a simple frame work for evaluating the probabilities of any 

event that follow a Poisson process. And, it has been observed by several researchers that 

most of the earthquake records – they follow a typical Poisson’s process or Poisson’s 

distribution. So, that is why in earthquake engineering, we use a Poisson’s model, which 

describes the occurrence of an event of earthquake, the number of events of an 

earthquake in a more realistic manner. 

The probability of a random variable – any random variable n, is expressed like this 

through the Poisson’s model like this; P – probability of occurrence of that event N 

equals to number of times small n equals to can be computed as mu times to the power n 

e to the power minus mu by n factorial; where, this mu is called the average number of 

occurrence of that event for a given time interval. So, if we express it – the Poisson’s 

probability in this fashion, how we can write it… because why we are changing this mu 

to lambda t; we will explain it very soon, because this is nothing but average number of 

occurrence. Look at here this definition of Poisson’s model, which is nothing but… In 



our earthquake engineering, when we want to correlate, it is nothing but if we have the 

average rate of occurrence of an event of earthquake – lambda m – already we have used 

this. So, that times the time period t, which you are selecting for the computation; that 

will give you nothing but the average number of occurrence of that event. So, that is 

why, the Poisson’s process as I have already mentioned, it best represents the earthquake 

magnitudes and their number of occurrences in this fashion. So, that probability can be 

simplified for our earthquake engineering in this fashion that probability of occurrence of 

an event capital N of number of times small n is expressed as lambda t times to the 

power n e to the power minus lambda t by n factorial. 

So, the same expression if you use for suppose probability; what is the probability of 

occurrence of a particular event? What is the particular event? It can be say occurrence 

of a magnitude of more than say 7.5. So, that is what. Any event greater than equals to 1; 

greater than equals to 1 means that event will occur minimum once or more than that. 

That will be computed as 1 minus e to the power minus lambda t or lambda m t. Why? 

How you can obtain it? What is this probability of occurrence of n greater than equals to 

one? That is nothing but 1; 1 is always the 100 percent or full probability; 1 minus 

probability of occurrence of less than 1, which is nothing but you can say 0. So, that if 

you put over here, you will get this expression. How you are getting it? Because in that 

case, you are providing n equals to 0. So, 0 factorial becomes 1 to the power 0 is nothing 

but 1. So, you are left with e to the power minus lambda t. Can you see that? So, that 

lambda t we are now using that definition lambda m. In earthquake engineering, already 

we have mentioned, lambda m is nothing but average rate of occurrence of the event; 

and, t is the time period of our interest for which we are going to compute. 
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So, the Poisson’s process considering this mu equals to lambda t is given by this. So, 

probability of occurrence… Suppose a particular event, that is, we are interested; let us 

say an occurrence of an earthquake of magnitude say more than 6.5 greater than equals 

to 0 times; that is, it will definitely occur. That is what it means. So, that will be nothing 

but probability of occurrence of this plus this plus this, which can be again obtained like 

this. 
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Now, let us see few examples of application of this Poisson’s process, where it will occur 

at least once. This is the equation for probability of occurrence for an event with… At 

least once we have already derived that. So, if suppose a problem is given to us like, 

consider an event that occurs on average every 1000 years; let us say one earthquake of 

magnitude 7.5 occurs at your region every 1000 years from your recorded data let us say. 

So, the question is, what is the probability that it will occur at least once in the period of 

coming 100 years period? So, how we can calculate this? In this case, lambda value, 

which is the mean exceedance will be nothing but 1 by 1000, because it is occurring once 

in 1000 years. So, mean occurrence of exceedance is 1 by 1000, which is 0.001.  

So, what will be the probability of occurrence of at least once? At least once means 1 

minus probability of occurrence of 0 times. That we have already seen. So, 1 minus e to 

the power minus of lambda is 0.001. And, what is our chosen time period? That is 100 

years; over the 100 years period, how many times it will occur? So, if we simplify this, 

we will get the value as 0.0952; which is nothing but 9.52 percent is the probability. So, 

that is what it says that occurrence of that particular event in 100 years period at least 

once is only 9.52 percent. That is what we always express the probability as we know. 
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Let us take another example – second example – example number 2; that consider an 

event that occurs on average every 1000 years like the same event what we have 

discussed in example 1. What is the probability that it will occur at least one in that 1000 



years period; instead of 100, now, we are computing 1000 years period. So, the laymen – 

what they will say directly? Because the given event is, it is occurring once in 1000 

years. So, laymen those who are not knowing about the concept of probability, they will 

simply say it is already given that it is occurring once in 1000 years. So, if you are asking 

the question, what is the probability of occurrence that it will occur at least once in 1000 

years, should be 1, that is, 100 percent; but, it is not so. So, let us see what probability 

says us. So, let us look at the calculation over here. So, in this case again, lambda is 1 by 

1000, which is 0.001 mean exceedance. Now, our given value of t is 1000. So, if we put 

that probability of occurrence of at least once, which is nothing but 1 minus e to the 

power minus lambda t; if you simplify this, the value is coming 0.632, which is nothing 

but 63.2 percent; that means, probability of occurrence of that event at least once in 1000 

years is not 100 percent, but 63.2 percent. 

Now, if we change this form of solution or if we express this probability function in 

terms of lambda, then that is the probability of occurrence at least once. We are talking 

about that only. So, let us reshuffle it and express it in terms of lambda. How it should 

look like? The lambda should be expressed as lambda equals to minus log of 1 minus p 

by t, because the p was 1 minus e to the power minus lambda t. So, that is why, this 

minus lambda t e to the power of that; p equals to 1 minus this. 
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Now, let us take another example from the term of lambda; that is what we are interested 

now. So, the example 3 says let us say, the annual rate of exceedance for an event with 

the 10 percent probability of exceedance in 50 years time has to be computed; that 

means, a particular event let us say magnitude of 6.5 will occur with a probability of 10 

percent in 50 years time. So, what is the annual rate of exceedance we need to find out. 

So, if we put in that expression of lambda, which is nothing but at least once. So, minus l 

n 1 minus probability. So, probability is 10 percent, that is, 0.1 divided by t; t is 50 years. 

So, it comes out to be 0.0021 per year. So, that is the mean annual rate of exceedance. 

So, what is corresponding return period? Corresponding return period is nothing but 1 by 

lambda; inverse of that, which is 475 years. Can you see that? 

Let us see another example – example 4; for the same event, that is, the annual rate of 

exceedance we need to find out and the corresponding return period for an event with 2 

percent of probability of exceedance in 50 years time. So, if it is 2 percent, this  

probability value will be 0.02 in this equation. This will be 50 only. If you put that, 

lambda value comes out to be this much; which if you inverse, T R value comes out to be 

2475 years. Why I am showing these calculations? Because later on, you will see, these 

are very important values as most of the countries seismic design code also talks about 

these values; that is, we are interested to know that an event – the annual rate of 

exceedance of an event, which occurs with the 10 percent probability in 50 years time. 

So, for that, the return period is 475 years.  

And, another event, which will occur with 2 percent probability in 50 years time for 

which the return period is 2475. These are very important for various types of design. 

Later on also, we will speak about this; that is, suppose for any structure of medium 

importance, we generally use this time of return period – 475 years, which is pretty 

common. And, for very important structures, we use typically the return period of this 

one – 2475 with 2 percent probability in 50 years of time. Others we use 10 percent 

probability in 50 years of time. So, like that. 
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Now, if we look at the summary of all these uncertainties, what are the various 

uncertainties we have now discussed already? We have discussed about the location 

uncertainty, that is, source to site distance; that we expressed in terms of probability 

distribution function, in terms of f R of r. Like we have seen the histograms of various 

distances and we have divided and given various weightage to them, already we have 

seen. Next is size – uncertainty related to size of earthquake; that is, the magnitude 

probability distribution function. That magnitude probability distribution function also 

we have seen, is it not? Like for upper bound, lower bound of magnitude, Gutenberg-

Richter recurrence law or earthquake recurrence law – all those things we have seen. 

And corresponding probability distribution function also we have discussed. 

Third uncertainty is the effect. What is the effect? It is nothing but the attenuation 

relationship, which includes the standard error involved in the attenuation relationship. 

Why that standard error coming into picture? When we talked about in our one of the 

previous modules, each of the attenuation relationship is having some amount of 

standard error when they have been established in terms of empirical relations. So, those 

including those standard errors we have to find out what is the probability of occurrence 

of a particular event greater than some value about which we are interested to for a given 

value of this distance and for a given value of this magnitude. So, this is the conditional 

probability distribution considering the attenuation effect and the standard error. So, this 

is taking care of third uncertainty. 



And, what is the forth uncertainty? Forth uncertainty is the timing. How we can consider 

that forth uncertainty? Through the use of this Poisson’s model; like how this time factor 

will effect and their number of occurrences of course; that also we can take care of 

through this Poisson’s model. So, in that fashion, all the uncertainties we need to look 

into this probabilistic seismic hazard analysis like location-related uncertainty, size-

related uncertainty, effect-related uncertainty and timing-related uncertainty. So, 

considering all these uncertainty, further we can go ahead. And we have to now see, how 

we should take care of the combined effect of these uncertainty; because remember, none 

of these are independent events; they are also dependent to each other; some of them. So, 

how their conditional dependency of one event to another will affect our final probability 

consideration; that we need to now take care of. So, these are individual uncertainties. 

Now, we will see the combined behavior of the uncertainty. So, with this, we have come 

to the end of today’s lecture. We will continue further in our next lecture. 


