## Structural Analysis II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture – 26

Good morning. Just to review what we have done till now – we have looked at the force method of analyzing statically indeterminate structures, then we have looked at the displacement method for analyzing structures and finally, we looked at the moment distribution approach, which was a iterative approach to solving structural analysis. Now, I am going to change gears and move into what we call as the matrix methods of structural analysis. You will see that the matrix methods of structural analysis are nothing but the force method and the displacement method written in a slightly different format. Today, I am going to be discussing how to use flexibility approach. There are two approaches in matrix methods: one is known as the flexibility approach and one is known as the stiffness approach. Today, I am going to be discussing the flexibility approach to structural analysis – this is the matrix method.

(Refer Slide Time: 02:43)



Flexibility-based matrix methods – what exactly is the flexibility approach? Let us now look at a statically determinate structure. This is a structure and you can see that there are six equations of motion, four unknown reactions and two forces – so it is a statically determinate structure. This is subjected to loads  $R_1$  and  $R_2$ . Note that in a statically determinate structure, you do not need any method to compute the forces in the members, because the forces in the members can always be computed using equilibrium.

However, I am going to state this problem a little bit differently - I am going to say find out the forces in all the members and find out the displacements corresponding to the degrees of freedom. Here also, you will see.... How many degrees of freedom does this structure have? You

will see that there are three joints and you have two degrees of freedom per joint in a truss, remember? Two degrees of freedom: one translation in the horizontal direction and one in the vertical direction, so two degrees of freedom per joint. You have four restraints, two hinges, so the number of degrees of freedom are two; and these are the displacements: horizontal displacement and the vertical displacement.

Let us say that I have this as  $(EA)_1$  and this as  $(EA)_2$ ; this is length<sub>1</sub>, this is length<sub>2</sub> Anything else? You have got the complete information. The problem statement here is that given loads R<sub>1</sub> and R<sub>2</sub>, find a) – this is member 1 and this is member 2 – find forces in members and b) displacements R<sub>1</sub> and R<sub>2</sub> – these are the problem statements. How would you do this in the normal case? You would find out the forces directly in terms of R<sub>1</sub> and R<sub>2</sub> – you can always find out the forces because all you need to do actually in this particular case is just take equilibrium of joint b. These are the two unknown forces and take sigma F<sub>x</sub> is equal to 0, sigma F<sub>y</sub> is equal to 0 and you can find out the two forces – member forces are very simple; so finding out the forces and members is just equilibrium.

How would you find out displacement  $R_1$  and  $R_2$ ? Corresponding to  $R_1$ , if I am applying the principle of virtual work, I would apply a virtual force equal to 1 corresponding to  $R_1$ , then find out the virtual forces and then take internal virtual work and external virtual work – you equate it and you can find out  $R_1$ . These are the steps that you would follow in a normal kind of a situation. Let me just write that down in a particular manner.

(Refer Slide Time: 07:59)

Using equilibrium, you can actually find out the force in member 1, it is a function of  $R_1$  and  $R_2$ . Similarly, the force in member 2 is also a function of  $R_1$  and  $R_2$ . These two you can find out using basic equilibrium. Let me say I am going to use start using notations – I am going to stick through these notations all the way through. This is slightly different: I am going to say this is equal to  $S_1$  and this is equal to  $S_2$ . Up till now, I have been using force in member 1, force in member 2. I am just defining a notation and I am saying that let me call the force in member 1 as  $S_1$  and member 2 as  $S_2$ . Then, I can say that  $S_i$  can be given in terms of  $b_i$  into R. What does this mean?

This essentially means that  $S_1$  is equal to  $b_{11} R_1$  plus  $b_{12} R_2$  and  $S_2$  is equal to  $b_{21} R_1$  plus  $b_{22} R_2$ . What are these coefficients?  $b_{11}$  or I will put it as  $b_{ij}$  is member force in member i due to a load  $R_j$  is equal to 1. In other words, the member bij is defined as the force in member i due to a load  $R_j$  is equal to 1 this is the definition of  $b_{ij}$ . In other words, I can write this in this format: I am using a matrix. If I write S as a row vector containing  $S_1$  and  $S_2$ , I can actually write it as – think about it –  $b_{11}$ ,  $b_{12}$ ,  $b_{21}$ ,  $b_{22}$  into  $R_1$ ,  $R_2$ . This is the vector of member forces, this is the vector of loads on the structure and this is the matrix which actually is a force relationship that can be evaluated using equilibrium. Think about how will I evaluate this vector? Think about it. How will I find out this vector? I could find out this vector by this structure applied to a unit load and the force...

Therefore, in this matrix, each vector, each column vector can actually be found out by solving through equilibrium: putting a load equal to one corresponding to the load  $R_1$  and unit load and finding out the member forces by taking equilibrium of joint b. You can find out the member forces – these member forces are denoted as  $b_{11}$  and  $b_{21}$ , so you can find out this. Then, how would you find this out? You could find this out by taking the same structure, applying a unit load and finding out the member forces. This would be  $b_{12}$ ,  $b_{22}$ . What we are doing here is really saying that I do not care what load there is on the structure. In this particular structure, what are the possible applied loads? You will see that the number of applied loads that you will have is always equal to the degrees of freedom and each load is applied corresponding to a degree of freedom.

Look at it – how many of the loads can you apply on this structure other than these two, corresponding to the degrees of freedom? Whether you have these loads or not is not relevant. You might have a situation where only  $R_1$  is not equal to 0 or  $R_2$  is not equal to 0 and  $R_1$  equal to 0, or you may have both  $R_1$  and  $R_2$ . You see, the procedure that I am developing does not depend on whether a load exists on the structure. These values you can find out, but this is independent of what these values take up because these are.... What this is? These are the member forces due to  $R_1$  is equal to 1, these are member forces due to  $R_2$  is equal to 1 and therefore, this is very simple – you can find these out; normally, you know these displacements, so you can always find out the member forces. Therefore, all I am saying is that I am using equilibrium; however, even though I am using equilibrium, I am saying that I am writing down the member forces in terms of the loads and therefore I can always write it in this fashion.

(Refer Slide Time: 16:27)



I am going to continue in this fashion; I am now going to put it together; I have just put it together. This is obtained for all I, so for every member, you can actually compute this; in this particular matrix, since this is a 1 by 1 in a truss and this is n by 1 depending on how many degrees of freedom there are and you will see that this is equal to 1 by n; if this is a column vector, this is a row vector, row vector into column vector gives you a scalar.

We can evaluate this. This can be found out  $-b_i$  can be found through equilibrium. This is the actual load, these are the actual member forces (Refer Slide Time: 17:48). Now let me find out what the member deformations are. If I look at deformation in member 1, what is member deformation? If  $S_i$  is the load, then you will see that it is  $S_i$  into  $L_i$  upon (EA)<sub>i</sub>. What is  $S_i$  upon  $A_i$ ?  $S_i$  upon  $A_i$  is the uniform stress in the member, then  $S_i$  upon (EA)<sub>i</sub> is the uniform strain in the member and uniform strain integrated over the whole length... essentially since you have a uniform frame, the strain integrated over the whole length is going to be just strain into  $L_i$  and this is the deformation in the member.

I have been using till now delta; however, I am going to use consistent formulation, so I am calling this  $v_1 - v_1$  is the axial deformation in the member 1 due to the load  $S_1$ . This is the deformation in the member due to the loads. What is  $v_2$ ? Deformation in member 2 is equal to  $S_2 L_2$  upon (EA)<sub>2</sub>. Note that we are just saying the lengths could be different and EAs could be different; whether they are different or not actually depends on a particular structure. Here, note that I am not making any assumption excepting for the fact that the structure is a statically determinate one, so that I can relate the member forces to the only assumption till now, which is that it is statically determinate and of course that the members are uniform. These are the only two assumptions: statically determinate structure and uniform members – those are the only two assumptions that I have made. If I can do that, I can find this out and I can find out deformation in the member.

I am going to call this as  $v_i$ , which is equal to  $L_i$  upon  $(EA)_i$  into  $S_i - I$  have just rewritten this particular thing. Now, think about it: what does this relate to? This actually is a relationship between the member force – this is the force deformation relationship or if you want to call it you can call it deformation force relationship. What does this particular quantity signify? This quantity (Refer Slide Time: 21:35) is the deformation in a member due to a unit member force – deformation in member i due to unit  $S_i$ ; this by definition is called as the flexibility of member i.

What is flexibility of member i? It is equal to  $L_i$  upon (EA)<sub>i</sub>. What is the flexibility? What is the physical definition of the flexibility? The physical definition of the flexibility is the deformation in member due to a unit member force. Once we have that, this implies that  $v_i$  is equal to  $f_i S_i$ . In this particular case,  $v_i$  happens to be 1 by 1,  $S_i$  happens to be 1 by 1 and therefore,  $f_i$  is also 1 by 1, but I can actually relate it in this fashion: if I have more than one member force, then the deformation corresponding to that force is going to be related through the flexibility matrix or in this particular case, the flexibility coefficient – I am just going to keep it in this fashion. Now since this is true and I can find this out and note that I know this because I know this and this loading in normally given, I can find this out. If I substitute this into this, what do I get?

(Refer Slide Time: 23:33)



You see that I get  $v_i$  is equal to  $f_i$  into  $b_i$  into R - I have just substituted  $S_i$  equal to  $b_i$  into R into  $b_i$  equal to  $f_i$   $S_i$ ; that is all I have done. What does this relate actually? In this particular case, since I am dealing with a truss member, this is a 1 by 1, this is a 1 by 1, this is 1 by n and this is n by 1. Here, the major point is.... What does this give me? This gives me the member deformation in terms of the member loads, where this is given by the force deformation relationship of a member and this is given from equilibrium.

Now, what is the next step? Note what my ultimate goal is: given these loads, what are  $R_1$  and  $R_2$ ? Note that I have already found out the member forces – the first thing that I did was find out the member forces, because they are related in terms of  $b_i$  and you can always obtain  $b_i$  by

actually solving the equilibrium equations for this statically determinate structure. The next step is I am trying to find out  $R_1$  and  $R_2$ . How would I find out  $R_1$  and  $R_2$ ? Well, we know that due to this load, we have real deformations in the members. If I use the concept that I have these and I want to find out  $R_1$ , what would I do? I would apply a unit virtual force corresponding to the degree of freedom  $R_1$ , so let us do that: unit multiplied by  $R_1$ . Note that since I have only applied a unit virtual force corresponding to  $R_1$ , the virtual force corresponding to  $R_2$  is 0 and therefore, that will not do any work, so this is equal to the external virtual work.

What is internal virtual work? Internal virtual work is going to be equal to the  $S_i$  – these are the virtual forces due to the unit applied load corresponding to  $R_1$  multiplied by  $v_i$  (I am continuing the fact that they are scalars). What does this give me? Virtual member force times the deformation – this is the work done in each member; this summed up over all the members is going to give me the internal virtual work. What do I have to now compute? Now, I know this, because I know this, this, this and I know this (Refer Slide Time: 27:07), so I know this. Now the only thing I need to find out is the member forces due to a unit virtual force corresponding to  $R_1$ . Let us go back. Which was  $R_1$ ?  $R_1$  was this horizontal degree of freedom.

What is my force? Virtual force is this. What are the virtual member forces? The member forces are these (Refer Slide Time: 27:41) – these are the same. Whether this force is real or virtual, it makes no difference – the member forces are going to be identical. I know what those are, so I just need to substitute those. What are those? These are equal to in this particular case  $b_{11}$  into 1 into  $v_1$ . This is the virtual member force due to the unit moment times the deformation plus  $b_{21}$  into 1 into  $v_2$ .

Think about this. What is this? This essentially means that this  $r_1$  is equal to b  $v_1$  into this thing. The next equation; I need to find out is  $r_2$ . I apply a unit virtual force corresponding to  $r_2$  and that is my external virtual work. My internal virtual work is again going to be  $S_i$  into  $v_i$ , but this  $S_i$  is due to this degree – let us see what that is. Look at this:  $R_2$  is this degree of freedom, so if I apply unit load, it is going to be  $b_1$ ; whether this is virtual or real, it makes no difference, it is going to be this; only thing is if this is virtual, these are virtual forces. If you look at this, this implies that  $r_2$  is equal to  $b_{12}$  into 1 into  $v_1$  plus  $b_{22}$  into 1 into  $v_2$ . If I write this, do you notice something? I can write these two equations in matrix form. What would that become? (Refer Slide Time: 30:24)

You will see that this implies  $r_1$ ,  $r_2 - I$  am just writing in a matrix form  $-b_{11}$ ,  $b_{21}$ ,  $b_{12}$ ,  $b_{22}$  into  $v_1$ ,  $v_2$ . Note that I have all I have done is written these two equations in a simultaneous in a matrix form - that is all I have done; but note something: what does this look like? Remember that I had  $S_i$  is equal to  $b_i$  R? You can look at this. This you will see is going to be equal to... and if I take  $S_i$  equal to... or I can write it as S equal to b R where S... since I have two..., if you look at it, this is what I have written - this one.

S is a 2 by 1 because I have two members. This is b into R; b is  $b_{11}$ ,  $b_{12}$ ,  $b_{21}$ ,  $b_{22}$ ; so in this particular case it is 2 by 1 (Refer Slide Time: 32:08), 2 by 1, 2 by 2. What is b? It is equal to  $b_{11}$ ,  $b_{21}$ ,  $b_{22}$ . If you look at this, what is this equal to? You will see that this is nothing but equal to b transpose. This is very interesting: S is equal to b R, but if I use virtual work I get that r is equal to b transpose v, where v is a 2 by 1 – each member in the column vector corresponds to the displacement and this is a 2 by 1, this is a 2 by 2. Virtual work gives this, this is equilibrium, this is from virtual work. You notice something very interesting and now, what I am going to do is I am going to now split it up. I am going to split it up and you will see that this can be written in this format: r is equal to summation over all ( $b_i$  transpose  $v_i$ ). What is this now (Refer Slide Time: 33:54)? This is the deformation in each member. Let me see what this implies.

(Refer Slide Time: 34:11)



Here, it means that  $r_1$  is equal to  $b_{11}$   $b_i$  transpose;  $b_i$  transpose would be equal to.... What is  $b_i$ ?  $b_i$  is  $b_{11}$ ,  $b_{12}$ , so this is going to be equal to....  $r_{11}$  is going to be equal to  $b_{11}$   $v_1$  plus  $b_{21}$   $v_2$  and  $r_2$  is equal to  $b_{21}$   $v_1$  plus  $b_{22}$   $v_2$  – this is a summation (Refer Slide Time: 35:21). If I put this, let us see what happens here. What is  $v_i$  equal to? It is equal to  $f_i$   $b_i$  into R (Refer Slide Time: 35:37). I am now going to plug that in and this r will then be equal to summation over all the members ( $b_i$  transpose  $f_i$   $b_i$ ) into R.

Note that R is outside, so actually, the thing that you have is this (Refer Slide Time: 36:09). Very interesting, very interesting. This part comes from equilibrium, this is  $S_i$  equal to  $b_i$  R, then  $f_i$  into  $S_i$  is  $v_i$  and then, from virtual work, we know that r is equal to  $b_i$  transpose  $v_i$ ; therefore, ultimately, when you put it all together you get this. This means that this particular term is summed up over all i's. What is this term actually? What is this term totally? It relates the displacement to load. This represents something like that – if these were one, what would these be? These would be the displacements given unit load, so this matrix I can call it as  $F_i$  and summed up over all i is equal to F and I can write it in this fashion, where this is now the structure flexibility matrix and this is the contribution of member i to F.

Now, I can find out the displacements because I know this (Refer Slide Time: 38:15), I know this, I know this so I can find out this and summing it up over this, I can find this. Once I have this, note one thing: nowhere do I need to find out anything. Once I have found this out, given the load, I can always find out the displacements of the structure – this is the beauty of the matrix method. Once you go through the steps... the steps are identical to what we have done earlier using the virtual work principle, we have already discussed the virtual work principle; the only thing that I have done is explicitly write down the virtual work, first equilibrium... I have just related it in a general format and ultimately I have come up with an equation that directly relates the displacements and the loads through the structure flexibility matrix. This is the reason why this is known as the flexibility approach matrix method because ultimately you really are finding

out the structural flexibility. And if you look, along the way you are actually finding out the member flexibility term.

This entire procedure is set up very very easily. Of course, what is the assumption? The assumption is that I have a statically determinate structure and of course, it is a truss-type structure because the only forces in the members that I have written till now are truss because axial force is only axial forces and axial deformations. Let me just illustrate this and then, I will show you next time that exactly this same thing can be written down even for a statically indeterminate structure. Let us see how we can find out the member forces by applying it to an actual example structure.

(Refer Slide Time: 40:49)



Let us have a situation. This here is 4 meters, this is 3 meters, this is 3 meters, this is 4 meters. Both of them have the same EA. Let me just put some loads here: 10 Kilonewton, let me apply 20 Kilonewton. The problem statement is to find the member forces and find displacements  $r_1$  and  $r_2$  –this is what the problem statement is. This is a statically determinate structure, so I can actually find out the member forces directly, so let me find out the member forces. The only difference is I am not going to find out the member forces directly for the given load – I am going to be using the matrix method.

(Refer Slide Time: 43:05)

If I use the matrix method, then I do not solve the structure for the loads directly. What I do is I put  $R_1$  is equal to 1 and find out the member forces. Let us see what I get. This is a 4, 3 slope and this is a 4, 3 slope this way. Let me call this a, b, c. If I take sigma  $F_y$  is equal to 0 at joint b, you will see that  $F_{ab}$  which is my member 1 and bc is member 2  $F_{ab}$  and  $F_{bc...}$  I will call this in my notation as  $S_1$  and this as  $S_2$ . These are the forces in the members and note that member forces are positive when you have tensile forces – that is the assumption that we make and we are going to continue making that (positive tensile forces – negative...).

Once I do that, let us see what happens. The vertical component of  $S_1$  is going to be 3 by 5  $S_1$ . Since this is positive, this is positive, you will see that  $S_1$  is downwards – the vertical component plus 4 by 5  $S_2$ . Since there is no vertical force it has to be equal to 0. What does this give me? This gives me that  $S_2$  is equal to minus 3 by 4  $S_1$ . This is sigma  $F_y$  is equal to 0; sigma  $F_x$  is equal to 0 gives me that minus 4 by 5  $S_1$  (that is the horizontal component pulling in this direction) plus this direction 3 by 5  $S_2$  plus 1 is equal to 0, but note that  $S_2$  is equal to 3 by 4, so this becomes 9 by 20  $S_1$ , 9 by 20 minus 16 by 20 is going to be minus; this implies minus 7 by 20  $S_1$ plus 1 is equal to 0; this implies  $S_1$  is equal to 20 by 7 and  $S_2$  and this minus 3 by 4, this is going to be minus 15 by 7. Satisfy yourself that this indeed does satisfy: take 3 by 5 of 20 by 7 – it is going to be equal to 12 by 7; take this minus 12 by 7 is equal to 0; and here (Refer Slide Time: 47:55), take minus 4 by 5 – this is going to be equal to minus 16 by 7 plus 9 by 7 and that is going to be equal to minus 7 by 7 so that is minus 1 plus 1 is equal to 0. But note that this is  $S_1$ due to  $R_1$ , so what is this? This I have found out that  $b_{11}$  is equal to 20 by 7 and  $b_{21}$  is equal to minus 15 by 7; these are what I have found out. (Refer Slide Time: 48:52)

Let us move on to the other one, which is  $R_2$  is equal to 1 and let us find out this. I am going to directly put that  $F_{ab}$  if I put  $R_2$  is equal to 1 is actually  $b_{12}$  and  $F_{bc}$  is going to be equal to  $b_{22}$ . If I write it in this fashion, we will see that this is 3, 4 and this is 4, 3. sigma  $F_x$  is equal to 0 gives me that 4 by 5  $S_1$  (this is a horizontal component) minus 3 by 5  $S_2$  equal to 0. This implies that  $S_2$  is equal to 4 by 3  $S_1$  – this is sigma  $F_x$  is equal to 0; sigma  $F_y$  is equal to 0 gives me 3 by 5  $S_1$  plus 4 by 5  $S_2$  is equal to 1. If I plug this in, I get... this is 4 by 3, so this becomes (3 upon 5 plus 16 upon 15) into  $S_1$  is equal to 1. Ultimately if you look at it, if you put these through, 9 and 25, 25 upon 15 is 5 upon 3, so that means  $S_1$  is equal to 3 by 5, that means  $b_{12}$  is equal to 3 by 5 and  $b_{22}$  is equal to... plug it in and you will see that this is equal to 4 by 5. The horizontal vertical component of this is going to be 12 by 5 and the horizontal component is 12 by 5 – they cancel each other out; the vertical component of this is 9 by 25, this is going to be 16 by 25, 9 plus 16 by 25 is 25 by 25 is 1, so this is okay. Ultimately, I have found out the  $b_1$ .

(Refer Slide Time: 52:03)

Therefore, now I can say that  $S_1$  is going to be equal to  $b_{11} R_1$  plus  $b_{12} R_2$  and  $S_2$  is going to be  $b_{21} R_1$  plus  $b_{22} R_2$ . I know what  $R_1$  and  $R_2$  are, I am given  $R_1$  and  $R_2 - R_1$  is equal to 20 and  $R_2$  is equal to 20. If I put in it, I can get my  $S_1$  and  $S_2$  as equal to 20 by 7, minus 15 by 7, 3 by 5, 4 by 5; this is 20 and this is 10 (Refer Slide Time: 53:08). From that, you can find out  $S_1$  and  $S_2$ . The first part of the problem is done and the second part of the problem – I can actually find out; both the members are 5 meters long.

(Refer Slide Time: 53:34)

Therefore,  $f_1$  is equal to 5 upon EA,  $f_2$  is equal to 5 upon EA and therefore, the contribution of the first member is going to be equal to  $b_{i1} b_{12}$  so that is going to be equal to in this way 20 by 7, 3 by 5. What is this? This is equal to  $b_1$  (Refer Slide Time: 54:26), so  $F_1$  is equal to  $b_1$  transpose  $f_1 b_1$ ; this is going to be equal to 20 by 7, 3 by 5, 5 upon EA 20 by 7, 3 upon 5 and you can find out  $F_1$ . Similarly, you can find out  $f_2$ .

(Refer Slide Time: 55:09)



Once you find out  $F_1$  and  $F_2$ , then you have F is equal to  $F_1$  plus  $F_2$  and finally r is equal to F into 20, 10 and you have got your displacement.

We will continue with this particular problem in the next lecture and then I am going to extend this to see how we can use the same procedure to solve statically indeterminate structures. We are going to be using the flexibility approach to solve statically indeterminate structures also. I hope I have been able to give you a brief background on the matrix method flexibility approach. You will see that there is nothing new in what I have talked; it is all exactly what I have talked before; it is just that I am using notation and putting it into a matrix format and then using matrix algebra. I suggest that if you are uncomfortable with matrix algebra, you go back to any standard matrix algebra book and study the concepts in the matrix algebra book. I am going to bring out a few points in the next lecture, which will show that for the kind of flexibility matrix that I have, there are specific forms of the flexibility matrix – more on that in the next lecture. Thank You.