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Prof. P. Banerjee 

Department of Civil Engineering 

Indian Institute of Technology, Bombay 

Lecture – 20 

 

Good morning. In the last few lectures, we have been looking at the displacement method and 

in the last lecture I told you that I have done as much as I can do to explain the different 

nuances in the application of the displacement method. In this particular lecture, I am going 

to end my discourse on the displacement method by actually taking you through the last few 

points that I would like to make in terms of the lecture. That essentially boils down to how to 

treat…. Support settlement and support flexibility are not issues in the displacement method 

because when you have support displacement and support flexibility, all it does is that it 

introduces another degree of freedom. Remember what we had talked was the various things: 

one was member loading, other was support settlement, support flexibility and then, we had 

lack of fit – lack of fit was specifically in terms of trusses and since I have not yet dealt with 

truss, I shall do that in this particular lecture; the only other thing, if you remember, was 

temperature-related effects.  

 

(Refer Slide Time: 02:51) 

 

 
 

Today, I am going to start off by talking about temperature effects in the displacement 

method. If you are looking at a beam frame, we are only considering flexure; then we only 

consider the differential temperature. If you have a cross section in which this is the top and 

this is the bottom, this is your depth and this is your neutral axis. Then, essentially, what you 

are interested in is this variation. At the neutral axis, temperature is 0, this is the temperature 

difference – delta T; it is not as if at the center you have freezing, it is just that there is no rise 

of temperature at the neutral axis. Here, you have delta T at the top, you have delta T at the 

bottom, obviously for it to be 0…; this is only the differential part; in reality, you might have 

two parts to it; I am only looking at the differential part because that is the one that causes 

flexure.  
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If you remember, I had actually computed earlier that the curvature in the cross section due to 

delta T is given by (alpha into (delta Tbottom minus delta Ttop)) upon 2 d, where d is the depth 

of the cross section at that particular point – this is the curvature. Now, remember that 

temperature is a member effect brought in through the fixed end moments. The point to note 

here is that if you look at the member force end, member deformation, Mab is equal to 4EI 

upon L into thetaab (this thetaab is due to displacements) plus 2EI upon L into thetaba (again 

thetaba is due to displacements) plus fixed end moment at ab. The member load effect is only 

incorporated in the displacement method by introducing the concept of the fixed end 

moment; the fixed end moment is one in which thetaab and thetaba are put equal to 0 and you 

find out the member end moments due to the load only. Here, there is no load, there is a 

temperature. However, it is again a member effect.  

 

Remember I talked about that? What are member effects? Member effect is lack of fit, 

temperature, member load – all these are effects at the member level; in the displacement 

method, member-level effects are only incorporated in finding out the fixed end forces. In 

this particular case, since we are looking at flexure, the fixed end forces are the fixed end 

moments. Ultimately, if we can find out the fixed end moment due to a particular temperature 

profile, we have solved the problem. I am going to solve it for the simple case. This is the 

curvature induced due to the fixed end moments (Refer Slide Time: 07:46). How do I find out 

the fixed end moments? The way we found out the fixed end moments was by going back to 

first principles. 

 

(Refer Slide Time: 08:00) 

 

 
 

We found out the rotations, we found out the member end rotations due to the member 

effect? What is the member effect? Member effect is temperature. How do I compute these? 

Using the virtual force, thetaab is equal to 0 to L M1 into curvature dx; thetaba is equal to 0 to 

L M2 into curvature dx. What is M1? M1 is the bending moment in the member due to a unit 

virtual force corresponding to thetaab – that gives me the virtual displacement; this is my M1 

diagram. This is M2 corresponding to thetaba (Refer Slide Time: 09:48) and this turns out to 

be my M2 diagram. For the temperature effect, we can find out thetaab and thetaba. I have 

already solved this earlier, but I am just going through the steps again just to refresh it.  
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Now, I am going to assume the situation that everywhere along the length of the member, the 

top fiber sees delta Ttop and the bottom everywhere sees delta Tbottom. In other words, the 

temperature gradient is uniform along the entire length. I am actually solving for a specific 

case where I have uniform temperature gradient across the cross section over the entire 

length; in this particular case, beta turns out to a constant given by this; this is a constant, so I 

just need to integrate M1 dx. Therefore, I get thetaab is equal to area under the curve – L by 2, 

so it is going to be (alpha into L into (delta Tbottom minus delta Ttop)) upon 4d; M1 is just the 

opposite of this because this is the curvature to get positive curvature, so this is negative, so I 

am going to get thetaab is negative. Thetaba is plus alpha L into (delta Tbottom minus delta Ttop) 

upon 4d, because this is the same as that. Therefore, these are my thetaab and thetaba. How do 

I get fixed end moments from these particular equations? We had to apply the moment which 

would give me just the opposite of these thetaab so that the sum total of them gave me 0, so 

that I could get my fixed end moments. Without much ado, I am going to go into computation 

of the fixed end moments. 

 

(Refer Slide Time: 13:14) 

 

 
 

What are they? (Fixed end moment)ab is going to be equal to 4EI by L into ((minus alpha L 

into (delta Tbottom minus delta Ttop)) upon 4d) plus 2EI by L into ((alpha L into (delta Tbottom 

minus delta Ttop)) upon 4d) – this is equal to minus 4EI alpha plus 2EI alpha (Refer Slide 

Time: 14:18), this is going to be equal to minus (2EI alpha into (delta Tbottom minus delta 

Ttop)) upon 4d. This will be equal to minus EI alpha delta Tb minus delta Tt upon 2d – that is 

my fixed end moment at ab.  

 

Let me check if I am dimensionally consistent. What are the units of alpha? alpha into delta T 

is going to be meter by meter, which is essentially dimensionless. What are the units of E? 

Newton per meter squared, this is meter fourth, so Newton per meter squared into meter 

fourth is going to be equal to Newton meter squared; Newton meter squared divided by d, 

which is meter, is going to become Newton meter and that is the fixed end moments; the units 

are consistent. This is the fixed end moment at ab (FEM)ab. 
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(Refer Slide Time: 16:45) 

 

 
 

Similarly, you can actually get that the fixed end moment at ba is going to be equal to (EI 

alpha into (delta Tbottom minus delta Ttop)) upon 2d. Therefore, if I have a uniform temperature 

gradient with the bottom being hotter than the top, it expands in this way so that you get it to 

be equal to the opposite. I would just like to make a point here: remember that thetaab is equal 

to minus and thetaba is equal to plus.  

 

(Refer Slide Time: 18:03) 

 

 
 

Therefore, when we substitute in here, this has to be plus and this has to be minus, therefore 

this becomes plus and this becomes plus. Remember that the rotation that we get is this plus 

this rotation has to be equal to 0. Therefore, when this is minus, this (Refer Slide Time: 

18:24) plus this is going to give you 0; then this plus this is going to give you 0. Therefore, 

the fixed end moment here has to be positive. 
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 (Refer Slide Time: 18:38) 

 

 
 

Similarly, the fixed end moment at this has to be negative. If we show it for uniform 

temperature gradient where delta Tb (the temperature differential at the bottom) is greater 

than delta Tt (the temperature differential at the top) and it is uniform across the entire length, 

then we get (FEM)ab and fixed end moment at ba equal to…. I will just write it down, I have 

got (FEM)ba over there. (FEM)ab is equal to this (Refer Slide Time: 19:35). Note that these 

two fixed end moments that I have written down over here are essentially for the case where 

the increase in temperature at the bottom is more than the increase of temperature at the top. 

Mostly, it would be increase of temperature in the bottom and a decrease of temperature at 

the top because you have to have neutral axis 0 for pure flexure.  

 

Note also the fact that it is uniform over the entire length; in other words, the top fiber across 

the length sees delta Ttop – that is a negative temperature; delta Tbottom is uniform across the 

length – that is a positive temperature to get the directions that you have. Of course, if delta 

Tb and delta Tt turn out to be different, you will get them to be minus. This gives you the 

expression. Now, if there is a different variations of temperature across the lengths, then of 

course you will not get these two, you will get some other expression, but the fact is that you 

should, by now, be totally certain about how to evaluate this effect.  

 

Once we have the fixed end moments, there is no difference between the member loads or 

member temperature, excepting that once you have got the member end moments in 

temperature, you do not have additional bending moment in the member due to the 

temperature effect as you do for the load. In other words, the simply supported beam subject 

to temperature has 0 moments, whereas a simply supported beam subjected to a load will 

always have a bending moment diagram associated with it, which has to be superposed on; in 

the temperature, you do not have the superposition. Otherwise, once you have calculated the 

fixed end moments, you use the same principle that we have already; there is no difference 

when you have to consider the temperature effect.  

 

We are now done with considering the temperature effect and how to incorporate it into the 

displacement method. I am now going to move on to look at the displacement method for a 

truss. How do we apply the displacement method? The reason why I am looking at this is that 
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the displacement method is exactly the same excepting for the fact that in a flexural member, 

the member end force deformation relationship essentially related the moments with the 

rotations. In this particular case, the force deformation relationship in a truss, it only has axial 

forces and axial deformations, so the member end force deformation relationship should 

essentially relate the axial force and the deformation in the member. Let us look at how to 

tackle that. 

 

(Refer Slide Time: 23:15) 

 

 
 

This is my truss, I am going to consider it to be fixed over here (Refer Slide Time: 23:43). 

Just like I considered a simply supported … which was the simplest statically determinate 

flexural member, I am going to consider the simplest statically determinate axial member, 

truss member. Here, I have load F and due to this, I have a displacement which is u. Since 

this is member i, I will call this force i and member i. How do I determine this relationship? I 

know that ui is equal to Fi Li upon (EA)i – this is assuming that EA is a constant and only the 

load is applied at the member end; I know this, I have already evaluated this earlier.  

 

That means my force deformation relationship will be Fi is equal to (EA)i upon Li into ui – 

this is my member end force, this is my member end displacement and this is (Refer Slide 

Time: 25:13)…. Look at the difference between the member end for flexure: in flexure, you 

have two rotations and two moments to define the member end forces; for the truss, you only 

have a single force and a single displacement; and this is the force deformation relationship 

for a member. By and large, in trusses, you do not have forces acting in the center; you 

normally always have member end moments and that is the reason why the force deformation 

relationship is essentially this for a member; so I can write it as F is equal to EA by L into u.  

 

What was it for a flexure? It was Mab is equal to 4EI upon L thetaab plus 2EI by L thetaba. Of 

course, in a flexural member, you may have member loads and that is why you have the fixed 

end moments etc. In this case, you normally do not have that and therefore you do not have 

this aspect. Of course, you might have a temperature problem and therefore, this can be 

written generally as F is equal to EA by L u plus fixed end force. Which is the fixed end 

force? This is the force developed here due to a member effect – we will see that later. 
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Let us look at this moment (Refer Slide Time: 27:20). EI by L is Newton meter, so the unit 

here is Newton meter – it is moment per unit rotation, so this unit is Newton meter per radian 

and it is like a torsional coefficient, torsional stiffness constant. Here, EA by L is Newton per 

meter – something like a stiffness constant or spring constant, so this is similar to that, it is 

force per unit displacement. Once we have this, how do we tackle a particular problem? Let 

me take a specific problem here and see how to solve it. I will take a simple problem here 

because you can actually take it for any kind of thing. I just want to reduce the number of 

degrees of freedom and that is why I am considering this effect.  

 

(Refer Slide Time: 28:31) 

 

 
 

The reason behind why I have chosen this is in the displacement method, what do you start 

off with? You start off with defining the degrees of freedom, so this is essentially all truss 

members; although this does not look like a truss that you would have normally, the reason 

why I am taking this is because it is simple; I will take up another thing also in which we will 

see how it works.  

 

This is a statically indeterminate truss. You cannot find out the forces in each of the members 

given this load. How do you use the displacement method? Let us go through the steps. First, 

determine the degrees of freedom. I have a, b, c and d. Remember that when you have a truss 

member, you do not have the rotation, so you only have two displacements and so the 

unconstrained degrees of freedom are 2 into 4, so 8. There are three constraints, each one has 

two constraints, so constraints are equal to six, so there are two degrees of freedom (Refer 

Slide Time: 30:03). What are those two degrees of freedom? I will define them as r1 and r2. 

Note that I always define my displacements along the positive. This is my coordinate system 

for the structure, so my degrees of freedom are positive in the positive direction; so r1 and r2 – 

these are my two degrees of freedom. Two: Define the degrees of freedom – r1 and r2; r1 is 

the horizontal deflection of d and r2 is the vertical deflection of d; we have defined that. The 

third step is defining the member end force deformation relationship. 
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(Refer Slide Time: 31:10) 

 

 
 

How many members do I have? I have ad, I have bd and I have cd. For ad, what is the 

member end deformation relationship? Fad is equal to EA upon L; L is equal to 5, so EA upon 

5 into uad; then Fbd is equal to EA by 3 into ubd; Fcd is equal to EA by 5 ucd – simple 

relationships but we have written the member end force deformation relationships. I am 

actually going through the displacement method as I have defined it. The next step is the 

kinematics. What do I need to do? In terms of r1 and r2, I need to find out uab, ubd, ucd. What I 

need to do is put….  

 

(Refer Slide Time: 32:37)  

 

 
 

Next is the kinematics. How did we do it? Put r1 is equal to 1 and r2 is equal to 0 and look at 

the displaced shape. When I do this, what happens? This becomes 1. Note that since they are 

hinged, they go like this (Refer Slide Time: 33:25). Now, I need to find out elongation. How 

do I find out elongation? I drop a vertical along this direction. I will show this a little bit 

better because it gets a little bit complicated, so let me draw it properly; otherwise, we will 
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have a problem. Since this point has come here and these points remain where they are, your 

new lengths are these; I need to find out what the increase in length is. Let me take ad. It is 

given in this form where this is 3 and this is 4; this point has gone here (Refer Slide Time: 

34:40) and I am going to expand it by 1. This is my new shape and I need to find out the 

length. To find out the length, what do I do? I drop a 90 degree here because in small 

displacements if it goes perpendicular, then there is no change in length; so all I need to do is 

now find out, if I have dropped a perpendicular here, how much this is and this is going to be 

my uad (Refer Slide Time: 35:18). How would I find that out? Let us draw it.  

 

If you look at this and look at this (Refer Slide Time: 35:50), I say this makes an angle theta, 

where this is 90 degrees; since this is 90 degrees, since this is theta and this angle is 90 minus 

theta, what happens is that since this is 90 degrees, this angle becomes theta; and since this 

angle is theta, this angle is theta and this angle is 90 minus theta.  

 

If you look at the change in length, the change in length is given by uad, which is given as r1 

into cosine of theta; if r1 is equal to 1, this is 1 and this is cosine theta – uad is cosine theta. In 

this way, I can find out that whatever angle that it makes with the horizontal, the ui of that is 

given by cosine theta. In this particular case, it is going to be that uad is equal to cosine of 

theta, which is 4 by 5 – positive 4 by 5. What about ubd? What is this theta? It is 90 degrees. 

What is cosine of theta? 0. It makes sense, right? If it moves perpendicular to itself, the 

change of length is 0. What about ucd? It is going to be equal to the angle made with the 

angle. It is going to be shortening and that is minus 4 by 5 these are the displacements given 

in terms of cosine theta. Similarly, you will see that corresponding to r2 … in other words, the 

kinematics for trusses is actually very simple; it does not get very complicated.  

 

(Refer Slide Time: 39:11) 

 

 
 

For trusses, you can actually write it down. In this particular case, this is my structure and I 

give r2 is equal to 1 and r1is equal to 0. If you put that, what happens? This will go this way 

and the displacement pattern will be this (Refer Slide Time: 39:53) and this; and all we need 

to do is find out how much of shortening you have. The shortening or lengthening will 

depend on… again, perpendicular from this. I leave that up to you: you will see that uad is 

going to be equal to minus r2 sine theta, where theta is this angle and this happens to be minus 
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because it is shortening. Same thing for all of them; in this particular case, you will see uad 

will be equal to minus 3 by 5 and here, when you do sine theta for the vertical member, sine 

90 is 1, you will see that ubd is equal to minus 1 (that is true because here, whatever is the 

displacement is directly the shortening of the vertical member); ucd is going to be equal to 

minus 3 by 5. We are done with the kinematics now. If you plug this into the kinematics and 

into the equations, what do you get?  

 

(Refer Slide Time: 41:52) 

 

 
 

For ad, my Fad becomes equal to EA by 5 and we have 4 by 5 r1 minus 3 by 5 r2 – all I have 

done is I have substituted uad in terms of r1 and r2; I have got the influence coefficients for r1 

and r2 from the kinematics and that is all I do. Similarly, for bd, you have Fbd equal to EA by 

3 into (0 r1 minus 1 r2) and for cd, Fcd is equal to EA by 5 into minus (4 by 5 r1 minus 3 by 5 

r2). These three expressions give me the forces in the members ad, bd and cd in terms of the 

displacements corresponding to the degrees of freedom. Once I have those, what is the next 

step? I am following exactly the same steps as I did for the flexure; only thing that I have in 

this particular case is that I have instead of flexural equations, the truss equations.  
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(Refer Slide Time: 43:51) 

 

 
 

The next step is virtual work. Since I have two degrees of freedom, I have to write two 

independent equations. My first equation is my virtual displacement pattern: r1 is equal to 1, 

r2 is equal to 0 and I find out the external work done. What is the external work done? Let us 

look at what the force was. What were the forces? There was a horizontal force of 10 and a 

vertical downward force of 10, so external virtual work is going to be 10 into 1 plus 10 into 0, 

because r2 is equal to 0; so this is going to be equal to 10. What about the internal virtual 

work? The internal virtual work is going to be Fad into uad plus Fbd into ubd plus Fcd into ucd – 

how are these are related to r1? I already have the influence coefficients, so this is going to 

give me Fad into plus 4 by 5 plus Fbd into 0 plus Fcd into minus 4 by 5. What I get is the 

following. I am going to substitute Fad, Fbd and Fcd in. 

 

(Refer Slide Time: 45:59) 

 

 
 

I am going to get (EA by 5 into (4 by 5 r1 minus 3 by 5 r2) multiplied by 4 by 5) plus (EA by 

5 into (minus 4 by 5 r1 minus 3 by 5 r2) into minus 4 by 5). Taking 4 into 4, 5 into 5 into 5, 
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this is going to be 16 125 upon EA into r1 minus 12EA upon 125 r2 plus 16EA upon 125 r1 

and this one (Refer Slide Time: 47:33), minus, minus gets plus, it becomes plus 12EA by 125 

r2, which is equal to … this cancels this (Refer Slide Time: 47:50), this becomes 32 upon 

125EA r1 is equal to 10. In this particular case, we actually get an uncoupling; normally, you 

would not get an uncoupling. r1 is equal to this.  

 

(Refer Slide Time: 48:20) 

 

 
 

The other equation is going to give me…. The virtual displacement pattern is r2 is equal to 1 

and r1 is equal to 0 independent. In this particular case, the external work done is minus 10 

into 1, so this is going to be minus 10. Internal virtual work is going to be equal to Fad 

multiplied by r2, which is minus 3 by 5, plus Fbd multiplied by minus 1 plus Fcd multiplied by 

3. We will see that the positive and the negative will cancel out; what we will be left with is 9 

EA by 125 r2 plus EA by 3 plus EA by 3 r2 plus 9EA by 125 r2 is equal to minus 10 and so 

this is going to give me r2.  

 

What is r2 going to be equal to? Let us take stock of that. This is going to be equal to minus 

10 multiplied by 375, this is going to be 125 into 3, 375, so this is going to become 27 plus 

27, 54; 54 plus 125 is equal to 179EA, so 179EQ. This is my r2 (Refer Slide Time: 50:58). 

This r2 is negative. Why? Because r2 is taken to be positive upwards and so all that means is 

r1 is positive, it is to the right and r2 is negative, which essentially means that r2 is downwards 

– this is how it should be because the way we have defined r1 and r2 is positive to the right: r1 

is positive and r2 is upwards positive, so obviously under the loading, you will see that r2 will 

go down and r1 will go up. Now, how do I find out these values? 
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(Refer Slide Time: 51:59) 

 

 
 

Once you know r1 and r2, you can substitute and you can get Fad is equal to EA by 5 into (4 

by 5 (which is r1) into 1250 upon 32EA) plus (r2 is minus, so this becomes plus) (3 by 5 into 

10 into 375 upon 179EA). EA, EA cancels, EA cancels here; you get 5, 250, 50, 25 by 4, this 

becomes 25 by 4 plus goes 2, so this is 6 into 375, this is 1125 into 2 is 2250, 2250 upon 179. 

This is my Fad and in exactly the same way, I can find out Fba and Fcd. Once I know these, I 

know my member forces and I have analyzed the structure – I have found out the 

displacements and I have found out the member forces.  

 

In trusses, it is relatively easier because the member force deformation relationship is simple, 

the kinematics is very simple – the kinematics essentially depends on sine theta, cosine theta, 

so kinematics is simple. Therefore, actually, the displacement method is very simple for 

trusses but the only thing is that for regular trusses, the number of degrees of freedom is so 

large that you cannot do a hand computation – that is the reason why I have taken a simple 

example with axially loaded members to illustrate the concept. You will have to use 

computers to be able to solve for larger trusses.  

 

However, the procedure still remains the same: determine the number of degrees of freedom, 

define the degrees of freedom, define the member force deformation relationship, do the 

kinematics, do the virtual work and then solve for displacements, incorporate the 

displacements and get the member end forces, member forces – that is all there is to the 

displacement method. Thank you very much. I hope at the end of this lecture, series of 

lectures, you are now comfortable with now applying the force method and the displacement 

method for obtaining forces and displacements in both plane trusses and plane frames.  

Thank you very much. 


