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Structure Analysis – II 

Prof. P. Banerjee 

Department of Civil Engineering 

Indian Institute of Technology, Bombay 

Lecture – 35 

 

Good morning. Today, we are going to be continuing with our exposition on the stiffness method 

where we are going to be looking at a few more examples. I will look at one example and then I 

will essentially establish how to consider thermal stresses in the stiffness method.  

 

(Refer Slide Time: 01:45) 

 

 
 

Today's lecture is on the stiffness method and we are going to be looking at examples. The first 

example was the one that I had presented in the last lecture at the end. 
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(Refer Slide Time: 01:58) 

 

 
 

This was the problem that I had solved in the last lecture: a, b, c, d. this (Refer Slide Time: 

02:38) member is now flexible, this member now becomes rigid. This is EI, this is EI and this is 

rigid. This is a more realistic problem where the columns are flexible and the beams are normally 

monolithic with the slabs and therefore, these are T-sections and the EI values for beams are 

typically much larger than those of columns. One of the simpler ways to deal with it when one 

member has a significantly larger EI than the others is to assume that it is flexurally rigid 

because after all, the rotations over there are going to be small and we might as well neglect it.  

 

How many degrees of freedom do we have? If you look at it, let us go through it. This was the 

problem. How many degrees of freedom? It will still hopefully remain two; the only factor that 

becomes that it is two is that this is a degree of freedom. Think about it: can you have a rotation 

at this point at b without this? Think about it: if this rotates, then this has to go up, if this goes up, 

then the only way this can go up is by this moving and if this moves, it moves horizontally. 

Therefore, the two degrees of freedom actually are this and this but this is no longer a degree of 

freedom, so let us write down, prove to you that this is actually a single degree of freedom 

system and for that, let us go through the steps.  

 

How many joints? 4 into 3 is 12. Then, how many restraints? 1, 2, 3, 4, 5 so five restraints. How 

many constraints? It is 5; 1, 2, 3, 4, 5. That means there are two degrees of freedom but one of 

them happens to be this end rotation, where anyway we know that the moment is there, so I have 

only one degree of freedom – essential degree of freedom; there is a second degree of freedom 

here but I do not want to find out the displacement right now. This goes as a single degree of 

freedom system and how do we solve this particular problem? Let us see. First and foremost, ab 

and cd are the members.  
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(Refer Slide Time: 05:51) 

 

 
 

For ab, what is it? The member is fixed at a and continuous at b and therefore, v is equal to 

thetaab, thetaba – that is v. What is S? S is Mab, Mba. (FEM)ab, (FEM)ba is equal to S0 is equal to 0, 

0 and Kab is equal to 2EI and this is 4 meters, this is 2 1, 1 2 – this is your member ab. Now, bc is 

a rigid member and therefore you do not consider bc as part of the members.  

 

(Refer Slide Time: 07:25) 

 

 
 

Therefore, the next consideration would be for cd; cd is continuous at c so it is fixed and at d it is 

hinged; this is c, d and therefore, v in this particular case is thetacd, S is equal to Mcd, S0 is equal 

to 0 (there is no load) and Kcd is equal to 3 EI by length which is 5. I have found out for each of 

the members. Now, I need to find out to how to get the member degrees of freedom related to the 
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kinematic relationship between the member degrees of freedom and the structure degrees of 

freedom for which I have to do the kinematic relationship.  

 

(Refer Slide Time: 08:40) 

 

 
 

Therefore, if we look at this particular situation we have, now note that this is the rigid one 

(Refer Slide Time: 08:49) and then we have this which is continuous and here I have pinned. If I 

give it a unit displacements r1 is equal to 1, this would imply that this would go here, this point 

would also move here but it cannot move only that way – it has to move perpendicular to this 

and this perpendicular is… if this is 1, this is 3 by 4 and this is 3 by 4 and the displacement 

pattern looks like this: if this has gone here and this point is here the rigid member is going to 

remain straight – that is the most important thing. What is this angle (Refer Slide Time: 09:59)? 

This angle is equal to 3 by 4 and upon 4 this becomes 3 by 16.  

 

Once that happens, note that if this is the thing, this also has to move by 3 by 16, so the tangent 

becomes like this and this member comes like this. Note also that this tangent also has to rotate 

because this has rotated and therefore this goes this way and these rotations are 3 by 16, this 

rotation over here is also 3 by 16, this is hinged. We are always taking theta from the chord, so 

this angle – since this is 1 and this is 4, this is going to be 1 over 4, this is going to be 1 over 4 

and this is going to be 1 over 4 and 5 by 4 upon 5 because that is the length of the member and 

this here is going to be 1 over 4. Since this is my only this thing, aab is going to be equal to ab is 

1 by 4, ba is 1 by 4 plus 3 by 16, that is from the chord to the tangent, so if you have that, that is 

7 by 16 and note that these are anticlockwise so they are positive so you have 7 by 16 and acd is 

equal to 3 by 16 plus 1 by 4 from the chord and this is also counterclockwise so this is 7 by 16. 

That is it. Note that this load over here – how much is that displaced by? That point, the central 

point – how much has it displaced by? The central point, by the way, has moved by 1. How 

much is this? This is going to be half of three-fourth, so this is going to be 3 by 8, so the load 

point has moved up by 3 by 8 – this is going to play an important role in our calculations a little 

bit later. I have computed the aab.  
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(Refer Slide Time: 13:13) 

 

 
 

Note that in both the cases, the fixed end moments are 0 and therefore, all I have is directly Sab is 

equal to aab into Kab into r, which happens to be a 1 by 1. If I look at this, this becomes 2EI upon 

4 into (2, 1, 1, 2) into (1 by 4 into 7 by 16) into r1. This is equal to… I will make it 2 by 4 plus 7 

by 16, 8 by 16, so this becomes 15 by 16, so EI upon 2, this is going to be 15 by 16 and this is 

going to be 14 by 16 will become 7 by 8, 7 by 8 plus 1 by 4 is going to be 9 by 8, this is into r1 – 

that is Sab. The contribution to Kab is going to be equal to one-fourth, 7 by 16 into EI upon 2 into 

(15 by 16, into 9 by 8). If you look at this, this becomes 63 upon 128 and this becomes 30 upon 

128, so 63 plus 30 is 93 upon 128, so 93 upon… so this is going to become 93 EI upon 256, 

because 128 into 256 – that is Kab. Now, let us look at cd. For cd, Scd is going to be equal to Kbc 

into abc into r, which is going to be equal to 3 EI upon 5, so it is going to be equal to 3 EI upon 5 

into abc is 7 by 16, so this is going to be equal to 21 EI upon 80 into r1. Kbc is going to be a 

transpose – a transpose is again the same so it is going to be 7 by 16 into 21 EI upon 80, which is 

equal to 147 upon 1280 EI (Refer Slide Time: 17:24). When we add both of them up, what do we 

get? We get this, the following.  
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(Refer Slide Time: 17:34) 

 

 
 

R is equal to K into r plus summation ai transpose Si0 plus…. The major point to be noted here is 

that there are no Si0 and ni0, so we do not need to worry too much about that. Therefore, the K is 

going to be equal to 5 as it is going to be 465 plus 147, so it is going to be 465 plus 147 upon 

1280 EI, which is equal to… if you look at it, this becomes 612 upon 1280 EI and if we look at 

this, this can go through by 4, so this becomes equal to 153 upon 320 EI – that is K. What is R? 

How do I…? Note this is R prime.  

 

How do I get R prime? For R prime, note that in the previous case, even though in this particular 

case, I have a load over here (Refer Slide Time: 19:04) which looks like a load that is on a 

member but note that bc is not a flexible member and since bc is not a flexible member, any load 

on a rigid member is considered equivalent to a nodal load and therefore, since the effect is not 

on a member, here, the members are ab and cb, since those are not there, you have to consider 

this not as a member load because bc is not a member – note that bc is a rigid member and 

therefore it is not one of the considered members. What we have to do is Find out the work done 

by the 100 Newton and this 100 is going to do negative 3 by 8, so the work done would be 100 

into negative 3 by 8, which basically becomes minus 75 by 2. This then says that r1 is equal to 

minus 75 by 2 multiplied by 320 upon 153 EI. This is equal to whatever this value comes out to 

be (I am not going to do it) that is my r1. As soon as I know my r1, I know my deflection pattern 

and since I know r1, I can also find out what Mab, Mba and Mbc are and these can be immediately 

evaluated. Once I evaluate those, for example, what is Mab equal to? 
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(Refer Slide Time: 21:17) 

 

 
 

Let me just put it down. Mab is equal to 15 by 32EI into minus 75 by 2 multiplied by 320 upon 

153 EI; EI, EI cancels, 320 cancels 10, 10 cancels 5, so it is going to be equal to minus 75 

squared upon 153 Kilonewton meter. Mba is equal to 9 by 16 EI multiplied by minus 75 by 2 into 

320 upon 153 EI; EI, EI cancels out, this goes 20, this goes 10 and so, what we have is 775 into 9 

becomes 675, 6750 upon 153 Kilonewton meter. Mbc is equal to 21 EI upon 80 into minus 75 by 

2 multiplied by 320 by 153 EI; EI, EI cancels, this goes 4, this goes 2, so what we have is 1575 

into 2, 1575 into 2 is equal to minus 3150 upon 153 Kilonewton meter. Therefore, these are my 

Mab, Mba and Mbc. Once I have found out my r1 and Mab, Mba and Mbc, now how do I solve this 

problem? Displaced shape – no problem, all you have to do is.… This is my displaced shape, 

only thing is that it will be in the opposite direction, so this will come down, this will go in this 

direction, this value I know and therefore, I can find out all the other values automatically and 

that is what you would expect: since the load at this point would come down and therefore, this 

would have to move in this direction and in the opposite direction. Now, onto the support 

reactions and the bending moment diagram.  
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(Refer Slide Time: 24:28) 

 

 
 

I am just going to again put it. Here, what do I know? I know what Mab is. This is going to be 

minus, so this is going to be clockwise (Refer Slide Time: 24:43) and clockwise approximately 

about 73 Kilonewton meter – this is what it comes out to be approximately; this is also going to 

be clockwise and this is going to be equal to about 4 into 15, 60, so it will be about 44 

Kilonewton meter. I am giving you approximate numbers, I do not know anything about this one 

but I know this one (Refer Slide Time: 25:23).  

 

What is it? This value is going to be equal to again clockwise, so this is going to be clockwise 

and the value is going to be approximately 20, so it is going to be 20, so this is going to be 306, 

90, so it is going to be about 21 Kilonewton meter – 20 point something. Here, this is 0, I know 

that this is 0, the displacement here is going to be 0. Now, let us go through the steps. I know 

nothing about this because this is not a member. This is a, this is b, this is b, this is c, this is c, 

this is d. There is no moment at this particular point. Since there is no moment at that particular 

point, for bc we can find out the member end moments purely from equilibrium. Since I have 44 

over here, from equilibrium this will have to be 44; here again from equilibrium this has to be 21 

Kilonewton meter and this has to be 44 Kilonewton meter. I know that these are going to be the 

moments.  

 

What else do I know? Since I know this, I can find this, I can find this (Refer Slide Time: 27:03) 

and this and since this is 117, 117 divided by 4 –, I am again doing approximate numbers – is 

going to be equal to 117 this way divided by 4 is going to be equal to 29 – so 29 Kilonewton 

meter, 29 Kilonewton meter. Once I know this, again this has to be 29. Now note that there is 

this 100 force, so this has to be this way 29, so therefore, here I need to have a force this way. 

Since I have force this way, this is going to be 29 and therefore I am going to have a reaction 

here which is equal to 29 – I know this reaction.  

 

How much is this going to be? This is going to be in this fashion (Refer Slide Time: 28:05), so 

this 29 into 4 is 117 plus 21 is going to be 138, 138 divided by 3 because this one is this way, so 
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this one has to generate this way (Refer Slide Time: 28:33), it is going to generate this way and 

this is going to be equal to 117 plus 21 which is 138 by 3 and 138 by 3 is going to be equal to 46, 

this is 46 Kilonewton. Since this going to be 46, by definition this has to be equal to 46 and this 

is 46 this has to be equal to 54; if this is 54, then this has to be 54 and therefore, this has to be 54. 

Now the question is: does this check? Let us look at this.  

 

What we generate over here from the 100 is 50, 50 but for this, it is going to generate an 

additional one, so this is going to be equal to 44 and 21 is 44 and 21 is going to be equal to 65, 

65 divided by 4 is 15. Let us look at this again because there has to be equilibrium – without 

equilibrium, you cannot satisfy this particular problem. There is no moment here, so if I take 

moments about this point, this 46 into 7 has to be equal to… Let us check – let us go back and 

check what we are doing here. This is 117 this way. Essentially, what happens now is therefore if 

you look at the reactions, the reactions are this way: the reaction over here is 29, 54, 73 the 

reaction here is 46 and 29.  

 

I have found out all the reactions and once I know these, I can draw my bending moment 

diagram very easily. I think this particular example was being presented to you essentially for the 

last point that I wanted to make as far as low defects were concerned that if a load is on a 

member that is rigid, then it is not a loaded member because bc, which is a rigid member, will 

not have any effect and we have to consider the equivalent load on the left-hand side.  

I hope that after this, you should not have any problem by applying the stiffness method for the 

solution of any structural problem as far as we have only considered effects of loads on the 

structure.  

 

Let us look at certain other effects now and the only other effects that I am going to spend any 

time.… Note that support settlement is not a major problem in this particular case because all 

that means is if there is support settlement, that means there is a degree of freedom 

corresponding to that support settlement direction and the only thing that happens is that we do 

not know the reaction at that point but we know what is the left-hand side, I know the 

displacement. I can always solve for it because after all, I just get one additional degree of 

freedom and that degree of freedom – I just need to solve it to be able to get any this thing. Now, 

what I want to consider is the last thing, which is how we consider temperature in structures and 

that is going to be in the stiffness method because we already know how to consider it when you 

have, when you use the force method, the flexibility approach. Let us now move on to that 

quickly. 

 

Once we know temperature, how to consider temperature, we will have understood the complete 

concept behind the stiffness method. Let us now look at how to consider the stiffness method. 

Again, since it is a member load, I am going to first consider, how to consider it… I am going to 

first talk about how to consider it at the member level and once we consider at the member level, 

then considering at the global level becomes a trivial issue because after all, again, all it does is 

that S becomes Kab a a r plus Si0 where 0 is the fixed end moment, so all I need to find out is for 

temperature, how do I compute the fixed end moment? Let us go back.  
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(Refer Slide Time: 34:21) 

 

 
 

Let us review the situation as we had already dealt with it earlier, let me see what happens. Let 

me take a situation with both the top and the bottom. Note that here since we are only 

considering flexure, we are going to assume that the neutral axis does not suffer a temperature 

differential; if it does, all it means is that there is an axial deformation in the member and that is 

all there is to it. Let us consider the situation where you have deltat; this is the top fiber – it has 

delta Tt and the bottom fiber has delta Tb. We have already seen that this gives rise to a curvature 

beta which we defined as 2 alpha into (delta Tbottom minus delta Ttop) upon d where d is the depth 

of the beam, the difference between the top fiber and the bottom fiber – this is d (Refer Slide 

Time: 35:43) – to the depth of the beam.  

 

We have already done this and we saw that this gives rise (Refer Slide Time: 35:48), so due to 

this curvature, you are going to have theta and thetaab – this is a, this is b – is equal to minus 

alpha… now this is length l, so it is going to be alpha L upon d. thetaba is equal to alpha…. I have 

already established these in the force method and the flexibility approach that we looked at 

earlier. This is my thetaab and thetaba due to the curvature. This is assuming that the neutral axis 

delta T at neutral axis is equal to 0. If it is not, then all it does is that in addition to this, if delta 

TNA is not equal to 0, all that means is that in addition to thetaab we also have a deltaab, where 

deltaab is equal to delta TNA into L – that is all. What does that mean?  
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(Refer Slide Time: 37:50) 

 

 
 

But then, you see, our structures, our basic member that we have is this. Then, I will talk about 

the modified member a little bit later and here, we have delta Tt and delta Tb. Now, how do I 

compute the fixed end moments as well as in this particular case, if there is an extension, you 

also have these forces that come into picture. Therefore, what is that equal to?  

 

We find out the fixed end moment exactly the way we find out that that remember all that we 

knew is that this one may be due to a load or may be due to a temperature. How did we compute 

the fixed end moment? Look back, think back at how we computed fixed end moments for 

members and you will see that all we need to do is find out the fixed end moment such that the 

other direction is going to give you that theta minus of thetaab and thetaba.  

 

The (FEM)ab and (FEM)ba are going to be equal to minus into Ka, Ka is 2EI upon L into (2 1, 1 2) 

into thetaab and thetaba. These are my FEMab (Refer Slide Time: 39:55) and this is my (FEM)ba, 

this is my P, this is my P. We can show that P is equal to nothing but… this is minus because it is 

opposing but then you know I am just proving it, this is equal to EA delta TNA; I am sorry, EA by 

L into delta TNA L so L, L cancels, this becomes EA delta TNA. I am not going to go into this but 

let us see what this comes out to be. This comes out to be equal to… I am going to plug in the 

values of this thing.  
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(Refer Slide Time: 41:02) 

 

 
 

Therefore, (FEM)ab is equal to minus 4 EI by L into thetaab minus 2EI by L thetaba but then, 

thetaab is minus of thetaba so this becomes equal to 2EI by L into thetaba which is equal to alpha 

delta into (Tb minus delta Tt) L upon d; L, L cancels and so, this becomes 2EI alpha upon d into 

(delta Tb minus delta Tt). If you look at the other one, this is going to be (FEM)ba is going to be 

equal to minus (FEM)ab – these are the fixed end moments due to the rotation. If we have this 

kind of a situation, how how do we solve this problem? Let me now just take you through the 

problem that we solved last time and instead of the load of 100 Kilonewtons I am going to put it 

equal to temperature differential of 100 Kilonewton. Let me take the problem that we were 

talking about.  

 

(Refer Slide Time: 43:21) 
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I am looking at the last week's lecture's problem. This was the problem: EI, EI, rigid, a, b, c, d. 

Now, the only thing that I have over here is that this is minus 20 degrees and this side is plus 

(Refer Slide Time: 44:04). The reason why I am doing this plus and minus is to ensure that delta 

NA at 1 is equal to 0. How do we solve this particular problem? Two degrees of freedom; 

without going into the detail, we have done it already r1, r2.  

 

(Refer Slide Time: 44:32) 

 

 
 

All that happens is you see, ab is still a member without any loads, so I am not going to go into 

the computation of ab. The only thing that happens in bc is that (Sbc)0. In the previous case, we 

computed it for 100 Kilonewton load at the center and we computed PL upon 8, PL upon 8 and 

went through and went through with that. In this particular case, all that happens is that Sbc is 

equal to Mbc, Mcb is equal to… Now, note that in this particular case, we can take alpha equal to 

1.2 into 10 to the power of minus 5 meter per meter per degree Centigrade (Refer Slide Time: 

45:42).  

 

If we plug that in we get that the fixed end moments, these are the fixed end moments that are 

equal to 2 into EI into 1.2 into 10 to the power of minus 5 into delta Tbottom minus delta Ttop is 40 

divided by d – this is my fixed end moment. Note: what are the units of this? Per degree 

centigrade. This becomes a dimensionless value. What is this (Refer Slide Time: 46:32)? Newton 

meter square. Newton meter squared divided by meter is Newton meter and that is the units of 

the moment. This consistent unit and this one becomes 2 into EI into 1.210 to the power of 540 

upon d, so there is consistent units and this one becomes 2 into EI into 1.2 into 10 to the power 

of minus 5 into 40 upon d. The only thing that happens is that in this particular case instead of 

the 100 Kilonewton force, you essentially have this moment. Therefore, once the moment, you 

know I can plug in a value of EI and d – I have not put that in, you will actually get it in… let us 

say if units of EI are in Kilonewton meter square, let me say EI is equal to 1 into 10 to the power 

of 5 Kilonewton meter squared (Refer Slide Time: 47:38) and let me say that the depth of the 

beam is 50 centimeters, so it is 0.5 meters. If we plug that in, we will put those values in, what do 

you get? You will see that this is 1 into 10 to the power of 5 and this is 0.5, 0.5, 1 into 10 to the 
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power of 5 (Refer Slide Time: 48:06). What you get is 48 into 2, 96, so you get 128, so these 

become 128, minus 128 Kilonewton meter. Once you have 128 Kilonewton meter then all that 

you have to do is that this is my Sbc and everything else continues in exactly the same way. What 

are the steps? 

 

(Refer Slide Time: 48:46) 

 

 
 

Once you have done this, you have both for ab and bc, you have Kab, aab, Kbc, abc and so the Si is 

going to be equal to Ki into ai. Where do I get ai from? I get ai from the kinematic relationship. I 

am not going into the details of the kinematic relationship because I have already solved this 

problem. The only difference between this problem and the previous problem that I have already 

solved in the last lecture is that instead of the 100 Kilonewton force I have just considered it to 

be a temperature; therefore, there is no difference in (a, Ka) and all of those kinds of things: Kab, 

aab, Kbc, abc all these are identical to what we have already seen. I am only trying to show you 

what effect the thermal has. I have already shown that the only way to consider thermal is to 

compute the fixed end moments and I have already computed the fixed end moments. All that 

happens is once you have this, this becomes this (Refer Slide Time: 50:15) where this now 

includes effects of temperature, which means thermal stress, this includes the effects of 

temperature and I can always get this.  
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(Refer Slide Time: 50:47) 

 

 
 

Then, I can also get ultimately this which is K into r – note that in these (Refer Slide Time: 

50:55) there is no change – and summation ai transpose Si0. Note now that ai bar transpose ni0 is 

0 for thermal load because when you have a thermal load, you do not have any additional 

reaction; there is no reaction – there is only an equal and opposite moment that is developed at 

the fixed ends and those are essentially to account for the curvature that comes into picture 

because of thermal. This of course includes thermal load, no difference for thermal load. This is 

of course no effect of thermal.  

 

If you look at this particular problem, the only part where the thermal effects at the member 

comes into picture is only in this, which is the fixed end moment, and that we have already 

included in our formulation. Therefore, if you really look at it, all we have to do right now is if 

you were to review it that wherever you have a temperature load effect and you are looking only 

at the flexural part of it, all it does is that you have to account for it and the fixed end moments; 

for fixed end moment, I have already given you the effects; this is the fixed end moment (Refer 

Slide Time: 53:10) where this is the temperature differential at the bottom, temperature 

differential at the top fiber and this is the depth of the beam, this is the coefficient of thermal 

expansion, this is EI. That is all there is to it. Of course, there is an additional effect here but if 

EA is equal to infinity, then all you have is that this effect has no effect whatsoever – all that 

happens is that you have a expansion and therefore, you have an additional displacement because 

of the expansion of the particular member; there is no effect on the structural composition as 

such.  

 

So much for the displacement method and the stiffness method, which is the matrix displacement 

method and I hope that over the last many lectures, I have solved quite a few problems in the 

stiffness method and at the end of this, I hope you shall be able to apply the slop deflection 

method, the displacement method and the stiffness method, which is the matrix approach to the 

stiffness method.  
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From the next lecture, I am going to look at a completely different topic and that is influence 

lines, which is equally important. By the end of this lecture, I hope you will be able to solve any 

planar problem, planar frame problem using either the force method or the displacement method 

as well as both their matrix methods associated with them; the matrix method associated with 

force method is called the flexibility method and the matrix method associated with the 

displacement method is known as the stiffness method.  

Thank you. 


