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Structural Analysis - II 

Prof. P. Banerjee 

Department of Civil Engineering 

Indian Institute of Technology, Bombay 

Lecture – 30 

 

Good morning. Till the last lecture, we had been looking at the matrix flexibility approach, 

which essentially included the matrix force method. Today, we are going to be starting off on 

what I call as the matrix stiffness method, which is essentially the matrix analysis approach for 

the displacement method. Let us review what the displacement method talks about. 

 

(Refer Slide Time: 02:00) 

 

 
 

The displacement method essentially goes as follows: define degrees of freedom – that is done 

very easily; then, the next approach is the member force deformation relations; third is the 

kinematic relationship between member deformation and displacement corresponding to degrees 

of freedom; four is the virtual displacement principle to relate loads to displacements for degrees 

of freedom. I think this is the overall scope of the displacement method and this will essentially 

be the stiffness method; the reason behind it will shortly be understandable.  
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(Refer Slide Time: 04:21) 

 

 
 

Here, let me call this member 1, member 2, member 3. This is just an illustrative example. Let us 

say you have this and you have these loads (Refer Slide Time: 04:49). I am not putting down 

right now what the loads are etc… we are just looking at it in defining the entire problem. How 

many degrees of freedom do you have in this particular case? Assuming axial rigidity, we know 

that you have three degrees of freedom. We will call that r1, r2, r3 – these are the degrees of 

freedom. Therefore, I can say that the r vector is equal to r1, r2, r3.  

 

In the matrix method, everything is either a vector or a matrix. Therefore, I am writing down the 

displacement vector corresponding to the degrees of freedom in this way and those are my 

degrees of freedom. The next step is to relate the member force deformation relations and what 

are those? I will write the slope deflection equations down using the rotations from the chord, so 

in that case I do not have EI so it is going to be 4EI by L thetaab (this is from the chord to the 

tangent) plus 2EI by L thetaba plus (FEM)ab. These are the slope deflection equations (Refer Slide 

Time: 07:03). I am going to write this in a different form: I am going to use the same notation 

that I have been using. 
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(Refer Slide Time: 07:12) 

 

 
 

I will say that vector v, which is equal to v1 and v2 is equal to thetaab, thetaba. Similarly, S which 

is equal to S1, S2 is equal to… (Refer Slide Time: 07:51) If I write them in this fashion, you will 

see that I can write S1, S2 as… and I am going to call this fixed end moments as.… These are the 

member end moments for the kinematically determinate structure, so this is a kinematically 

determinate structure, so that is 0 because in the displacement method, the base structure is the 

kinematically determinate structure, where all degrees of freedom are restrained – the fixed end 

moments essentially comes from that. Now, it is interesting to note that this can then be written 

in this format: S is equal to K v plus S0, where K is equal to…. 

 

(Refer Slide Time: 09:34) 
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K is 2EI by L into (2, 1, 1, 2) – this is of course for a member i and this would be this (Refer 

Slide Time: 09:50). This is the stiffness matrix – of course flexural member stiffness matrix. If 

you have an axial member then you will see that Ki is equal to (EA)i upon Li. The interesting 

point to note is that Ki is an inverse of the flexibility matrix. We will see that that is true for the 

flexural member; for this it is obvious because invert of this is L upon EA which you already 

know; for this (Refer Slide Time: 10:59), you just need to invert it 2 by 2.  

 

This is actually the way we had set up the slope deflection equations, if you remember, right at 

the beginning so there is nothing new in this. This relationship at the member level exists as long 

as you define the degrees of freedom to be thetaab and thetaba, which are known as deformation 

degrees of freedom. I am not going to go into those details because that comes in a much later 

course where you relate different degrees of freedom for a member. We are being consistent and 

we will continue with this approach of defining the degrees of freedom.  

 

Essentially, what we have done is; Si is equal to Ki into vi plus Si0 this gives us the member force 

deformation relationship. What is the next step? The next step is our kinematic relationship, so 

let me take the example that I have. 

 

(Refer Slide Time: 12:27) 

 

 
 

Just broadly looking at it, how do we relate the member force deformation relationship? The way 

you do it is; first and foremost exactly the same way that you got the load member force 

relationship in the flexibility approach. You put r1 is equal to 1 and the other two equal to 0; if 

you look at the displacement pattern, this will be 1, 1; if we look at this, this is 1 by L, same 

thing here. If I am going to call this member 1, member 2, member 3, the way we do it is we say 

vi is equal to ai into r – this is the relationship we are looking for each one. The way we get it 

is… again, this will become v1, v2 for each member is related to… here, we have three degrees of 

freedom r1, r2, r3 and so what we have is a11, a12, a13, a21, a22, a23 and a31, a32, a33 – each one we 

get by putting r1 is equal to 1, this one we get by putting r2 is equal to 1 and this one we get by 

putting r3 is equal to 1 (Refer Slide Time: 14:52). This is known as the kinematic relation.  
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Therefore, what we do is we put each one and for each one, we find out its column. Here, what is 

v1? It is just a21, this is a 3 by 1, this has to be a 2 by 3, so you get this to be 2 by 1 (Refer Slide 

Time: 15:44), so you get a11 and a21. Let me find out a11 and a21 for the first one. What is it? 

From the chord to the tangent, so that is positive 1 over L and a21 – from the chord to this thing, 

anticlockwise positive 1 by L. What is a11, a21 of 2? It is 0, and 0. What is a11, a21 of 3? You will 

see again from the chord to the tangent, so it becomes 1 upon L, 1 upon L. We have got the first 

column. For the next column, what do we need to do? 

 

(Refer Slide Time: 16:54) 

 

 
 

Put r2 is equal to 1; r2 is equal to 1 says this is 1, this is 1 (Refer Slide Time: 17:18), this is r2 is 

equal to 1. What will my a12 and a22 for the first one look like? It is going to be 0, 1; a12, a22 of 2 

is 1, 0; a12, a22 of 3 is 0, 0.  
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Finally, put R3 is equal to 1, so this is 1 and this is 1 (Refer Slide Time: 18:29) and therefore, a31 

and a32 of 1 is equal to 0, 0; (a31 a32)2 is equal to 0, 1 and a31, a32 of 3 is equal to 1,0. 

 

(Refer Slide Time: 19:11) 

 

 
 

In this way, what we have done is we have evaluated ai for each i. I have made a mistake here: 

this is (Refer Slide Time: 19:42) one three, two three, one three, two three and one three, two 

three. The first one relates to the degrees of freedom of the member and the last one refers to the 

degrees of freedom at the global level. Therefore here (Refer Slide Time: 20:07) this is two three, 

first one – member level, second one and so on. We have evaluated this for every member and 

that gives us the kinematic relations which essentially means vi is equal to air.  
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If we now put this into our entire equation by substituting, we get Si is equal to Ki ai r plus Si0, Si0 

being the fixed end moments. So now this is incorporating the kinematic relationship into the 

member force deformation relationship, so you get the member forces in terms of the….  

 

(Refer Slide Time: 21:44) 

 

 
 

The next step is virtual work and in virtual work, what do you do?  

You use the principle of virtual displacement to relate R and Si – this relationship would 

typically be a kind of an equilibrium relation and the principle of virtual displacement actually 

replaces the equilibrium relation. How do we do it? What we do is, we actually apply a virtual 

displacement pattern, an arbitrary virtual displacement pattern that can be given in this fashion. 

The virtual displacement pattern is given in this manner (Refer Slide Time: 22:53) this is the 

virtual displacement pattern.  

 

Then, what is the external virtual work going to be equal to? You will see that this is equal to the 

work done and if you look at this, this is nothing but summation of Ri ri – this is basically force 

into the displacement corresponding to it; this I am writing in matrix form in this manner – this is 

all I am doing: the displacement corresponding to each degree of freedom multiplied by the load 

corresponding to that degree of freedom; this (Refer Slide Time: 23:39) can be written in exactly 

this form. Therefore, the external virtual work is virtual displacement into real loads.  

 

What would be the internal virtual work done? You will see that the internal virtual work will 

be… each member will be undergoing… and again, this one (Refer Slide Time: 24:15) is 

effectively is summation of…, so this is summed up over all the members – i is a member – so 

this is the internal force.  

 

Now, the question here is how is this related to this? There are some additional terms I will bring 

a little bit later. This does not include all the internal work terms. Especially if you have member 

loads there are certain loads that are not included in the internal work if you put it in this. But 

right now, I am just bringing it in a broad framework; later on, I will bring in all the details.  
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Understand that this is the internal virtual work, this is the external virtual work done at every 

member level; this again you will see is nothing but you know v1i into S1i plus v2i into S2i which 

is essentially the moment into the virtual rotation at that particular joint summed up over all the 

members. Now, the important thing over here is that obviously if you if the system is in 

equilibrium which is under the loads, the structure deforms and so sets up forces.  

 

(Refer Slide Time: 25:47) 

 

 
 

What happens is the virtual work principle says VWI is equal to VWe. Now, since VWI is equal 

to VWe, it stands to reason that this into this (Refer Slide Time: 26:02) is equal to summation 

over i into this, but this does not help us because this is something, this is something else, but can 

we relate the virtual rotations at the member levels from the displacement? Sure, we can. We 

already know that vi is equal to air – this is of course when we have real, but whether we have a 

real displacement or a virtual displacement, it does not matter, so this is also equally valid: the 

virtual rotations are given in terms of the arbitrary virtual displacement in terms of the kinematic 

relationship.  

 

The kinematic relationship remains the same whether the displacements are real or virtual 

because the boundary conditions are exactly the same and so we go through exactly the entire 

steps all over again. Therefore, if you look at it, this implies that vi transpose is equal to r 

transpose ai transpose. Now, how we got from here (Refer Slide Time: 27:27) to here is basically 

matrix algebra. When you take transpose, you interchange the order, you can go back to any 

matrix algebra book to understand this.  

 

This relationship we are going to incorporate in this. Ultimately, what does this become? It 

becomes r transpose R is the summation over all the members r transpose ai into Si. Now, this 

does not depend on i, so I can actually rewrite this as r transpose summation ai transpose Si. 

Therefore, what we ultimately have is that the virtual work equation lands up being this – this 

becomes the virtual relationship, virtual work equation. Note here that this (Refer Slide Time: 

28:44) has to be equal to this for any arbitrary r. 
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(Refer Slide Time: 28:24) 

 

 
 

Since the r prime transpose is appearing in both the cases, we see that this implies that R is equal 

to summed up over all the members ai transpose Si. This looks like any equilibrium relationship 

but it is actually a virtual work equation. It looks like I have got R in terms of Si, but we have 

used virtual displacement and never forget that we have to take into account all the work done – 

up till now in the internal work, we have only included this aspect but later on we will see that 

there are other terms that come into play. We will see that it is important to …  

 

Right now, I am just writing down the basic equations and therefore if we put that together, this 

is valid (Refer Slide Time: 29:54) if we only have member loads that do not have reactions that 

do work – joint loads are not a problem when subjected to a virtual displacement pattern; this is 

very important. Later on we will include this effect. Therefore, this is true. Now, all I am going 

to do is substitute the Si in here and what do I get?  
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(Refer Slide Time: 30:56) 

 

 
 

I get R is equal to summed up over all the members ai transpose and what is Si? It is equal to Ki 

ai r plus Si0. If I rewrite this, this becomes summed up over all the members ai Ki ai r and note 

that since r is this, the summation is only here plus summation over all the members of ai 

transpose Si0. This is nothing but the structure stiffness matrix and therefore, R looks like K r 

plus … We will see later on there are some other terms in here, but this in essence represents my 

solution. Therefore, what do we normally know? We know this, we can find this out, we know 

this and we can find this out and therefore we solve for r. Once we solve for r, this is my Si, so I 

substitute r and I get my member end forces and that in essence is the member structural 

analysis.  

 

You have found out the displacement corresponding to the degrees of freedom and you have 

found out the member forces – this overall is the basis for the matrix stiffness method. Now, I am 

going to spend quite a few lectures because there are certain issues that I have not… I put dot dot 

dot and this dot dot dot includes some terms that come in under specific conditions. What I am 

going to do for the rest of the time in today's lecture is actually take a simple problem and 

illustrate the methods that we have done. I am going to solve a lot of problems using the stiffness 

method; you will understand why because in today's computer application where we do analysis 

by computer software packages, this is the method – the stiffness method is really the method 

that is used for solving problems. 

  

Till now, I have always done only illustrative problems because they are methods that are useful, 

but since this method is the one that is used the most in today's world, I am going to solve a lot of 

problems. I shall start off by looking at simple problems and then get more and more 

complicated till we have tackled all kinds of problems that you can come up with.  

 

We are going to look at first structures with joint loads, then we are going to look at structures 

with member loads, then we are going to look at structures where the members are not only 

subjected to loads but also to temperature and slowly, we will continue on and look at all the 
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variety of problems so that you are exposed to the spectrum of problems. Of course, one of the 

things that you have to appreciate is that since I will be doing everything by hand, I am only 

going to use at the most one or two degrees of freedom in a structure. Let us start off by looking 

at some simple problems and then go on from there.  

 

(Refer Slide Time: 35:48) 

 

 
 

Let me take one of the problems that I have been looking at thematically for a long time. Let me 

put it this way: this is 5 meters, this is 3 meters, this is 4 meters, this is EI, this is EI and I am 

going to say that this is being subjected to a load of let us say 10 Kilonewtons (Refer Slide Time: 

36:33). We have to find out the displacement at all points, in other words, the deformed shape of 

the body under this load and also find out the member end moments so that we can draw the 

bending moment diagram for this structure.  

 

First and foremost, no point, we have dealt with this particular issue long enough to realize that 

this is a two degree of freedom structure. I have done enough of how to compute the kinematic 

indeterminacy or the number of degrees of freedom of a structure, so from here on, if you do not 

understand how I have taken these, how there are two degrees of freedom and why I have taken 

these two, please go back and review from the past few lectures in this course. These are the two 

degrees of freedom.  
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(Refer Slide Time: 37:46) 

 

 
 

First and foremost is the force deformation relationship for each member. If you look at the force 

deformation relationship, both Si are equal to Ki into vi. plus Si0 (Refer Slide Time: 38:05), the 

fixed end moments. If you look at the fixed end moments, since there are no member loads this is 

equal to 0 and for both of them, for i equal to 1 and 2, since they are identical Ki is equal to 2EI 

by 5 into (2, 1, 1, 2) – that is my Ki and gives my relationship. This (Refer Slide Time: 38:39) is 

the force deformation relationship for both the members, they are identical because the member 

stiffness matrix is identical because EI is the same and the length is the same.  

 

What I am going to do is I am going to do r1 on a separate sheet of paper but I am going to put r2 

here because you people know that r2 is relatively simple. So r2 would imply this and therefore, if 

you look at a12, a22 of 1, it is going to be equal to 0, 1 and a12 and a22 of 2 is equal to… this is my 

v1 – that is thetabc so that is going to be equal to 1, thetacb is my v2, so this is equal to this. This is 

the force deformation relationship and this is the kinematic relationships, so we are looking 

through them reasonably fast. 
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(Refer Slide Time: 40:27) 

 

 
 

Note that we have already done this, but I want to go through this again; kinematic relationship – 

there is never any end to kinematic relationships. This point cannot go vertically because this 

member would have to elongate so this will only go this way so it has come 1 over here. If this 

member was left to go its own way, this would have gone exactly the same one here, but it 

cannot, so now it has to move, it is going to be moving along this line. It has to move 

perpendicular to it so that this is the point where C is. And what is this? (Refer Slide Time: 

41:42) This is 90 degrees. Let us see how much this entire thing has gone up by. This one, if you 

look at it, is going to be…. How we are going to determine this? What we have to determine is 

that if this is 1, how much is this going to be equal to? Let us look at that. We do not know this, 

we know this is 1 and we have to find out this – this is this one (Refer Slide Time: 42:25). Let us 

look at it. 

 

What kind of relationship is this? Since this is theta, it is tan inverse of 3 by 4, so this is this theta 

and this is the theta; that means that this is 3, this is 4, so this is going to be 4 by 3 and this is 

going to be 5 by 3. Now, we know that this is 5 by 3. What will the displacement pattern look 

like? The displacement pattern will look like this. Note this tangent over here (Refer Slide Time: 

43:28) has to be this way, the tangent over here has to be this way and the tangent here because 

r2 is equal to 0 and here, you have a fixed. Once you have that… and the tangent over here of 

course has to be this way, the chord is this, the chord is this (Refer Slide Time: 43:50), so this 

angle and this angle are going to be 1 upon 5 and this is also going to be 1 over 5; this is 5 over 3 

and this is 5, so this is going to be 1 over 3 and this is going to be 1 over 3. Therefore, my a11, a21 

of 1 is going to be equal to – from the chord to the tangent positive 1 by 5, 1 by 5; my a11, a21 of 

2 is equal to from the chord to the tangent negative – minus 1 over 3, minus 1 over 3. 
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(Refer Slide Time: 45:23) 

 

 
 

Having got that, now we can put that v1 is equal to 1 over 5, 1 over 5, this is going to be equal to 

0, 1 into r and v2 is equal to minus 1 by 3, minus 1 by 3, 0, 1 into r – you have got the kinematic 

relations. From virtual displacement, we know that capital R is equal to summation over i ai 

transpose Ki ai into r; note that here since Si0 is 0, this is the only thing (Refer Slide Time: 46:40). 

Now, what is capital R equal to? This is R1 and R2 and if you look at this you will see R1 is equal 

to 10 Kilonewton and R2 is equal to 0 Kilonewton meter. Therefore, R vector is 10 and 0. This is 

my a1 vector, this is my a2 vector, so all I need to do is just go through these steps. Let us go 

through these steps – it is instructive to go through the steps. 

 

(Refer Slide Time: 47:24) 
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Now ai transpose Ki ai r – if you look at it, this part can be actually written as the contribution of 

the ith member to the structure stiffness matrix and note that Ki ai also has a specific aspect to it, 

because you will see that Si is equal to Ki ai r plus Si0 and in this particular case, this is 0 (Refer 

Slide Time: 48:08), so Si…. Therefore, this one I will say is Ti – this gives me directly… Ki ai is 

equal to Ti directly gives me S, the member end forces in terms of this, so I am going to actually 

compute these as a step in the whole process.  

 

Let me first do Ki ai; K1 a1 which is equal to T1 will be equal to 2EI by 5 into (2, 1, 1, 2) 

multiplied by this thing for the first, which is 1 by 5, 1 by 5, 0, 1 and this is going to be equal to 

2EI by 5 – I keep it outside, inside 2 by 5 plus 1 by 5 is 3 by 5, here 1 by 5 and 2 by 5 is 3 by 5, 

here 2 into 1, 1, here 2, so this is my T1. 

 

(Refer Slide Time: 49:46) 

 

 
 

Next, I am going to compute T2. T2 is K2 a2, which is equal to 2EI upon 5 into (2, 1, 1, 2) 

multiplied by minus 1 by 3, minus 1 by 3 and then 1, 0; let me look back at my old thing and 

then I will get back to you – it is 1, 0 so this is equal to 2EI by 5 into minus 2 by 3 minus 1 by 3 

is equal to  minus 1, minus 1 by 3, 2 by 3 is minus1, here I have 2, here I have 1, so this is my T2. 
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(Refer Slide Time: 51:23)  

 

 
 

Next is computation of K1 which is essentially equal to a1 transpose T1; a1 transpose is equal to (1 

by 5, 1 by 5, 0, 1) times 2EI by 5 (3 by 5, 3 by 5, 1, 2). If you look at this, if I put 2EI by 5 

outside, inside I get 3 by 25 plus 3 by 25 is 6 by 25, here 0, 0, 3 by 5, here 1 by 5 plus 2 by 5 is 3 

by 5 and this is 2 (Refer Slide Time: 52:18). Note that it is symmetric – it has to be, has to be 

symmetric. K1 is the contribution of the first member to the structure stiffness matrix is this. 

 

(Refer Slide Time: 52:40) 

 

 
 

Similarly, K2 is equal to a2 T2, which is equal to… a2 is (minus 1 over 3, minus 1 over 3, 1, 0) 

and T2 is 2EI by 5 (minus 1, minus 1, 2, 1) and I will take 2EI by 5 outside and inside, you get 1 
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over 3, 1 over 3, so you get 2 over 3, here minus 1, so minus 1, minus 2 by 3 minus 1 by 3, 

minus 1 and here 2 – that is K2. Now, if we add K1 and K2, what do we get? 

 

(Refer Slide Time: 53:35) 

 

 
 

K becomes equal to 2EI by 5 and inside, I have 6 by 25 plus 2 by 3 and here, I have 3 by 5 minus 

1, 3 by 5 minus 1 and 2 plus 2. If I look at this, it is 2EI by 5 and this becomes 75, if I take 75, I 

get 18 and here I get 50, so I will get 68 upon 75, this becomes minus 2 over 5, minus 2 over 5 

and this becomes 4 – that is my structure stiffness matrix. 

 

(Refer Slide Time: 54:34) 
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Now, since I know R is (10, 0), 2EI by 5 into (68 by 75, minus 2 by 5, minus 2 by 5, 4) into r1 r2; 

this way, I can solve for r – I just take invert this, multiply this and you can get r and then, my Si 

are equal to Ti r; I can find out my Si and once I find out my Si, I have solved the problem. You 

can do the numbers yourself, it is very simple. I have evaluated each and every term and you just 

need to go through the steps to evaluate them. Once you got your Si, since there are no member 

loads, you can draw the bending moment diagram very easily. Once you draw your member end 

this thing, you can also get the support reactions and everything. This, in essence, illustrates 

briefly the displacement method.  

 

Go through the numbers yourselves and please solve this problem and get through it. Next time 

we will see what the answers are to this one.  

Thank you very much.  

 


