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Structural Analysis II 

Prof. P. Banerjee 

Department of Civil Engineering 

Indian Institute of Technology, Bombay 

Lecture – 14 

 

Good morning. Last time, we looked at a couple of problems introducing the concept of the 

displacement method for solution of a beam with settlement and then, we solved a frame 

problem where we saw that the displacement was also an unknown and therefore, we had to 

write an additional equation to be able to solve for the displacement also.  

 

Today, I am going to take the same problems and I am going to introduce another concept to 

you. Remember we wrote the slope deflection equations as 4EI upon L thetaab plus 2EI upon 

L thetaba minus 6EI upon (l square) deltaba plus (FEM)ab, that is the moment at ab. Today, I 

am going to introduce you to a concept where I am going to eliminate the delta. In other 

words, I am going to redefine my thetaab and thetaba so that you do not need to consider delta 

at all in the equation. 

 

(Refer Slide Time: 02:47) 

 

 
 

If you look at the slope deflection equations, they look this way. Mab is equal to 4EI upon L 

thetaba plus 2EI upon L thetaba plus (FEM)ab; in other words, I am eliminating… the only 

thing is that these (Refer Slide Time: 03:18) have to be defined differently. Of course, 

similarly, Mba is going to be equal to 2EI upon L thetaab plus 4EI upon L thetaba plus 

(FEM)ba; the only thing is that thetaab and thetaba are not the same as those defined in the 

earlier equations. 
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(Refer Slide Time: 04:15) 

 

 
 

Let us look at how we defined thetaab in the earlier equations. Here, thetaab and thetaba are the 

rotations from the undisplaced position to the tangent to the elastic curve; so, thetaab and 

thetaba as defined in the earlier equation were rotations from the undisplaced position to the 

tangent to the elastic curve – from the original to the tangent, that is how rotation is defined; 

and I took counterclockwise as positive, so that is this. Let us look at what happens when we 

have just a displacement. When we have a displacement, what is theta from the original to the 

tangent? In this case, when you have deltaba, what is thetaab and thetaba? Both are equal to 0, 

because the tangent to the elastic curve at both positions from the original displaced position 

(Refer Slide Time: 06:25), so this is the original displaced theta, this the original, this is the 

original tangent, final tangent, original tangent, final tangent, original tangent, final tangent, 

original tangent and final tangent – they are equal to 0. This is the previous definition that we 

had. 

 

(Refer Slide Time: 07:10) 
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Today, I am going to introduce you to a new definition. The only thing now I say that this is 

defined differently, this is the chord (Refer Slide Time: 07:24) that goes from a to b. From the 

chord that joints a to b to the tangent is my thetaab and thetaba. What are thetaab and thetaba? In 

this particular case, you may ask how it is different from the original, but the whole definition 

is different; this is the rotation from chord joining a to b to the tangent to elastic curve.  

 

Therefore, it is now rotation from the chord, it is not rotation from the tangent in the 

undisplaced position to the tangent of the displaced position, it is rotation from chord joining 

a to b to the tangent to the elastic curve. When there is no displacement of b with respect to a, 

they are the same as what I had originally defined, but let us now look at this case where I get 

deltaba; in this case, only deltaba.  

 

Now, b has moved here (Refer Slide Time: 09:19), chord joining a to b is this line, chord 

joining from a to b to the tangent of the elastic curve, so in this particular case… since this is 

l, what is thetaab equal to? From the chord to the tangent; thetaab is equal to minus deltaba 

upon L. From the chord to the tangent; since these are clockwise (Refer Slide Time: 10:05), 

this is my new definition of thetaab from the chord joining a to b to the tangent, so now you 

see that this becomes my definition of thetaab and thetaba; now, the proof of this is to show 

that both of these give me the same moments. 

 

(Refer Slide Time: 10:45) 

 

 
 

In this particular case, what is Mab equal to? Mab is equal to 4EI upon L thetaab plus 2EI by L 

thetaba and Mba is equal to 2EI by L thetaab plus 4EI by L thetaba. Here, what would Mab be 

equal to? Mab would be equal to minus (6EI upon L square deltaba) and Mab would be equal to 

minus (6EI upon L square deltaba) – these would be the moments at the end. 
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(Refer Slide Time: 11:37) 

 

 
 

Let us see whether we get the same Mab and Mba here. There is no difference, so Mab would 

be equal to 4EI upon L thetaab plus 2EI by L thetaab and Mba would be equal 2EI by L thetaab 

plus 4EI upon L thetaba. Now, let us look at this – see there is no difference because thetaab 

and thetaba are also the same.  

 

(Refer Slide Time: 12:18) 

 

 
 

Let us now look at this one. Here, Mab was equal to this. Now, Mab is going to be equal to 4EI 

by L thetaab plus 2EI by L thetaba; now, let me plug this in (Refer Slide Time: 12:33), 4EI by 

L thetaab into minus (deltaba upon L) plus 2EI by L thetaba into also minus (deltaba upon L). 

Substituting this, you will get minus (6EI upon L square deltaba) and you will get a similar 

Mba also. The point to note is that we have got exactly the same Mab and Mba as we had got 

using the earlier definition and therefore, there is no difference in the entire method.  
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The only point here is that we have negated the effect of trying to take deltaba in the equation; 

we have simplified our slope deflection equation to just containing three terms – one 

containing thetaab, one containing thetaba and one containing fixed end moment. You may ask 

what is the reason behind this; we will slowly come to what the reason behind this is.  

 

The point that I am trying to make is that this definition of thetaab and thetaba from the chord 

to the tangent of the elastic curve is completely equivalent to the previous definition. The 

only thing is that in the previous definition, you had thetaab, thetaba, deltaba – all these as 

terms, whereas here, you only have thetaab and thetaba and the advantage of this will become 

obvious a little bit later on. Let us now see whether we can use this concept to solve the 

problem that we had solved last time. We will look at the problems and see if we get the same 

answers, I think that is the key thing. 

 

(Refer Slide Time: 14:40) 

 

 
 

Here, we are given that this is a (Refer Slide Time: 14:53), this is b, this is c and this goes 

down by 0.03 meters, you were given that E is equal to 200 Gpa, I is equal to 2 into 10 to the 

power of minus 3 meter fourth. This is what you were given and essentially, what you were 

asked to find out is the bending moment diagram due to the settlement alone, only b settles by 

0.03 meters.  

 

Let us try to solve this problem using the new approach that we have. If I were to take just 

this displacement (Refer Slide Time: 15:42), what would it look like? This is fixed, this is 

displacement, this is displacement that is due to 0.03. Then, let us see what happens when I 

have thetaba. We know that the degrees of freedom are this and this, so I have this and then I 

have this, this is thetab is equal to 1, this is delta is equal to 0.03, this is thetaba is equal to 1 

and finally, we have thetac is equal to 1.  

 

So, this is delta (Refer Slide Time: 17:07), this is thetaba and we can find out all these things 

that come out of it. Let us see. Due to all of these, what is thetaba? Note that thetaab is now 

defined from the chord to the tangent; from the chord, so here, the chord would be this – a 

with b; this would be this way; here, the chord is this, here, the chord is this. Let us look at 

what thetaab is; thetaab here is equal to 0, so thetaab in terms of thetab is 0, thetaab in terms of 
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thetac is 0, and in terms of delta, it is going to be equal to… from the chord to the tangent 

(Refer Slide Time: 18:17), it is positive, so thetaab in this case is equal to 0.03 by L, where L 

is 10; remember this was 10 and this was 10 (Refer Slide Time: 18:39), thetaab is 0.03 by 10. 

What about thetaba here? We will see thetaba is also 0.03 by 10.  

 

Let us see what thetabc is from the chord to the tangent, from the chord to the tangent, from 

the chord to the tangent (Refer Slide Time: 19:09), clockwise; so, thetabc is equal to minus 

(0.03 by 10) and thetacb is the same; for thetab is equal to 1, thetaab is equal to 0, thetaba from 

the chord to the tangent is 1, from the chord to the tangent is thetabc is equal to 1 and thetacb is 

equal to 0. Here, thetaab is equal to 0, thetaba is equal to 0, thetabc is equal to 0 and thetacb is 

equal to 1.  

 

Note one thing: when you only have a rotation, the new definition of theta and the old 

definition of theta remain the same, the only difference is when you have a displacement, the 

new definitions of thetaab and thetaba are different from the old one; also note that here (Refer 

Slide Time: 20:23), I do not have any delta anywhere.  

 

(Refer Slide Time: 20:37) 

 

 
 

Once we have that, I can write down thetaab as equal to 0 into thetab, so, 0 times thetab plus 0 

times thetac plus 0.03 upon 10; thetaba is equal to 1 times thetab plus 0 times thetac plus 0.03 

upon 10; thetabc is equal to 1 into thetab plus 0 into thetac minus 0.03 by 10; and thetacb is 

equal to 0 times thetab plus 1 times thetac minus 0.03 upon 10 – these are my equations and 

now, I substitute these into my slope deflection equations. 
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(Refer Slide Time: 21:52) 

 

 
 

What do my slope deflection equations look like? Mab is equal to 4EI upon L thetaab plus 2EI 

upon L thetaba plus (FEM)ab. 

 

(Refer Slide Time: 22:14) 

 

 
 

Note that in this particular case, since there are no loads, (FEM)ab is equal to (FEM)ba is equal 

to (FEM)bc is equal to (FEM)cb and all of them are equal to 0. 
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(Refer Slide Time: 22:35) 

 

 
 

I am going to substitute these in. I am going to get 4EI upon 10, thetaab is 0.03 by 10 plus 2EI 

upon L, thetab is thetab plus 0.03 by 10 plus 0, which is going to be equal to 0.12 plus 2, so 

0.16, it is going to be 0.18 EI upon 100 plus 2EI upon 10 thetab. Similarly, if you substitute 

everything in, you will get Mba is equal to 0.18 EI plus 100 plus 4EI upon 10 thetab; Mbc is 

going to be equal to 4EI upon 10 thetab plus 2EI upon 10 thetac minus 0.18 EI upon 100; and 

Mcb is going to be equal to 2EI upon 0 thetab plus 4EI upon 10 thetac minus 0.18 EI upon 100. 

These are going to be the equations. 

 

(Refer Slide Time: 24:44) 

 

 
 

Again, going into the fact that equilibrium equations give us… I am not going in, I have 

already done this problem earlier, so I am just substituting them in. This one gives me 8 EI by 

10 thetab plus 2EI upon 10 thetac is equal to 0; the other equation was Mcb is equal to 0 and 

that gives me 2EI by 10 thetab plus 4EI by 10 thetac is equal to 0.18, EI is 200 into (I am 
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doing it in Kilonewton), so it going to be 200 into 6 into 2 into 10 to the power of minus 3 

upon 100.  

 

After that, you are going to see that once you substitute these equations, this is going to land 

up being equal to… when I substitute these equations, you will see that these equations look 

identical to what I had obtained earlier and you will see that thetab is equal to minus (514 

upon EI) radians, thetac is equal to 2057 EI radians and when you substitute, you will get 

exactly the same equations. The most important thing is that once I have utilized this 

procedure, the solution process remains identical; I have just proved that to you with one 

problem. What is the advantage of this definition? I will shortly come to that by actually 

taking up the other problem that I had discussed last time – that was the frame problem.  

 

(Refer Slide Time: 27:07) 

 

 
 

Let us just revisit that problem and I will introduce you to the concept of…. Remember I said 

that when you were using…. What virtual work method did we use for the force method? We 

used the method of virtual force. I had said that I was going to use the method of virtual 

displacement when I came to using the displacement method – that is what I am going to 

illustrate to you – and this is where it will become obvious as to why I was using this new 

definition that I had today. This is 12 (Refer Slide Time: 27:53) and this is 5. I am just 

restating the problem that we had done last time. Today, what I am going to introduce to you 

is the concept of the principle of virtual displacement and we will see how ….  

 

Last time, if you remember, to be able to generate the third equation, we had to go through 

quite a bit of involved computation, where we computed shears etc. Once I give you slightly 

more complicated problems, especially with inclined members, you will see that this is going 

to become a very very messy affair because not only will you have to compute shears, you 

will have to compute axial forces and then resolve them, find out the vertical reaction, 

horizontal reaction – all kinds of things.  

 

Just to be able to get the third equation, you will probably have to solve ten different 

equations to ultimately get to the third equation; it gets quite messy. I will illustrate this 

concept to you as we go along; there are several lectures that I am going to spend on actually 
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solving example problems for you. But, I will introduce the concept in today's lecture so that 

the concept remains clear in our mind while we are solving all the particular problems. I am 

going to introduce the concept using this example problem which we had already solved in 

the last lecture. 

 

(Refer Slide Time: 29:47) 

 

 
 

Let us just put one or two things down and then go back to the concept that we are going to 

have. Remember that I am not going to go through the steps of trying to define what 

everything is; I am just going to put down my new definition. These are my degrees of 

freedom: thetab (Refer Slide Time: 29:57), thetac, and the translation of this is delta. Then, I 

have this load here, here I have a load of 50 Kilonewton and I have a moment of 250 

Kilonewton meter, I have a 100 Kilonewton load here and a 20 Kilonewton load here, this is 

20 meters and this is 15 meters.  

 

These are the degrees of freedom: thetac (Refer Slide Time: 30:37), thetab and delta. One 

thing you must note is that always, my structure degrees of freedom are implicitly assuming 

this as my structural Z coming out (Refer Slide Time: 30:51); so you will see that if I have a 

displacement in this direction, it is taken positive in this direction, a rotation is taken positive 

in this direction (Refer Slide Time: 31:07) so that it comes out of the paper, which is in the 

positive Z direction. If I ever have any displacement in the Y direction, I will have it positive 

in that. My definition is always completely related to the idea that positive displacements are 

along the positive axis of the structure. 
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(Refer Slide Time: 31:47) 

 

 
 

That is the reason why I always define anticlockwise moment as positive (Refer Slide Time: 

31:41) because that then gives me the concept of positive; it can be generated very easily 

because in positive degree of displacement, the corresponding degree of freedom is aligned 

along the direction. Now, let us look at this. First and foremost, we have to compute the fixed 

end moments. There is no problem in computing the fixed end moments; the fixed end 

moments are identical to what we had the last time. 

 

(Refer Slide Time: 32:26) 

 

 
 

Let me just go through and quickly get you the fixed end moments. Here, this is a (Refer 

Slide Time: 32:25), this is b, this is c, this is d. The (FEM)ab is equal to plus 22.2, (FEM)ba 

was equal to minus 44.4, (FEM)bc was equal to plus 288 Kilonewton meter and (FEM)cb is 

equal to minus 192 Kilonewton meter. In the computation of the fixed end moments, you do 

not have any specific problem; the only thing is that we need to actually go and define the 

displacements corresponding to the degrees of freedom and find out how the structure moves. 
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(Refer Slide Time: 33:33) 

 

 
 

Now I have thetaba is equal to 1, so thetaba is equal to1 is going to give me this (Refer Slide 

Time: 33:41), this and that is it; this is 1, this is 1, this is thetab is equal to 1 and thetab is 

equal to 1 automatically assumes that thetac is equal to 0 and delta is equal to 0; then, I am 

going to put thetac is equal to 1. Remember that for rotations, the definitions do not change. 

Let us put delta, delta give me this (Refer Slide Time: 34:31), this is delta, delta, so this is 

delta is equal to 1.  

 

Now, our definition is from the chord delta to the tangent; so if you look at this particular 

point, what is thetaab equal to? 0. What is thetaba equal to? 1. thetabc is equal to 1, thetacb is 

equal to 0, thetacd is equal to 0, thetadc is equal to 0. Here, thetaab is equal to 0, thetaba is equal 

to 0, thetabc is equal to 0, thetacb is equal to 1, thetacd is equal to 1, thetadc is equal to 0; no 

difference; remember that whenever you have a rotation, there is absolutely no difference in 

the computation, I mean with respect to last time and this time. 

 

Here, once you have a displacement (Refer Slide Time: 35:42), it all changes because it is 

from the chord (the chord is the one that connects the displaced positions of…) to the tangent, 

from the chord to the tangent (Refer Slide Time: 36:05), so, what is thetaab equal to? Delta by 

15; if you look at this angle, it is delta by 15 so, thetaab, look at it from the chord to the 

tangent it is anticlockwise, so it is positive delta by 15. What about thetaba? Similarly, from 

the chord to the tangent, it is anticlockwise (Refer Slide Time: 36:32), it is delta by 15. What 

about thetabc? From the chord to the tangent, it is 0, from the chord to the tangent, thetacb is 

equal to 0 (Refer Slide Time: 36:45) and from the chord to the tangent, anticlockwise, 

positive; thetacd is equal to delta by 15 and thetadc is delta by 15. We have figured out 

everything in terms of the displacements. 
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(Refer Slide Time: 37:30) 

 

 
 

Therefore, I can write down thetaab is equal to 0 into thetab plus 0 into thetac plus delta EI by 

15, so this is just delta by 15; thetaba is equal to 1 times thetab plus 0 times thetac plus delta by 

15; thetabc is equal to 1 into thetab plus 0 into thetac plus 0 into delta; thetacb is equal to 0 into 

thetab plus 1 into thetac plus 0 into delta; thetacd is equal to 0 into thetab plus 1 into thetac plus 

delta by 15; thetadc is equal to 0 into thetab plus 0 into thetac plus delta upon 5; these are my 

rotations.  

 

(Refer Slide Time: 39:00) 

 

 
 

Now, all I need to do is find out the moments and so, I am just putting them down, I am not 

going to actually calculate. By now, just by substituting into the equations, you will get Mab is 

equal to 2EI by 15 thetab plus (6EI by 15 squared) into delta (just plug this in (Refer Slide 

Time: 39:26) and you will get 6EI delta) and Mba is equal to 4EI upon 15 thetab plus (6EI 

upon 15 square) into delta (when you plug this in (Refer Slide Time: 39:46), you will get 4EI 

into theta plus 2EI etc). You will get all this by substituting these into the equations. Then, 
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you have the fixed end moments, so this going to be equal to plus 22.2 (Refer Slide Time: 

40:06) and this is going to be minus 44.4. This way, by substituting bc and cb, you can find 

out Mbc and Mcb and you can find out Mcd and Mdc by substituting them in; I am not going to 

write those down.  

 

(Refer Slide Time: 40:35) 

 

 
 

Let me put forward the thought process to you. Essentially, I know that Mab is a function of 

thetab, thetac, delta – all of them. Of course, it is not necessary that all of them will be a 

function; for example, Mab does not have thetac in it, but I am just putting down in general 

that these will be functions of this. Mcb is function… some other functions – f1, f2, f3, f4 and 

Mcd is going to be equal to f5 of (thetab, thetac, and delta) and Mdc is going to be f6 (thetab, 

thetac, delta). All are different functions, but essentially they are functions and then, there are 

some fixed end moments. These are my real moments and these happen due to the loading 

that we have on the structure. Now, I am going to use the principle of virtual displacement. 

What am I going to do? I am going to say that I am going to apply three different independent 

virtual displacement patterns. 
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(Refer Slide Time: 42:10) 

 

 
 

What are my three independent virtual displacement patterns? One is this (Refer Slide Time: 

42:11), one is this, one is this and note that these are now virtual displacement patterns; I am 

going to find out the work done by all the forces subjected to these virtual displacements. The 

work done by the real forces subjected to these virtual displacements is going to give me the 

virtual work done in the structure.  

 

Once I have the virtual work done in the structure, what can I do? I can write virtual work 

done by the external loads equal to the virtual work done by the internal loads and once I put 

that, all the total virtual work is equal to 0 and from that, I get an equation. What will be the 

equation in terms of? Equation will be in terms of thetab, thetac because these are the internal 

forces and I am going to find out for each displacement pattern what are the thetas are; once I 

have those thetas, I can just say what the work done by the internal forces is. If this is my 

virtual displacement (Refer Slide Time: 43:29) times, it is going to be thetaab into Mab plus 

thetaba into Mba etc... and in that way, we can continue doing. So, that is my virtual work 

equation and that virtual work equation is what is going to give me the three independent 

equations and I can solve for the displacements. I have three equations, three unknowns, I can 

solve for them. That is in essence the method of virtual displacement. 
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(Refer Slide Time: 44:22)  

 

 
 

Now, what I am going to do is, I am actually going to put it into practice and actually take 

this particular problem. Let me just put them down and you will see that this (Refer Slide 

Time: 44:20) is equal to 2EI by 15 thetab plus (6EI upon 15 square into delta) plus 22.2; this 

is equal to 4EI by 15 thetab plus (6EI upon 15 square into delta) minus 44.4; this is equal to 

16EI upon 20 thetab plus 8 EI upon 20 thetac plus 288; this is equal to 8 EI upon 20 thetab 

plus 16EI upon 20 thetac minus 192; this is equal to 4EI upon 15 thetac plus (6EI by 15 

square into delta); and this is equal to 2EI by 15 thetac plus (6EI upon 15 square into delta). 

These are the moments which you can get. Then, what is the next step? The next step is to 

find out the work done by all the forces. 

 

(Refer Slide Time: 46:16) 

 

 
 

Let us look at what happens. I am breaking it up because I need to know what is the work 

done by all the forces. Here, you will have Mab (Refer Slide Time: 46:37), here you will have 

Mba, here you will have Mbc (Refer Slide Time: 46:49), here you will have Mcb, here you have 
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the load 50 and a moment 250; then, you have the moment Mcd and then you have the 

moment Mdc. These are all the moments and note that I am just putting down all the loads; 

this is 100 and here, you have 20 (Refer Slide Time: 46:21).  

 

One aspect that is very important is that when you have loads acting on the member, what 

you need to do is you need to find out the reactions at this (Refer Slide Time: 47:45). Think 

of this as a simply supported beam with Mab and Mba. What I need to compute for getting the 

virtual work properly is, I need to find out the reactions at the end of the member due to this. 

Since I am considering it to be a simply supported beam, what are the reactions going to be 

equal to? This is 5, this is 10, so if I find out the reaction, I am only finding out the reaction 

due to the load only, remember that, not due to the unbalanced moments etc.; only the load.  

What is the reaction at this point due to this load (Refer Slide Time: 48:23)? If I take 

moments about that point, it is going to have 5 into 20, so this is going to be anticlockwise 

and if I put this in this direction, this is going to be clockwise, so this into 15 is equal to 20 

into 5; this is going to be equal to 100 upon 15 and this is going to be 200 upon 15.  

 

Similarly, here, we are going to have 8 (Refer Slide Time: 49:01) and 12, so just due to the 

load alone, you will see that this is going to be equal to 1200 (Refer Slide Time: 49:08), this 

is going to be 60 and this going to be 40; if I substitute, then this is going to 20 upon 3 and 

this is going to be 40 3. What have I done? On this member, there is nothing. Note that these 

are applied at the nodes, so do not I need to find out, it is only for the members I need to find 

out the reactions.  

 

I have just found out the reactions, so what is my virtual work equation? I am going to put 

thetab is equal to 1. This is my virtual displacement pattern, so thetab into the moment at b 

(which is 0) – this is the external work done and I am calculating all the external. Note that 

these I have translated (Refer Slide Time: 50:16), so these are no longer…. Member loads are 

never external, it is only joint loads which are external. How much is this joint (Refer Slide 

Time: 50:25) displaced by under thetab? Let me look back at the equation that I have drawn. 

 

(Refer Slide Time: 50:35) 
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This is my thetab, I am giving this virtual displacement, so I am going to have that this into 1, 

nothing, 0; this is not going up (Refer Slide Time: 50:47), neither is it rotating, so these two 

do not do any work. 

 

(Refer Slide Time: 50:55)  

 

 
 

The external virtual work is equal to this. What is the internal virtual work? The Mba does 

work, so it is going to be Mba into thetab because it is 1 into thetab (note that the moment is 

this way (Refer Slide Time: 51:17), the rotation is this way, so it is positive work) plus Mbc 

into thetab. Then, let us look at all the work done by this and this; these do not undergo any 

displacements, neither do those and neither does that, so this is my equation.  

 

This is the external virtual work (Refer Slide Time: 51:46), this is internal virtual work. This 

is going to give me Mba plus Mbc into thetab is equal to 0 – this is true for any arbitrary thetab; 

this implies that Mba plus Mbc is equal to 0. Note that is exactly the equation that we get when 

we put equilibrium conditions in the previous case; the only thing that we did was we 

computed the virtual work done. Remember I had said that the method of virtual 

displacement essentially replaces the equilibrium conditions and I am showing this here – I 

am getting the same equilibrium conditions. Let me put thetac and I have the same equation; 

let me put the arbitrary equation thetac is equal to 1.  
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(Refer Slide Time: 52:55) 

 

 
 

Then, the work done will be thetac; thetac is in this direction (Refer Slide Time: 53:02), so 

what is the moment at that point? You will see that is clockwise moment, so you are going to 

get 250 into thetac – this is the external virtual work. All the other external forces, including 

the support reaction and the joints, do not undergo any displacement; all of them are going to 

be 0 and so the internal virtual work is going to be Mab into thetaab (which is 0) this theta is 0, 

all the Mba, thetab, 0 etc.  

 

You will see that the only term that exists will be Mcb into thetac plus Mcd into thetac and none 

of the others do any work; so this one is going to be (Mcb plus Mcd plus 250) into thetac is 

equal to 0. Now, this has to be true for all arbitrary thetacb, so I get Mcb plus Mcd plus 250 is 

equal to 0. These look like equilibrium equations but they are not, they are actually weak 

solutions, they are actually the work done by this (Refer Slide Time: 54:31). 

 

I have shown to you that when I put thetab is equal to 1 and thetac is equal to 1 as the virtual 

displacement patterns, I get back my Mba plus Mbc is equal to 0, which was the simple 

equation that we had got earlier. I also got that Mcb plus Mcd plus 250 is equal to 0. In other 

words, when I put the thetab and thetac virtual displacements, I essentially get back the simple 

equations that I had developed by taking equilibrium of the joints, joint b and joint c, in the 

earlier case. 

 

I am going to stop over here because I have come to the end of my lecture. In the next lecture, 

I am going to show to you that by taking the virtual displacement delta is equal to 1, how I 

can generate a third equilibrium equation easily without having to go through a whole host of 

equilibrium conditions for each individual member.  

So, on to the next lecture I will show you the actual power of applying the method of virtual 

displacement. Thank you. 


