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Structural Analysis II 

Prof. P. Banerjee 

Department of Civil Engineering 

Indian Institute of Technology, Bombay 

Lecture – 19 

 

In the last lecture, we looked at a particular problem on a frame, which was loaded – we saw 

how to develop the equations. Then, I spent some time looking at how to solve that particular 

problem. I promise that today I will start off the lecture by actually giving you the solutions. I 

hope you have had an opportunity to look at those solutions.  

 

(Refer Slide Time: 01:55) 

 

 
 

This is the final solution – the equations that I looked at. Remember that this was the abc 

frame with a 100 Kilonewton load here and 50 Kilonewton load here. r1 and r2 were the 

displacements corresponding to the degrees of freedom and when we solve for r1 and r2, we 

got r1 is equal to minus (2000 by 3EI), which essentially means that r1 is 2000 upon 3EI 

downwards; r2 was minus (150 upon EI), which essentially means that r2 is equal to 150 upon 

EI clockwise – I hope you got these answers too; if you have, pat yourself on the back 

because you have understood the displacement method reasonably well. Now that you know 

r1 and r2, if you substitute them back into the equations (the member end moment 

relationships), then you get Mab is equal to minus 60 Kilonewton per meter, which essentially 

means that Mab is clockwise 60 Kilonewton per meter; Mba is equal to minus 90 Kilonewton 

per meter, which basically means Mba is clockwise 90; Mbc is plus 90, which essentially 

means it is counterclockwise; and Mcb is equal to minus 80, which means it is clockwise – 

these can be obtained directly by substituting these values into the equations for Mab, Mba, 

Mbc and Mcb. What does that mean? Once we have found those out, what do we do? Last time 

I derived the expressions, I had listed out the expressions for the support reactions in terms of 

50 plus Ha is equal to Hc and Ha is equal to minus (Mba plus Mba) upon 10.  
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Having substituted Mba and Mab for Ha, we got that Ha is equal to 15. Therefore, Hc is equal to 

65 – these are the support reactions. This is a clockwise moment of 60 Kilonewton per meter 

here, a vertical reaction of 100 Kilonewton, a horizontal reaction of 15 Kilonewton and a 

horizontal reaction of 65 Kilonewton in this direction, which is clockwise – these are the 

support reactions. Once you know those, you can always draw the bending moment diagram 

and this is what the bending moment diagram looks like. It is linear here, continuous here; 

this is superposed on top of this, so at the center of the beam, this is 115 Kilonewton per 

meter; and at the end of the beam it is 90 and 80 here and 90 and 60 here.  

 

This is the sense of the bending moment, this is the tension on the top; on the left hand side 

here, tension is on this side; here, tension is at the top; here, the tension is at the bottom ; here 

again, the tension is at the top. I hope this is exactly what you have got from your solution. I 

just gave you the solution to this particular problem. Remember this solution. It is interesting 

to note here that almost everywhere…. What is the maximum bending moment here? The 

maximum bending moment is on the right hand side is 60, on the left hand side is 90, on the 

top it is 90 and on the bottom it is 115. Fairly uniform. What are the displacements? The 

displacements are 667 upon EI  and 150 clockwise, downwards, this is clockwise. Now, let us 

look at what happens to that particular problem where all that we have done is taken this and 

made it into a… we have removed the fixity here so that this becomes a hinge roller. By the 

way, before I end this particular problem, I want to tell you that this actually is the part of a 

particular problem that we solve in general. This is actually the solution to this problem. 
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This portal frame problem with vertical loads of 100 uniformly distributed and an equal and 

opposite lateral load of 50, 50, essentially using the fact that this structure…. Here again, this 

would be 8, 8, this would be 10 and this would be 6. This is a portal frame and this portal 

frame by using symmetry can simplify to this particular problem. Although this particular 

problem that I am solving does not look like a real problem, it is actually a very real problem. 

This is the solution to this problem using symmetry. I will take an opportunity to discuss this 

particular topic of how to use symmetry to make structures simpler so that they have lesser 

number of degrees of freedom a little bit later in this particular course. Remember that this 

problem is actually not a problem that is constructed just like that – it is actually a real 

problem.  

 

(Refer Slide Time: 09:03) 

 

 
 

Now, we come to the next problem that we have. If you look at the next problem, there are 

identical loads but the only thing that we have done is, we have removed the fixity over here 
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so that the moment at this point is 0, so that it becomes essentially a hinge roller support; 

fixed support, hinge roller support. In this particular case, what is the difference in the 

solution process? Member ab continues to be a fixed-fixed member because it is fixed at one 

end and continuous at another end. However, we made bc into a modified fixed-hinged 

member because it is continuous here, so it is fixed; this is an end support here – we know 

that the moment at this particular point is equal to 0, so that makes bc a modified fixed-

hinged member. Let us see how we proceed with that. 

 

We already know that this has two degrees of freedom but there is a third degree of freedom 

which is the rotation at this point but since we are considering the fact that the moment at this 

point is 0, this is not an essential degree of freedom and so we are left with two essential 

degrees of freedom in this particular structure. Having identified the two degrees of freedom, 

the first step is to write down the member force deformation relationships. 

 

(Refer Slide Time: 10:30) 

 

 
 

Here ab is a fixed-fixed member, so Mab is equal to 4EI by 10 (since L is equal to 10) into 

thetaab plus 2EI upon L into thetaba plus fixed end moment at ab. Since there is no load in 

member ab, obviously the fixed end moment is 0. Then, Mba is equal to 2EI by 10 thetaab plus 

4EI by 10 thetaba plus fixed end moment at ba, which is also equal to 0 – that is the force 

member relationship for Mba; note that the way we have defined it in this particular equation 

actually turns out to be…. What are thetaab and thetaba? Remember that these are the rotations 

of the tangent from the chord joining ab – remember that; thetaab and thetaba are rotations of 

the tangent at a and b, respectively, considering the rotation from the chord joining a and b; 

remember that; I just wanted to tell you that this is the solution.  

 

Now for bc, since bc is a modified member, Mbc is equal to 3EI upon L and L is 10 (because 

8 and 6, 10) into thetabc plus (fixed end moment at bc minus (fixed end moment at cb upon 

2)). Remember this particular thing? Here, what are these fixed end moments? These are the 

fixed end moments in a fixed-fixed beam such that when the load is…. Remember that we 

had evaluated these two quantities last time. This turned out to be plus 100 Kilonewton per 

meter and this had turned out to be minus 100 Kilonewton per meter. When you substitute 

that into this equation, you get 150 Kilonewton meter. Therefore, Mbc becomes equal to 3EI 
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upon 10 thetabc plus 150. We know that Mcb is equal to 0 and we do not need to know thetacb 

because we have condensed out thetacb. Remember that thetacb is not equal to 0; thetacb is not 

equal to 0 – remember that. In the modified fixed-hinged member, thetacb is not equal to 0. 

However, we consider the fact that Mcb is equal to 0 and so thetacb can be statically 

condensed out and we are only left with thetabc; thetacb is not an essential deformation 

quantity required to define the force member relationship in bc. We have got the relationship 

for Mab, Mba and Mbc in terms of its member end rotations. Remember that this thetabc is also 

from the chord to the tangent. What is the next step? The next step is to find out the kinematic 

relationship.  

(Refer Slide Time: 14:09) 

 
First, we put r1 is equal to 1 and r2 is equal to 0 and second, we put r2 is equal to 1 and r1 is 

equal to 0. First and foremost, for this, this is simple and it turns out to be this way and this is 

this way, this is equal to 1 and this is equal to 1. Therefore, what we have here is that for r2 is 

equal to 1, thetaab is equal to 0, thetaba is equal to 1 and thetabc is equal to 1 – these are the 

only essential degrees of freedom that we are interested in and we have evaluated them. Note 

that thetacb does not have to be equal to 0 because this is a hinge  and we acknowledge the 

fact that the moment at this point has to be 0 and we do not need to find this out. If you look 

at this one, note that the displacements of the points remain exactly the same as we had 

computed last time, so this is 3 by 4 and the displaced shape looks this way. Remember that 

here, r2 has to be equal to 0, so the tangent at this point has to remain straight. Similarly, the 

tangent over here has to remain straight so this goes, but over here, it does not have to remain 

straight because it is a hinge. This is 1, this is 3 upon 4 and you can compute it – remember 

last time we had done it – if this is 3 by 4, then this is going to be 9 upon 20 and this is going 

to be 4 upon 5, so that is 16 by 20; 9 by 20 plus 16 upon 20 – we had evaluated that this was 

equal to 5 upon 4.  

If I draw the chords, because ultimately it is the tangent from the chord, my chord goes this 

way. This is my angle  – this angle is equal to 5 upon 4 divided by 10, so it is 5 upon 40; this 

angle is equal to 3 by 40 and this angle is equal to 3 upon 40 – these are our rotations. 

Therefore, thetaab is equal to plus 3 over 40 (from the chord to the tangent, it is 

anticlockwise), thetaba is equal to plus 3 upon 40 (from the chord to the tangent 

anticlockwise, so positive) and thetabc is equal to minus (5 upon 40) because from the chord 

to the tangent, it is anticlockwise, so it is minus.  

Note something very interesting: if you look at these values and if you look at these values, 

the fact that this point has become a hinged roller and not a fixed roller as earlier has done 
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nothing to the shapes, excepting for the fact that at this point, you do not have 0 rotation but 

instead, you have 0 moment. In other words, in the earlier case, it had gone like this and gone 

like this because this cannot rotate. Here also, this would go like this and then come like this  

because it cannot rotate, but as far as these values are concerned, they do not change at all 

because the tangent and the chord remain exactly the same. Therefore, these things are not 

determined closely by the fact that this fixed roller has become a hinged roller.  

The point that I would like to make is that the kinematics definitely depends on the support 

conditions. However, if we change a fixed support condition to a hinge support condition and 

keep the geometry the same, it has no effect on the kinematics, on the overall kinematics. Of 

course, as I said, the displaced shape may look different, because if it was fixed, it looks like 

this and would look like this. However, as far as the kinematics is concerned (that is the 

relationship of the member and rotations with the degrees of freedom of the structure), they 

are no different from what we had evaluated last time. Thus, this is an important point to note 

that kinematics is essentially driven by geometry rather than by changes in support 

conditions.  

 

Of course, one thing is there: in this particular case, it has not changed. Why? Because the 

support condition change has actually introduced a degree of freedom; however, because we 

have used the modified method, we have the same number of degrees of freedom and for 

those degrees of freedom, the kinematic relationships remain the same. However, if we had 

not used the modified beam, then we would have had another additional degree of freedom 

and then of course, we would have to do the kinematics of that degree of freedom; remember 

that. That is the point that I am trying to make to you. Having done that, let us now write 

down the relationship.  

 

(Refer Slide Time: 22:11) 

 

 
 

For ab, since the kinematic relations are the same and the member force deformation 

relationships are the same, Mab and Mba are identical to what we had computed when the c 

support was fixed. It has no bearing on the member end force deformation relationship in ab 

and therefore, I have just written down the value of Mab, which of course incorporates that 

thetaab is equal to 3 by 40 into r1 plus 0 into r2 and that thetaba is equal to 3 by 40 into r1 plus 1 

theta into r2. If you substitute those into the forced deformation relationships, you get Mab in 
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terms of r1 and r2 in this manner. Similarly, if you substitute again thetaab and thetaba in terms 

of r1 and r2 into the member end deformations, you get this Mba. This is identical to the 

previous problem; note it. 

 

Let us look at bc now. Because of the fact that c is a hinge, we had to write a modified 

member end force relationship which only relates the moment at bc with the theta at bc, 

because we had to incorporate the fact that Mcb is equal to 0. I have substituted thetabc; if you 

look at the kinematics, thetabc is equal to minus (5 by 40) into r1 plus 1 into r2; if I substitute 

that into this and rewrite it, I get Mbc is equal to minus (3EI by 80 into r1) plus 3EI by 10 into 

r2 plus 150 – these are our relationships. Note that this relationship (Refer Slide Time: 24:35) 

is different from the previous problem. Why? Because bc in the previous problem was a 

fixed-fixed member whereas in this particular problem, it has become a modified fixed hinge. 

We have written Mab, Mba, Mbc in terms of r1 and r2. What is our next step? Our next step is to 

write down the equilibrium equations and for that, we will take help of our virtual work 

principle – the principle of virtual displacement and get the first equations.  

 

(Refer Slide Time: 25:28) 

 

 
 

We have two unknown displacements and therefore we essentially need to write down two 

equations. The first equation, the virtual displacement pattern is r1 is equal to 1 and r2 is equal 

to 0; the bar actually gives the fact that they are virtual; this is a virtual displacement pattern. 

If I substitute those in, you will see that the external virtual work is 50 Kilonewton is 

undergoing a 3 by 4 virtual displacement, so real force into virtual displacement is the virtual 

work  – that is the external virtual work. The internal virtual work is going to be equal to Mab 

into (theta bar)ab plus Mba into (theta bar)ba plus Mbc into (theta bar)bc plus now Mcb is 0, so 0 

into (theta bar)cb plus 50 into 1; that is the reason why we have no interest in finding out what 

(theta bar)cb is; it is because we are going to multiply it with 0.  

 

We only need to know thetaab, thetaba and thetabc – that we know; in terms of r1, that is 3 by 

40, 3 by 40 and minus (5 upon 40). I substitute Mab from the previous equation and multiply 

it by this plus this plus Mbc, which is this multiplied by minus (5 by 40) plus 50 into 1. This is 

the support reaction due to the member load of 100 Kilonewtons – that, if you remember I 

had told you, is something that you have to consider; that is the support reaction that goes up 
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by 1, so therefore the virtual work is 1. Obviously, the virtual work equation says the external 

virtual work is equal to internal virtual work, so all we do is we take this and equate it to this. 

If we do that, what happens? I have actually gone and multiplied all of those. 

 

(Refer Slide Time: 27:37) 

 

 
 

This is the work done by Mab, this is the work done by Mba, this is the work done by Mbc and 

so this is the external virtual work and this is my equation. If I plug in these, this is 8000, 

8000 and 3200, so LCM is 16000; if I put that, this becomes 54 plus 54 plus 75 – that is r1; 

then, 6 plus 12 minus 15 upon 400 EI into r2 is equal to … this is 75 by 2, so by 4, it will 

become 150; this minus comes here, plus; and this 50 goes here, becomes minus 200. 

Substituting all of those, what I get is 183EI upon 16000 into r1 plus 3EI upon 400 into r2 is 

equal to 25 by 4.  

 

Please note that these are simple numbers and that is the reason why I am actually going into 

this problem. Otherwise, as far as you are concerned, you can actually take out these and 

make them into fractions and do the solution; you will get the same thing, only thing is that 

these will be in decimal points; it does not matter. I have done it this way because I could do 

it; in some other particular problem, since it gets too complicated, I might actually just 

calculate on the calculator itself and put down in decimal engineering digits. I have kept it 

this way but I leave it up to you to do it any which way you want to. That is the first equation.  

 

Now, for the second equation, we need a completely independent virtual displacement pattern 

so that we can get an independent virtual work equation. Note that I cannot highlight enough 

that to get two independent equations, you require two independent virtual displacement 

patterns. Since getting independent virtual displacement patterns is hard, what we tend to do 

is we know two independent virtual displacement patterns automatically. They are first, the 

one where r1 is equal to 1 and r2 is equal to 0 and the second one where r1 is equal to 0 and r2 

is equal to 1 – we know that these are independent patterns. As I had told you earlier, you 

could take anything else and get, as long as you use two independent patterns, because if you 

use two independent patterns, then and only then will you get two independent equations, 

which you can use to solve for r1 and r2. I use obvious independent patterns and that is why I 

am using r1 is equal to 1, r2 is equal to 0 and the other one r1 is equal to 0 and r2 is equal to 1. 
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For r2 is equal to 1, the 50 Kilonewton does not undergo any load, so the work external 

virtual work is equal to 0. Internal virtual work is Mab into thetaab, which is 0, plus Mba into 

thetaba, which is 1, plus Mbc into thetabc, which is 1, plus 0 into this value – we do not know 

what it is but since 0 into anything is 0, we do not care – plus this is the work done by the 50 

Kilonewton, because it does not undergo any load. If you put this in, you get this equation. 

Remember I told you that if you use the rotational kinematics, you essentially get back the 

equation that you would get by taking the equilibrium of joint b. Substituting for ba and bc 

into this and then putting the terms together, what we get is 3EI upon 400 into r1 plus 7 EI 

upon 10 into r2 is equal to minus 150. This is my second equation and I know that this is 

independent because my virtual displacement pattern is independent of the other. Now I write 

down the two equations.  

 

(Refer Slide Time: 32:19) 
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This is what you get; look at this. This is my first equation, which is 183EI by 16000 into r1 

plus 3EI by 400 into r2 is equal to 25 by 4; the second one is 3EI upon 400 into r1 plus 7EI 

upon 10 into r2 is equal to minus 150. I have written these equations in matrix form just to be 

able to solve it. Therefore, r1 and r2 will be the inverse of this into this. The inverse of this is 

written in terms of 1 upon the determinant; 1 upon the determinant is this; the determinant of 

this is 1272EI upon 160000, so inverse is this; the cofactor of this is this (Refer Slide Time: 

33:11), the cofactor of this is this, the cofactor of this is the minus of this, the cofactor of this 

is minus of this.  

 

Again, like last time, this matrix is symmetric. The reason for it to be symmetric is the force 

at a particular point that gives the displacement at another point. By the Maxwell-Betti 

reciprocity theorem, you know that the force load at one point that gives a displacement at 

another point is the same as the load at the second point giving a same displacement at the 

first point; and this is essentially because of that reason. Remember when we are using the 

force method, we got that the flexibility coefficients were the same – these are known as 

stiffness coefficients. What are stiffness coefficients? Stiffness coefficients are the force to 

produce a unit displacement – that is stiffness. What is flexibility? The displacement due to a 

unit load. This is the load required to get unit displacement. You can see that flexibility and 

stiffness are actually the opposite of each other and if you take a single spring, the flexibility 

of the spring is equal to 1 upon the stiffness of the spring – the stiffness constant, so the 

flexibility constant is equal to 1 upon the stiffness constant. This goes that they have to be the 

same; if you do not get them to be the same, you have done something wrong somewhere. 

Having got this and putting this in, I get r1 is equal to 691.824 upon EI and r2 is equal to 

minus (221.698 upon EI). Let us compare that to the situation where you have the fixed case. 

 

(Refer Slide Time: 35:43) 

 

 
 

In the fixed case, r1 was equal to minus (666.67 upon EI) and r2 was equal to minus (150 

upon EI) – that is for fixed roller; this is for hinge roller. Let us look at the effects of 

removing the fixity at this point to make it into a hinge, in other words, eliminating the 

rotational restraint – what that has done to the actual displacement of the structure under the 

same loads; the loads for both the structures are identical, the geometry is identical, the only 

difference between the two structures is that in the previous case at c, you had a fixed roller 
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and in the second case that we are dealing with right now, it is a hinge roller. All we have 

removed is the restraint of rotation and see what that has done to the displacement shape. It 

has had a significant effect. Look at the rotation. The rotation has gone up significantly. More 

interestingly, you see that r1 was downwards when it was fixed and now that you have 

removed the restraint, it is actually upwards. Is it not very interesting? You would think that 

you have actually just taken a support at one end and all I have done is removed the rotational 

restraint but the whole displacement pattern now changes. The support at c – instead of 

moving down, it is actually moving up and the value is much larger.  

 

This brings us to a particular point: when I removed the restraint, what did I do to the 

structure? Think about it. When I put more restraints on the structure, what do I do to the 

structure? When I add restraints to a structure, I actually make the structure stiffer. When I 

make a structure stiffer for the same load, what would you expect the displacements to be? 

Less, is it not? Look at that, it is less. Now, The point is when I remove the restraint, I made 

the structure more flexible and therefore, the displacements have to go up and they have gone 

up. Therefore, the behavior of the structure is actually reflected in the results that you get – 

this is very very important. The displacements have gone up and now I can put these 

displacements into the equations for the moments. These are the equations where Mab, Mba 

and Mbc are in terms of r1 and r2 and since I know r1 and r2, I can substitute into that equation.  

 

(Refer Slide Time: 39:16) 

 

 
 

When I substitute into that equation, what I get is this: Mab is minus 13.21, Mbc is minus 57 

and Mbc is plus 57. What were they when it was fixed? This was minus 60, this was minus 90 

and this was plus90. What has happened to the member end moments? They have gone 

down. Why? When I made the fixed roller into a hinge roller, what did I do? I increased the 

flexibility of the structure. Here is where I make the points that I have tried to make: when 

you make a statically indeterminate structure more flexible, a, you increase the displacements 

– we have already seen that the displacements are significantly larger than in the fixed roller 

case; and b, you make the member end moments smaller. Why? Because the structure is more 

flexible. When a structure is more flexible, it can actually displace to relieve the stresses in 

the structure; when it can deform more to release the stresses, the stresses (or in this 

particular case, the member end moments) reduce. Therefore, for a stiffer structure, what do 
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you do? When you make a statically indeterminate structure stiffer, you reduce the 

displacements but you increase the member end moments. When you make it more 

flexible…. Why the member end? Because when you make it stiffer, it is less able to deflect 

and therefore, the deflection is small and the loads are essentially transferred through forces. 

When the structure is more flexible, it can deform and relieve the stresses. Therefore, the 

member end stresses are less. Does that mean that if you do not have a serviceability 

criteria…. This is where I come into the design aspects. You have two design aspects: one is 

to design for strength and two is to design for serviceability. Serviceability always puts a 

restriction on your displacements and the strength is so that it can resist the forces that it is 

subjected to. When you make a structure more flexible, what happens? Displacements go up. 

If you do not have a serviceability problem, then you might think that you get the 

displacements go up and the moments to go down and that you can actually make the 

structure sleeker because it needs to resist less forces, but you know this is incomplete 

information. Let us look at what happens to the bending moment diagram due to these – that 

is the next step that we are interested in.  

 

(Refer Slide Time: 43:13) 

 

 
 

We have got the member end moments. Therefore in this particular case, here, the member 

end moment is minus 13.21 since it is clockwise, minus 57.5 since it is clockwise, plus57.35 

is anticlockwise – these are the member end moments. This is the joint at b, this is the joint at 

a and this is the joint at c. From this if I take Mab, since it does not have any loading, the 

shears at this point are going to be equal to this into this (Refer Slide Time: 43:47) is equal to 

this plus this. The couple generated by the shear is going to negate this moment and from 

that, we get Ha is equal to this plus this upon 10, that is equal to 7.076; that means Ha is in 

this direction and the value is 7.076. In the previous case, what was this? 15. Hc becomes 

57.076. What was it before? 65. We seem to be going in the same direction, meaning that the 

member end moments and the support reactions seem to be all less. Still we think that things 

are going to improve, but now since I have got this, I can actually find out the support 

reactions and this is ultimately what the structure looks like. 
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Once I have the support reactions, this becomes a statically determinate structure and I can 

draw the shear force bending moment diagram for this. If I do that, this is clockwise 13.21, 

this is 7.076, 100, since this is a roller, the entire 100 comes here and here, since it is a hinge, 

there is no moment, there is only 57. Till now, the structure is more flexible, the support 

reactions are less, we are seemingly…. In other words, if your serviceability is not a criterion, 

making the structure more flexible by removing a restraint of support seems to make the 

structure much better. However, let us look at the bending moment diagram. I leave it up to 

you to do it.  

 

(Refer Slide Time: 46:12) 

 

 
 

Remember I had told you that I am not going to be doing equilibrium for you. Once I have 

got the support reactions, you should be able to generate the bending moment diagram, shear 

force diagram for any member. I have drawn the bending moment diagram; this is the 

bending moment diagram. The bending moment over here has to be 13.21 because that is the 
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support reaction; the bending moment over here has to be 0 because at this point, you have a 

hinge, so you cannot have a moment; and if you look at this, what happens here? What was 

this? 60 Kilonewton meter, 90 Kilonewton meter, this was 115 Kilonewton meter, and this 

one, which is 0 now, was 80 Kilonewton meter. Let us look at it from a design point of view: 

is flexibility good? As far as this member ab is concerned, it is good; it has actually reduced 

the bending moments significantly from the previous case. However, in this case, what has 

happened? In the previous case, this was 115 but now this is 171.23 – significantly more, 

significantly more. In other words, the member bc….  

 

Until now, we were saying make it flexible, it is going to get much much better as long as 

you do not have a serviceability limit. In other words, the rotation and displacement can be 

anything that it wishes to be. Then, we thought that introducing flexibility was being 

wonderful because it was reducing all kinds of bending moments in the structure, but you 

have a problem: it has not. This particular one is more than a one and a half times and this 

member bc has to be designed for this. In other words, what has happened here is that making 

the structure more flexible does indeed increase the displacements and reduce the member 

end moments.  

 

However, if any structure has a load on a member, then this is not a good idea because the 

maximum bending moment in the member goes up significantly if you have a member 

loading. Now, would you say that increasing the flexibility of the structure makes it better? 

No. In fact, by restraining the rotation here and making the structure stiffer, you may have 

increased the moments, however, you have made the moments much more even. The 

difference between this, this and this and this, this and this – the lowest moment here is 60 

Kilonewton meter and the highest is 115; here, the lowest is 13.21, highest 171. There is a 

tremendous amount of bending moment variability and it implies that curvature goes up and 

you might actually have cracking problems, etc., if you have a reinforced concrete. 

 

Therefore, by and large, increasing restraints in the structure is actually a good idea, of course 

as long as you do not keep increasing it to a point at which what happens is, the displacement 

goes down and almost the entire forces are transmitted. At that particular point, if you take 

restraints beyond a certain point, you reduce the effect of the loads, but the member end 

moments go up significantly higher and you no longer reap any benefits of making the 

structure stiffer. The point that I was trying to make is that there is an optimum stiffness for a 

particular type of loading that good designers always look for. Ultimately, that was my take 

on the behavior of structures but as far as getting the solution is concerned, you can see that if 

you have a structure, then the displacement method for a statically indeterminate structure.… 

I am now ending the entire discourse on using displacement method for a statically 

indeterminate structure. I want to end it by going back through the steps.  

 

The first step: determine the number of degrees of freedom of a structure, given all the 

restraints and constraints that you have – that is number one. Number two: once you have 

determined the number of degrees of freedom, you have to define the displacements 

corresponding to the degrees of freedom. Three: determine what each member is and write 

down the member end force deformation relationships. Four: determine the kinematic 

relationship between the displacements corresponding to the degrees of freedom and the 

member end deformations – that is where the kinematics comes in. Five: once you have got 

the kinematics, you can write down the member end moments in terms of the displacements 

corresponding to the degrees of freedom. Six: use the virtual work principle, specifically the 

virtual work displacements, to write down independent equations corresponding to each 
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degree of freedom. Seven: solve those equations for finding out the displacements 

corresponding to a particular loading system. Eight: substitute those displacements into the 

member end displacement relationships to get the member end moments. Nine: once you 

have got the member end moments, do equilibrium and find out the support reactions and the 

bending moment diagram, shear force diagram, whatever you have to do – that is your 

analysis completed.  

 

The next lecture is going to be my last lecture on the displacement method. Till now, I have 

only looked at loading in the member. Now I am going to look at other situations – other 

kinds of member loads. Up till now, I have only looked at flexural deformations and flexural 

member end force deformation relationships. These are not valid in trusses, so I shall look at 

trusses briefly so that you can apply the displacement method for all types of planar trusses 

and planar frames. Thank you very much. 


