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Good morning. In the last few lectures, we have been looking at the displacement method for 

analysing structures. Today, what we will start off with is actually looking at a method that is 

much older than the displacement method that I talked to you about – this is called the moment 

distribution method. The problem with the displacement method is that for it to be usable by 

hand, you cannot really go beyond two or three degrees of freedom because to solve by hand 

very large simultaneous equations is reasonably difficult.  

 

Nowadays, of course, what do we do? We use the computer to solve the problem. In fact, after I 

have gone through this part, I am going to go into the matrix methods, which are essentially 

formulations that are very computer-friendly. I would also like you to understand the moment 

distribution method because this is a method by which you can actually analyse very large 

structures with lots of degrees of freedom without recourse to a computer.  

 

In fact, till the advent of computers in the '90s, moment distribution was the method that was 

used extensively by designers to actually analyse structures, to find out the forces for which they 

have to design. Of course, the relevance of the moment distribution method today has gone 

down. However, it is still is a very very quick method by which you can check by hand as to 

whether your computer simulations are giving you reasonably accurate results. That is the reason 

why in the next few lectures, I am going to talk about the moment distribution method and solve 

examples that illustrate how the moment distribution method is used for analysing beams and 

frames; the moment distribution method is essentially a method used for beams and frames. Let 

us have a look at the moment distribution method. 
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It is a class of iterative methods that do not actually develop all the equilibrium equations. In 

fact, that is the advantage of this approach: since you do not develop all the equations, you do not 

have to work with a very large number of equations at one time; let us see how that works. For 

that, I am going to actually take a problem that I have already discussed earlier. This is the beam 

problem. Do you remember? 
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There are two 10-meter spans fixed at a, this is b (Refer Slide Time: 04:52), this is c – each 10 

meters long. This one has a 120 Kilonewton at 4 meters and over bc, you have a 50 Kilonewton 

meter uniformly distributed load. There are two equations: one is summation moments at b equal 

to 0 and summation moments c equal to 0 – these two equations. We have already got these two 

equations and I am not going into the details of how we have obtained that; we have already 

obtained it; please look back and you will see that these are the equations.  

 

Since both are 10 meters, I am going to define I upon l, which is I upon 10 to be K. There is a 

reason why I am doing this – it will soon become obvious to you. If you do this, then these 

equations can be written in this fashion (Refer Slide Time: 05:45). The first equation I am going 

to write is thetab in terms of the moment and thetac and the second equation I am going to write 

down is thetac in terms of thetab.  

 

When you do this, this becomes EK thetab is equal to 37.7 minus 0.25 EK thetac and EK thetac is 

minus 104.2 minus 0.5 EK thetab – these two equations I am going to solve iteratively. How am I 

going to solve iteratively? Initially, I will assume that thetac is equal to 0, I will assume that EK 

thetac is 0; if EK thetac is 0, that means EK thetab will be 37.7; this value EK thetab I am going to 

substitute here (Refer Slide Time: 06:53) and find out the thetac value – that is the first cycle; the 

next cycle I have found this; plug that in here, get this, so you see how iteratively I am looking at 

it.  
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This is how the iterative solution looks. Step one: assume value of thetac is 0 and from that, you 

can find out it is 37.7. In the second step, you take 37.7, find out EK. In the third step, use this 

(Refer Slide Time: 07:25), put it into the first equation, get this. In the next step, use this, get 

this. Do you understand the way this is being solved? The way this is being solved is that in my 

first step, I am assuming thetac to be 0; then, I can find out thetab; once I find out thetab, the 

second step is that I plug in that value of EK thetab here to get EK thetac; once I get that, the third 

step is that I plug this in here (Refer Slide Time: 07:53) and keep doing this. The problem with 

this is that you have to understand that this iteration has to converge; if it does not converge, then 

it is not useful. It can be shown mathematically that this converges and I will show you the 

details of this method here.  

 

If you look at this, EK thetac, EK thetab, put the value of thetab, you get thetac – keep putting that 

in; first step: 0, then you evaluate thetab, then you put that into thetac, get thetac; then, you put 

that EK thetac assumed value and solve for EK thetab; then you use that value of EK thetab and 

solve for EK thetac; continue that way and see what happens; assume a value of EK thetac, get 

EK thetab; then you assume that value of EK thetab, you get the value of EK thetac; you assume 

that value of EK thetac, you get back the original value. What does that mean? That means that 

the two equations have given you the same solution – they have converged. Therefore, 

ultimately, the value of EK thetac is this and EK thetab is this. 

 

This is the standard iteration procedure known as Gauss–Seidel iterative procedure. In the 

Gauss–Seidel iterative procedure, it can be shown that this will always converge. Therefore, let 

us go back and look at what this implies by looking at what effect this has. Of course, once you 

have got this, you can plug in these values into Mab, Mba, etc., and get it. However, moment 

distribution is not the Gauss–Seidel iteration procedure.  

 

Let us look at what this implies in terms of the moments themselves. Note EK thetab and EK 

thetac – we evaluate not because we want to find out what the values of thetab and thetac are; 



understand that very rarely are we interested in what the rotations are – we are interested in 

calculating the rotations, so that we can calculate the moments. Now, let us see what these 

moments actually look like. 
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The equations come out this way – this is for the same equation. Mab is equal to 2 into EK thetab 

.... I am just rewriting what we had already written, excepting that this K is I upon 10. Mba is 

equal to 4 (EK thetab) plus 115.2; Mbc is equal to 4... I am sorry, this is this (Refer Slide Time: 

11:41) and this is negative; this is 4 (EK thetab) plus 2 (EK thetac) plus 416.7; Mcb is equal to 4 

EK thetac plus 2 (EK thetab) minus 416.7. These are of course positive; I have taken 

anticlockwise as positive. These were the expressions for Mab. Then, you had the two 

equilibrium equations: one which said that Mba plus Mbc is equal to 0 and the other one which 

said Mcb is equal to 0 – these were the equations we had written down earlier and I am just going 

through that. Now let us see what actually happens. You know Mba plus Mbc is what gives me 

this equation and Mcb is equal to 0 is what gives me this equation (Refer Slide Time: 13:03) you 

can look at it. 
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This one here is actually plus and minus. This is minus and this is plus, plus, and minus. Now, let 

us see what these mean. I am going to write down this iterative solution that I have written now, 

excepting that I am going to write down the values of Mab and Mba.  
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If we look at the moments, I am going to draw again. First one is step number, then I am going to 

write down EK thetab, EK thetac; for example in the initial step, EK thetac is taken to be 0 and 

EK thetab is also taken to be 0 right in the beginning; that is the first step, then, we plug in EK 

thetac. Let us see what happens to Mab, Mba, Mbc and Mcb. When it is 0, 0, Mab is going to land up 

being 172.8, this is going to be minus115.3, this is going to be plus 416.7 and this is going to be 



minus 416.7 these are the moments when I take it. Then, then we have the first step. In the first 

step, what did we say? We took this equal to 0 and therefore, this became minus 37.7; if this 

became minus 37.7 and if we plug into all of them... I am putting thetab equal to minus 37.7 and 

thetac is equal to 0, so I can compute; when I compute these, what I get is this becomes 97.4, this 

becomes minus 266, this becomes plus 265.9 and this becomes minus 492.1.  

 

I am going to now look at this (Refer Slide Time: 16:17). Look at this: when I substitute and I 

get the value of thetab, what I am actually doing actually is releasing. This is both the joint at b 

and the joint at c clamped; when they are clamped, these are the fixed end moments; then what 

am I doing? I am actually keeping thetac clamped and releasing the clamp at b, so that thetab can 

occur, so that when I release the clamp at b, what happens? Mba plus Mbc has to be equal to 0, for 

all practical purposes, this is equal to 0 – that is what I have done; I have actually released it and 

made it equal to 0. However, Mcb is not equal to 0; so next, what do I do?  

 

In the second step, I clamp b (Refer Slide Time: 17:30) at the rotated position and release thetac. 

When I release thetac , what do I get thetac to be equal to? It becomes plus123.1. If I plug this in 

and compute, this remains the same because this is not affected by thetac, this remains the same 

because this is not affected by thetac, but this changes because it is affected and this becomes 

plus 512.1; this becomes plus0.0. What have I done? I have actually kept thetab and released 

thetac; as soon as I release thetac, what happens to Mcb? It has to be equal to 0 – that is what you 

get; so you see how.... 

 

Now, what is the third step? I keep thetac clamped at that position and further release thetab. 

When I release thetab I get that equal to minus 68.5. Note that this is exactly the number that I 

had over here, excepting that I just made one mistake: I took clockwise as positive, so this is... 

bear with me, this is anticlockwise, my anticlockwise is positive. In the first step, this (Refer 

Slide Time: 19:27); in the second step was this; third step is 123.1 minus 68.5 – that is what I 

have over here. I have clamped it here, released it here; when I released it here, what does my 

value become? It becomes 35.8 and this now becomes minus 389.0 and this is plus 389.0; 

however this becomes plus 61.3.  

 

What we have done is as soon as we release thetab.... Again, this balances out. Now, I am going 

to just write down the all the subsequent ones which we have computed – take this as this and 

compute this; so this becomes plus 138.5. I am going to write down the ones that we have 

already got: plusplus 138.5 and you get minus 72.3.  

 

Then, the sixth step is take minus 72.3 and you get plus 140.4. The seventh step is, take 140.4 

and you get minus 72.8. The eighth step is, take 72.8 and you get 140.6. The ninth step is 

identical because you get the same value. This is the converged value and for each one of those, 

you substitute thetab and thetac. I will just write down the values that you get: 35.8, 28.2, 28.2, 

27.2, 27.2, this one you get as minus 389.0; then you get plus 404.4, then you get plus404.4, then 

you get plus 406.4, plus 406.4 ; here you get minus 419.7, here you get plus404.5, here you get 

plus 408.3, here you get plus 406.3, here you get plus 406.7; here minus 61.3, plus 0.1 – you are 

releasing this; then the next one – you are releasing this, so you get minus 7.3; here, you get plus 

0.1– this is the one that you are taking to 0; then, you get minus 0.7; this is where you release 



thetab; so, alternately you are releasing thetab, thetac; finally, you have plus0.1, which is the 

release (this should actually go to 0 but we have a least square).  

 

Now, this is the solution that you have. We can say what the procedure is: you start with both b 

and c clamped, so you clamp b and c. What are your moments at ab, ba, bc, and cb? They are the 

fixed end moments and you know what those are. The first step is that you keep thetac clamped – 

that means you get thetac is 0 and release the clamp at b. Immediately, as soon as you release the 

clamp at b, what happens? The net unbalanced moment here gets distributed on both sides. Here 

(Refer Slide Time: 25:14), what you have is balance of moments but that leads to an unbalanced 

moment here. When you release this, you get EK thetac as this, then immediately you have this 

going to 0 because you have released the clamp at c – the moment at c has to go to 0 but that 

creates an unbalanced here. Now, you have to distribute those moments; when you distribute 

those moments, it creates an unbalanced again here.  

 

Understand the point: what you are doing essentially is clamping, releasing, clamping, releasing, 

clamping, releasing; the whole procedure that you have over here is essentially a whole set of 

clamping and releasing – physically clamped, release thetab, clamp thetac, clamp thetab at the 

rotated position, release thetac, clamp thetac at the released position rotated position, release 

thetab; keep doing that till you have a situation where even when you release, you essentially get 

the same thing, which basically means that you have balanced forces here (Refer Slide Time: 

26:34) and you have balance here. Therefore, these are no longer clamped because you have 

released; and these are the final member end bending moments.  

 

What are you doing? You are distributing moments, so this in essence is the background behind 

the moment distribution method. Although we looked at it, it was a Gauss–Seidel.... This is the 

Gauss–Seidel iterative procedure. When we look at it in terms of Ms, what do we get? We see 

that it is essentially distributing unbalanced moments at all times and ultimately getting to a 

situation where there is no subsequent distribution, because all moments are balanced where they 

are supposed to be balanced. Note that here you have an unbalanced because it is a fixed end 

(Refer Slide Time: 27:35) – a fixed end can take a moment, whereas you cannot have an 

unbalanced moment at b and you cannot have an unbalanced moment at c. With this background, 

let us try to see what the method actually is; let us go through these steps. I will just finish off 

putting this together and we will put down what the moment distribution method actually looks 

like. It actually is a moment distribution. We are not going to do the Gauss–Seidel; we have just 

introduced the Gauss–Seidel iterative procedure to show you physically what the moment 

distribution method does. Let us look at this situation.  
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You have a situation where when you clamp it, you have Mba – this is the not the final moment. 

At a particular step, you look at Mba plus Mbc and you get a net moment – this is the unbalanced 

moment. When you add, this should be 0, so this is the net unbalanced moment. When we 

release this, what do we get? We get EK thetab is equal to minus Mb because when we add this 

(Refer Slide Time: 29:24) plus this, this is the procedure; I am writing down what the procedure 

is. What does balancing this moment do then? What it does is the new Mba turns out to be equal 

to EK thetab. I am sorry I am making a mistake here, this will be some n time EK thetab because 

that is the net unbalanced moment that we have. This one is n1 EK thetab plus Mba; Mbc is equal 

to n2 EK thetab plus Mbc – these are the new. 

 

What are n1 and n2? They are the numbers and you will see here that since we are having Mba 

plus Mbc, n1 plus n2 is equal to n because it is this plus this (Refer Slide Time: 31:23). If you now 

look at this, what do we get? This plus this is equal to this plus this. If you look at this, n1 plus n2 

is equal to n but this is equal to minus and this plus this is equal to Mb, so what you get is Mba 

plus Mbc is equal to 0, balanced. We have released thetab to get a balance.  

 

Therefore, what is the distribution factor? What is this n1? If you look back, you will see that n1 

is equal to 4. What is n2? You will see that n2 also is equal to 4 and so n1 plus n2 is equal to 8. In 

fact, we know n is equal to 8. We get to a kind of a situation; although this is the procedure, what 

we are really doing is we are not doing this procedure; what we are actually doing is taking the 

unbalanced moment; so we have a situation where we have the unbalanced moment, so we have 

an unbalanced moment. 
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We take minus Mb and distribute this moment to ba and bc. How do we distribute this? This will 

get distributed exactly. Let us see what we get. EK thetab is equal to minus Mb upon n. How 

much are we adding? We are adding n1 EK thetab to ba. What is that equal to? That is equal to 

minus n1 upon n into Mb. To b, we actually apply n1 upon n minus Mb and here we apply n2 upon 

n minus Mb. Minus comes here actually (Refer Slide Time: 34:26). If we look at these, what are 

these? These are the independent factors that you have. So we can now say that Mba .... This is 

the distribution factor. The distribution factor is this way. We will call it the distribution factor to 

i is equal to ni upon summation ni of all the members coming at the joints. What is ni? If you look 

at it, you will see that since both n1 and n2 are 4, this essentially turns out to be equal to Ki upon 

summation Ki, where Ki is equal to I upon L of the ith member.  

 

Here I will call this (Refer Slide Time: 36:22) as my Kba and this I will call as my Kbc. Therefore, 

(distribution)ba is equal to Kba (remember K is equal to I upon L – remember that) upon (Kba plus 

Kbc). The distribution factor for bc is equal to Kbc upon (Kba plus Kbc). The first step is finding 

out the distribution factors required to distribute the unbalanced moment to the individuals. Now, 

there is another step. This step is essentially releasing thetab but understand one thing: as soon as 

I release thetab, let us see what happens to Mba.  
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Mba is equal to 4EK thetab plus (FEM)ba. What is Mab? When we release thetab, what do we get? 

This term comes in. As soon as we release thetab, what happens? This is the unbalanced moment 

we have distributed to ba, but what is the additional moment at Mab? Mab is equal to 2EK upon 

thetab. When we do the balancing, what do we get? If we look at this, this additional moment that 

we apply to Mba due to the unbalanced is equal to 4EK thetab, but delta Mab is equal to 2EK 

thetab. Therefore, delta thetab is the net this thing. If you look at it, delta Mab upon delta Mba is 

equal to 2EK delta thetab upon 4EK delta thetab which is equal to half. So in addition, as soon as 

you have the distribution of the moments you also have to carry over this distributed moment to 

get the... and what is the carryover factor? It is half.  

 

Now, this carryover (Refer Slide Time: 39:25) is half whether you apply at ab or ba, because you 

will always see that if you have Mab is equal to 4EK thetaab plus 2EK thetaba, Mba is equal to 2 

EK thetaab plus 4EK thetaba. So, if you look at this, this way (Refer Slide Time: 40:00) if you 

release thetaab, you need to carry over to Mba, which is half, and when you release thetaba, you 

need to distribute it, so half is the carryover from any clamped end when we release the clamped 

end. That is known as the carryover factor and for a uniform beam, this happens to be equal to 

half.  

 

Note that if you transfer a moment to a fixed end, remember that you do not release a fixed end, 

so there is no carryover from the fixed end to the other end. Only when you release do you 

generate this carryover. Now having put this in, let us see how we solve this particular problem, 

the problem that I had defined – how we are going to solve this particular problem using the 

moment distribution method.  
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Let us now go back and I will show you that exactly the same steps are being followed, 

excepting that explicitly nowhere do we actually compute. This is the structure and now I know 

what the fixed end moments at ab is. The (FEM)ab is equal to plus 172.8 Kilonewton meter, 

which basically means... this is positive (Refer Slide Time: 42:20), so this is this way; then, the 

(FEM)ba is equal to minus 115.2 Kilonewton meter. The first thing that we do is compute the 

fixed end moments. The (FEM)bc is equal to plus 416 Kilonewton meters and (FEM)cb is equal to 

minus 416.7 Kilonewton meter. I calculate first off the fixed end moments for each member – ab 

and bc. This is for member ab and this is for member bc, so I have calculated the fixed end 

moments for the members. What is the next step? The next step is to compute the distribution 

factors and the carryover factors. 
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We have member b and member c, so the distribution factor for ba at b (this is at b) is going to 

be equal to (I by 10) upon (I by 10 plus I by 10), which is for bc, so it becomes equal to half. Dbc 

is equal to (I by 10) upon (I by 10 plus I by 10), which is equal to half. Now, the carryover factor 

from b to a is equal to half carryover factor from a to b is 0. Why? Because a is a fixed end. The 

carryover factor from bc is half, the carryover factor from c to b is half. At c, (distribution 

factor)cb is 1 because there is no other member at that point. We have calculated the distribution 

factors and now, I am going to put this all in a table.  
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I have ab, ba – this is member ab; and now for member bc, I have bc and cb. Here, there is no 

distribution, so there is no distribution. Here, we will just calculate the distribution factor: half, 

half; here, the distribution factor is 1.0; this way, the carryover factor is half; this way, the 

carryover factor is 0; this way, the carryover factor is half; this way, the carryover factor is half.  

Now let us start the procedure. The first step is writing down the fixed end moments. This is plus 

172.8, then we have minus 115.2, plus 416.7, minus 416.7. The first step is calculating the 

unbalanced moment here. What was the unbalanced moment over here? 301.5. That has to be 

distributed.  

 

How do we distribute it? We distribute it half, half. Note it is plus, unbalanced moment is 

plus301.5, so the distributed has to be minus 301.5, so it is minus 301.5, which has been 

distributed. If you look at it, what is the distribution? Half, half will become... 301.5 will become 

150.8, so I will put 150.8 here and I will put minus 150.8 here (Refer Slide Time: 47:33). What 

does this mean? This means that I have completed the distribution. If you add these up, what do 

you get? Both sides negative. What do you get? Add them up and you will get 266.0 and this 

side, you will get 265.9. Do you see something? I will have to carry over these because as soon 

as I have release this (Refer Slide Time: 48:16), I have to carry over here; the carryover is half, 

so what do I get? It is minus 75.4. Here, I have to carry over half, so I get minus 75.4. Add these 

up. You will get.... Let us go back to the old one that I had shown. I am not adding them up, but I 

am just showing you: if you look at this 97.4, add these two up, you get 97.4; add these up, you 

will get minus 266; add these two up, you will get 265.9; add these two up, you will get 492.1.  

 

Note that here, we are not talking about releasing – all that we are doing is distributing moments. 

Now what is the next step? The next step is like this has to be equal to 0, so I have to add 492.1.  

Now if you add up, you will see that it adds up to 0 but for that, as soon as they release this 

(Refer Slide Time: 49:44), this has to carry over here and so this will become plus 246.0. Now, 

this is an unbalanced. Here, there is no question of unbalanced because it is a fixed end – when 

you have a fixed end, you do not require any release. You cannot have an unbalanced moment 

here and an unbalanced moment here. As soon as you have released this, you have got this.  

 

Now, you need to distribute this, so distribute it half, half. What do you get? You get minus 

123.0, minus 123.0. That balances it out but this causes this to go here and this to go here (Refer 

Slide Time: 50:48); this becomes minus 61.5, this becomes minus 61.5; now because of this, you 

need to do plus 61.5 here; this becomes plus30.8; now, you need to balance this, you get minus 

15.4, minus 15.4; this is balanced but this is going to lead to again carryover here, minus 7.7, 

minus 7.7; this gives an unbalanced here, plus 7.7; this now carries over here, plus 3.8; when you 

get unbalanced here, you require minus 1.9, minus 1.9; again balance, minus 0.9 and here, you 

get minus 0.9.  

 

This way, you continue till you get 0, 0 and then what do you get as a final value? The final 

value you get as which we got here; and at every intermediate step if you add them up, you will 

see that you will get this, so actually the moment distribution method mimics this; the only thing 

is that in the moment distribution method, all we are doing is computing unbalanced moments, 

distributing it, carrying it over, distributing it, carrying it over, distributing it, carrying it over. 

The physics behind the moment distribution method actually is... you are calculating... what you 

are doing is initially clamped-clamped. For this particular problem, there are two joints which are 



clamped for which you calculate the fixed end moments; then you release thetab so that you get 

no net moment at b, and so Mba plus Mbc is equal to 0. Next, what you do? Release thetac. When 

you release thetac and you hold thetab here, what do you get? You land up getting an unbalanced 

moment at this point.  

 

Now you release it further and then you release this, release this, release this till you get a 

particular point where now you do not have any unbalanced moments and that is the deflected 

shape. Note that nowhere in the moment distribution are we looking at the deflected shape; we 

are not interested in thetab and thetac – we are only interested in what the moments are at the 

ends, that is what we are interested in; the whole moment distribution process – it does this. Note 

that this will always converge; physically you can think about it; what you are doing is you are 

starting here – this (Refer Slide Time: 54:19), then you do this – this is going to cause less, so it 

is going to need this, you are going do this.  

 

Ultimately, you are going to get a situation where you converge, so we can mathematically show 

that the Gauss–Seidel iterative procedure does converge and because the Gauss–Seidel iterative 

procedure converges, the moment procedure also converges. Now, never in moment distribution 

do you go till you get 0.0 and exact. What you do typically is, you stop after three or four cycles 

or till your unbalanced moments get less than one percent of the moments at the end and then 

you stop over there; once you know the member end moments, you solve the problem.  

 

The advantage of this method is that it is a completely algorithmic procedure based on 

distribution factors and carryover factors being computed and then you keep computing 

unbalanced moments and constantly computing the net unbalanced moments – distribute it, carry 

it over, again look at net unbalanced moments, distribute it, carry it over. In this particular case, 

we are doing it; we are distributing b (Refer Slide Time: 55:41), then we are distributing c, then 

we are going to b again and distributing b, c, b, c, b, c – this is the physical procedure.  

 

We will see in the next lecture that this becomes a very combustion procedure. Ultimately, what 

we have to see is the unbalanced moment. We look at all the row joints, look at all the 

unbalanced moments, distribute them, then carry over, then continue. In other words, what you 

have is you have cycles: one cycle where you distribute, then you carry over; then in the next 

cycle again, you distribute and then you carry over; then you distribute, carry over. Which is the 

last one? The last one is where you distribute so that you get balanced – you do not need to carry 

over because moments are small enough so that carrying over will not have tremendous effect. 

This is the procedure that we will look at. We will continue looking at this particular problem 

and we will also see that the modifications.... Remember in the displacement method, we had the 

fixed-fixed beam and then, we had the fixed-hinged modified member. Similarly, even in 

moment distribution, you can actually have moment distribution for a modified member and we 

will see all of these in the next lecture.  

Thank you very much. 


