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Lecture – 10 

 

Good morning everybody. We have spent the last few lectures looking at the force method. 

Today, I am going to introduce another method. The force method actually lies under a broad 

class of what are known as compatibility methods, because the equations were essentially based 

on getting a compatibility equation and the number of compatibility equations is equal to the 

number of redundant forces that you generate.  

 

Today, we are going to be starting to look at a completely different approach. This is broadly 

classified as displacement methods just like we have the force method. Initially, what I am going 

to be doing is, I am going to look at what is known as the classical slope deflection equations, 

look at beams, and then quickly I will move on to more complex application of the same sort of 

methods.  

 

We will see that just as we have used the principle of virtual force in the force method, 

somewhere along the line, we will be using the principle of virtual displacement to write down 

the displacement equations. Let me just quickly move on to how to use the displacement method 

and today, I am going to concentrate essentially on what is known as the slope deflection 

equations and how to use the slope deflection equations to solve a statically indeterminate 

structure. 

 

(Refer Slide Time: 03:17) 

 

 
 

Let us look at what the slope deflections equations are. The slope deflection equations are given. 

Remember we had said when we had started looking at kinematic indeterminacy or the degrees 

of freedom, that a kinematically determinant structure is one such as the one that I have over 
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here. In this case, the number of degrees of freedom that you can release, if you look at the 

release degrees of freedom, we can look at it this way, we can say this rotation we can release. I 

will call this a, b. I will call this thetaab; in other words, it is the rotation at a in the member ab. 

There is the rotation ba and then there is also the deltaba, which is the lateral displacement of b 

relative to a, please remember that, it is relative to a, that is deltaba. Another point that you will 

slightly notice if you look at standard slope deflection equation books, this theta is defined in this 

manner. I always define anticlockwise rotation as my proper orientation; I will always have 

anticlockwise rotation as positive in my notation system. 

 

Note that because I have drawn it in this way, the slope deflection equations become this. I am 

just writing down the slope deflection equation. If I call this as L, the flexural rigidity at EI is 

given as 4 EI by L thetaab plus 2 EI by L thetaba minus (6 EI by L squared deltaba); and Mba is 

equal to 2 EI by L thetaab plus 4 EI by L thetaba minus (6 EI upon L squared deltaba). 

 

These are my slope deflection equations. These are the slopes, this is the deflection and 

essentially, these equations relate the moment at the two ends of the beam and they give it in 

these terms. Now, these are the slope deflection equations and normally, this is where you start 

off. However, what I am going to do is this. This goes along with my basis of never writing 

down an equation without knowing where it comes from. So, we are going to develop these 

equations of motion so that we know how they are developed, such that if there are any different 

kinds of situations that we come up with, we can always obtain the slope deflection equations for 

those kinds of situations. Let us see these slope deflection equations; please look at the slope 

deflection equations. Mab is equal to 4 EI upon L thetaab plus 2 EI upon L thetaba minus (6 EI 

upon L squared deltaba); Mba is equal to 2 EI upon L thetaab plus 4 EI upon L thetaba minus (6 EI 

upon L squared deltaba). These are the classical slope deflection equations. Now, let us see how 

we can develop this. 

 

(Refer Slide Show: 08:15) 
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For this, let me go back to my old friend, the simply supported beam. In the simply supported 

beam, I can apply any kind of load; I am going to apply some specific loads here. What I am 

going to do is I am going to apply a moment M1 at this point and I am going to apply a moment 

M2. This is my loading on this beam; this is the only loading on this beam, this is a, b; so, I need 

to find out thetaab and thetaba. Under this application, this beam will deform and I want to find 

out what these rotations are under these loads. This is my question here. How am I going to find 

this out? I am given the fact that the length here is L and since only flexural deformations are 

considered, a flexural rigidity is given by EI. My brief is, given M1 M2, find thetaab and thetaba. 

Remember that since I am given M1 and M2, I can consider this structure to be first subjected to 

M1 plus M2.  

 

You see, principle of superposition…. If this is my loading, I can say that this loading is equal to 

M1 is equal to M1, M2 is equal to 0 plus M1 is equal to 0 and M2 is equal to M2; I can always say 

this. What would be the thetaab due to these two applications? I can find out thetaab and thetaba 

due to this, I can find out thetaab and thetaba due to this. If I add the thetaabs, then I will get these 

thetaabs. Therefore, the question here is very very simple. I want to find out how much….  

 

Note that I define thetaab also as anticlockwise, as positive and also thetaba. Similarly here thetaab, 

thetaba. Once I find out…. In each case, I add the two up and I get these thetaabs that I am 

interested in. Let me solve this problem first and then I will solve this problem. 

 

(Refer Slide Time: 12:04) 

 

 
 

Under this load, how would I find out the rotations here? First and foremost, find out…. This is a 

standard displacement problem which have you already solved earlier; so, I am going to use the 

principle of virtual force to solve this problem. First, I am going to apply the real load. When I 

apply the real load, I get…. This is my bending moment M1 here, 0 here, linear and this is the 

bending moment; I am going to leave it up to you to get this. Next, I want to find out the rotation 

at this point. What do I do? I apply a unit virtual load. What do I get? I will get again linear, 1. If 

I want to find out this rotation, what do I do? I apply a moment here corresponding to the 
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rotation and draw the bending moment diagram. This is the bending moment diagram. All I need 

to do is.… To calculate thetab, I need to do…. 1 into thetaab, that is my external virtual work is 

equal to.... This is going to be my M1, this is going to be my M2, this is going to be equal to m1 

M1 upon EI dx, which is equal to M1 upon EI into…. This length is L, so it is L by 2.  

 

This is the area under this curve and the value at this at the centroid of this axis is equal to two-

thirds. So, this is equal to M1 L upon 3 EI. Similarly, thetaba is equal to m2 M1 upon EI dx. That 

is equal to M1 upon EI into L by 2, that is again the area under this curve, and multiplied by 

the…. At the centroid, what is the value here? Since the centroid is two-thirds or one-third from 

this distance, it is going to be equal to one-third and note that it is opposite sign because if this is 

hogging, this is sagging. This is going to be minus1 upon 3. This is going to be equal to M1 L by 

6 EI; because of this load, the thetaab anticlockwise and anticlockwise thetaba are going to be 

equal to this. What does thetaab positive and thetaba negative mean? It implies that it actually is 

something like this, because thetaab is positive but thetaba is negative, which means it is 

clockwise rotation; clockwise rotation is negative, so this is how it looks. Under this loading, you 

would expect it to behave in this manner. So, these are the values. Now, let us look at what if I 

apply M2. 

 

(Refer Slide Time: 16:19) 

 

 
 

I am going to apply M2. I need to find out how much thetaab is (that is positive anticlockwise) 

and how much thetaba is, which is positive anticlockwise. Under this loading, what would be the 

bending moment diagram? Again, I am not going to be spending time telling you how to do it; 

you should be able to do it by now and this is going to be this sense that is my M2. Then, to find 

out thetaab, I need to apply a moment here and this is going to be equal to 1 this way, and virtual 

force here to find out this rotation is going to be equal to minus 1 this way. Again, taking the 

principle of virtual force, external work done to find out thetaab is 1 into thetaab, so 1 into thetaab 

is equal to…. This is M2, this is m1, this is m2, this is going to be m1 M2 upon EI dx. That is 

equal to m1 M2 upon EI. So, this is going to be area under this curve – M2 upon EI, multiplied by 

area under this curve – L by 2, multiplied by the value at this centroid. This centroid is one-third 
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from this; if you take one-third from here, you will get one-third. Note the opposite sign, so it 

will be minus 1 upon 3. This is going to be equal to M2 L upon 6 EI.  

 

Similarly, if I do 1 into thetaba, you will see that it is the area under this curve, which is M2 upon 

EI into L over 2, multiplied by the value at this point. The value at one-third from this point is 

two-thirds and both of them are the same, so two-third. This is going to be equal to M2 L upon 3 

EI. What does this mean? Thetaba is positive that means it is this way; thetaab is negative, that 

means it goes in this fashion; and indeed, under this load, you will expect it to move in this 

fashion; so, these are consistent.  

 

(Refer Slide Time: 19:31) 

 

 
 

Since I have obtained it for each individually, I am just going to add both of them up. When I 

add both of them up, what you get is thetaab is equal to M1 L upon 3 EI minus (M2 L upon 6 EI), 

thetaba is equal to minus (M1 upon 6 EI) plus M2 L upon 3 EI. I have got the thetaab due to M1 

and application of M1 and M2 together. Let us look at this. These are the rotations due to these 

moments; that means these rotations are related to the moments through these two equations. I 

can rewrite this in this fashion. I can consider this as a vector, which is equal to L upon 3 EI, 

minus (L upon 6 EI), minus (L upon 6 EI), L upon 3 EI, multiplied by M1 and M2. All I have 

done is I have written this in terms of a kind of matrix equation. 

 

If you look at this, this implies thetaab is equal to this into this plus this into this, which is what 

you get here; this is equal to this into this plus this into this, which is this. In other words, given 

M1 and M2 which are external loads, you are able to get thetaab and thetaba. You have to 

understand that I have actually taken loads M1 and M2. Now, I can also say, look, those are 

actually…. What is the bending moment at a in ab due to M1? You will see that the bending 

moment at ab due to M1 is M1. What is the bending moment at b? It is going to be the same as 

M2. This is a fact; you can actually go through it and do it yourself. In other words, what I am 

saying is that I can also replace M1 and M2 by Mab and Mba and that is what I am going to do. I 

am going to say that M1 is equal to Mab and M2 is equal to Mba. If I do that, that means thetaab 
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and thetaba are related to Mab and Mba through this. I can do the flip side, I can then write down 

Mab and Mba in terms of thetaab and thetaba, that is what I am going to do. How would that be? 

 

(Refer Slide Time: 22:57) 

 

 
 

If thetaab and thetaba are equal to…. I am going to now take L upon 6 EI outside, so that this 

becomes 2, minus 1, minus 1, 2 into Mab, Mba. This is equally valid because this is what I have 

got from the previous case. Instead of writing thetaab and thetaba in terms of Mab and Mba, I am 

going to write down Mab and Mba in terms of thetaab. What do I need to do? Look at this: if I pre-

multiply this by the inverse of this, what would I get? I would get this. The inverse of this 

multiplied by thetaab is equal to the inverse of this into this, which is going to be a unit matrix, 

into this. What would be the unit matrix? It would be the same. This implies that Mab, Mba is 

equal to this inverse into thetaab, thetaba. What is the inverse of this? It is simple.  

 

How do you find out the inverse? You find out the factors and then, if you look at this, the 

inverse of this is L upon 6 EI, 2, minus 1, minus 1, 2. Please go back and look at it. It will 

become 6 EI upon L, that is just this flipped, inverse is obviously just this upon this. What is the 

inverse of a scalar? It is 1 upon the scalar. So, 1 upon this is equal to 6 EI upon L and the inverse 

of a matrix is 1 upon the determinant; you have to find out the determinant. The determinant is 2 

into 2, 4; minus 1 into minus 1, which is 1; this is 3, so it is equal to 1 upon 3 multiplied by the 

cofactor of this, which is this, so this (Refer Slide Time: 25:26); the cofactor of this is minus of 

this, so that is that; the cofactor of this is the minus of this, so that is that; and the cofactor of this 

is this, so that is this. If you look at it, this becomes equal to 2 EI upon L 2, 1, 1, 2.  
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If I rewrite, plug this into here, what I get is Mab, Mba is equal to 2 EI upon L 2, 1, 1, 2 into 

thetaab, thetaba. If I write this in a proper format, it will become Mab is equal to 4 EI upon L 

thetaab plus 2 EI upon L thetaba; and Mba is equal to 2 EI upon L thetaab plus 4 EI upon L thetaba. 

Simple. If you look back at the slope deflection equation, what did I write down? 

 

(Refer Slide Time: 27:04) 

 

 
 

4 EI upon L thetaab plus 2 EI by L thetaba. Forget this term for now. These two terms, I have just 

developed. These terms have not been developed because I did not consider this delta. I only 

considered thetaab and thetaba to occur due to M1 and M2. Now, how do I include this? Simple. 

Bear with me and I will take you through this. These two terms (Refer Slide Time: 27:30), this 
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relationship has already been developed here. Now, we are going to develop the deflection part. 

We have already computed the slope part, now we are going to be computing the displacement 

part. How do we compute the displacement part? Just bear with me.  

 

(Refer Slide Time: 27:51) 

 

 
 

Take this situation; this is a pin here and a pin here. Suppose I were to remove this and let this go 

up by delta. Note that this delta is small compared to the L and so it is essentially a small 

displacement. How would this displace? Note that this is free to rotate. So, if you look at the 

displacement pattern for a simply supported beam it would just be this, it will be a straight line 

where this angle would be delta upon L. Now, let us look at the system that we were looking at, 

the original.  

 

How will I get a displacement here? I will just have to release this just like I released that and 

displace this by L. Note that the fixed end remains. How will this displacement look like? Note 

that here because they were simply supported and hinged, when I moved it by delta, I got a 

displacement pattern which was exactly like this; here, because they are both fixed, the 

displacement pattern, the rotation has to be 0 here and the rotation has to be 0 here and that is the 

displacement. This and this do not look like each other at all (Refer Slide Time: 29:43). Can I 

make this behave like this? Sure. Think about it.  

 

Remember that when I had this under an application of Mab and Mba, what happened? It is going 

to be this where I got thetaba and thetaab and I know the relationship between thetaab and thetaba. 

Let me take this situation. What I am going to do is…. You see, this is a small displacement, so it 

does not really matter. I am going to now apply on this a moment Mab and moment Mba; I am 

going to apply these two moments.  

 

Of course, I am applying them here and I am just showing it over here because these have 

displaced it. Remember that these displacements are always very small. I just exaggerate them to 

show them clearly. If I apply moments here, what would happen? Think about it. Could I apply a 
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moment Mab and Mba? Under Mab, this happens (Refer Slide Time: 31:13). So, can I apply a 

moment Mab such that this is the displacement pattern about this? Remember that this is also 

length L because this is small. This is length L, this happens. In other words, I apply a moment 

Mab and Mba on the simply supported beam to ensure that this displacement pattern essentially 

displaces in this way, so that it mimics this displacement pattern.  

 

What are my rotations? Let us look at my rotations. What is my rotation? This is the undisplaced 

shape. Note displacement is this way. This is my thetaab and this is my thetaba. What are my 

thetaab and thetaba? Let us look at this. What is this angle? Delta by L. Is this clockwise or 

anticlockwise? From the undisplaced to the tangent, that is equal to …. thetaab is going to be 

equal to minus (delta upon L). Why minus (delta upon L)? delta upon L is the magnitude of this 

rotation, that is for sure; and the fact that it is clockwise makes it minus (delta upon L). 

Similarly, what is thetaba equal to? From here to here, this is clockwise; so, thetaba is also minus 

(delta by L). Can I find out an Mab and an Mba which would give rise to these? Sure, I can, 

because I have already developed this. 

 

(Refer Slide Time: 33:31) 

 

 
 

I can find out Mab and Mba given thetaab and thetaba just by applying this equation which I have 

developed; so, I am going to use that; let me use that. What happens? Mab is equal to 4 EI by L 

thetaab plus 2 EI by L thetaba. Similarly, Mba is equal to 4 EI upon L thetaba plus 2 EI by L thetaab. 

That we have already got there; just substitute the values of thetaab and thetaba in here. You will 

see that Mab is equal to 4 EI upon L into minus (delta by L) (note that thetaab is minus (delta by 

L)) plus 2 EI upon L. thetaba is also minus (delta upon L). Plug that in. What do you get? You 

will see that this will become minus (4 EI upon L square delta) and minus (2 EI upon L square 

delta) and this becomes minus (6 EI upon L square delta). By definition, what is this delta? I 

have defined this as deltaba, so I have got Mab in turn. You can similarly get Mba, you will get it 

equal to this.  
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That means if I substitute all these factors which is a thetaab, a thetaba, and a delta, if we put all 

those factors in, then what would be my Mab? I just add all of them up. When I add all of them 

up, what do I get? 

 

(Refer Slide Time: 35:32)  

 

 
 

Mab is equal to 4 EI upon L thetaab plus 2 EI upon L thetaba minus (6 EI upon L squared deltaba). 

Mba is equal to 2 EI upon L thetaab plus 4 EI upon L thetaba minus (6 EI upon L squared deltaba). 

We have just developed the slope deflection equations from first principles. This is what I want 

you to do. You have to understand where they come from and then, once you know those, you 

can actually develop these equations for any kind of member. Here, we considered that EI was a 
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constant over the entire member. It is not necessary that the member has to be uniform all the 

time, you could have a non-uniform member also. How did we evaluate this? We first applied 

loads M1 and M2 and found out thetaab and thetaba.  

 

Once we found those out, we knew that M1 and M2 are equal to the bending moments of that 

point, which is Mab and Mba. Once we did that, we took the inverse. We got thetaab and thetaba in 

terms of Mab and Mba, then we inversed it and we got Mab and Mba in terms of thetaab and thetaba. 

In essence, that is your slope deflection equations. Then, we got the deflection part just by being 

innovative and seeing how to relate a deltaba in terms of a spurious thetaab and thetaba. So, this is 

the slope deflection equation. What can we do with the slope deflection equation? Let us look at 

a simple structure that we have. Let me take a very very simple structure. 

 

(Refer Slide Time: 37:54) 

 

 
 

I am going to take a very simple structure and then, I am going to apply a moment here. I am 

going to take a very very simple structure just to illustrate how to use the slope deflection 

equations. I have a, b and c. There is only one load and that is the moment. How did this moment 

come? Maybe it is because of some applied load over here, I am not bothered about that. Is this a 

statically indeterminate structure? Of course, it is. What is the static indeterminacy of this? You 

have 1, 2, 3, 4. You will see that static indeterminacy is 4 here, but in this application of slope 

deflection equation, you do not worry about what is the static indeterminacy. I found out the 

static indeterminacy just to illustrate to you that this is a statically indeterminate beam and there 

is no way you can find out the bending moment diagram for a static indeterminate beam. My 

point here is to find the bending moment diagram. 

 

How do I apply the slope deflection equations to get this bending moment diagram? Instead of 

finding out the static indeterminacy, what you have to find out is the kinematic indeterminacy of 

this structure. Remember how we developed that? Kinematic indeterminacy or I also called it as 

degrees of freedom – how do I find that out? Let us go through this. How many joints? a, b, c, 3; 

so, 3 into the 3 degrees of freedom per joint. Then, we have to subtract the restraints. How many 
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restraints? Three here. There is translation here, there is translation here and there is rotation 

here; they are 0. This is also restrained; 3 plus 3 and there is 1 degree, so that is 7. Plus, I have 

one constraint. What is that constraint? The actual force in this member is 0, so that is 1. How 

many degrees of freedom? 9 minus 7 minus 1, that is 1. What is the degree of freedom? You will 

see that the degree of freedom is essentially this rotation. What I want to say is that the whole 

point in this exercise is to find out theta1. This is unknown displacement. All I need to do is find 

out theta1 and hopefully, if I find out theta1, I should be able to find out the bending moments 

given theta1. That is the reason why.… Since we are trying to find out rotations and 

displacements, this method classically is called as the displacement method of analysis. Let us 

see how this….  

 

Think about it. In the force method, what did you do? You found the static indeterminacy. Once 

you find the static indeterminacy, you identified redundant forces; once you found out redundant 

forces, you actually wrote down compatibility equations corresponding to the redundant forces 

and that is how you solved it. In this particular case, it is just the opposite. In the force method, 

actually, the redundant forces…. The only thing about the redundant forces is that when you put 

redundant forces equal to 0, you need to have a stable statically determinant structure; that is all 

that is there. Therefore, you know there is uncertainty about which redundant force. In other 

words, there are so many redundant force systems that can create a stable statically determinant 

structure that you and I may not identify the same redundant forces ever and still solve this 

problem correctly.  

 

Whereas, if you look at the displacement method, degrees of freedom, once you have the degrees 

of freedom, can any of you tell me that this is kinematic indeterminacy or degree of freedom is 

one? Can you identify a degree of freedom which is different from this rotation? No. This is 

restrained completely, this is restrained completely, this is not allowed to go this way because of 

axial rigidity. This is not allowed to go this way (Refer Slide Time: 43:39), so the only thing that 

can happen is this. In other words, in the displacement method, the degree of freedom 

identification is unique. You and I and everyone else would choose the same degree of freedom; 

there is no other degree of freedom to choose in this particular case. There is a slight amount of 

uniqueness. In other words, once you identify the degree of freedom, you or I or anybody else 

cannot choose any degree of freedom. It has to be a unique degree of freedom. 

 

This, you will see later, makes the displacement method particularly amenable to use in 

computers because the computer is not going to be confused. In the redundant force, the 

application of force method, how is the computer going to determine the redundant forces? You 

have to identify for it, but degrees of freedom, the computer knows which degree of freedom. 

Given a structure, it can always identify the degrees of freedom very very easily. You can 

develop an algorithmic way which can be implemented on a computer using the displacement 

method and this is the reason why the displacement method is the more popular method for 

analyzing structures in general. Now, let us look at how to solve this problem. 
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This is my problem. This is my degree of freedom and I have to find out this degree of freedom 

given this moment and hopefully if I find out the degree of freedom, then I can get the bending 

moment diagram. Ultimately, never forget that the overall factor here is to find out the bending 

moment diagram. What are the steps? The first step: give theta1 equal to 1. What will happen? 

Think about it. theta1 is equal to 1 implies that at this point, the joint rotates by 1. If it rotates by 

1, since this cannot rotate, it is going to take up something like this. This is the displacement 

pattern under theta1 is equal to 1. Note that when I say theta1 is equal to 1, understand it is not 

one radian that I am saying. All I am saying is that theta1 is equal to 1, it is very small. You can 

you can take 1 into 10 to the power of 4, who cares?  

 

The whole point is that it is unit rotation; however, the rotation still remains small. All 

displacements that we are going to consider in this case are going to be small. This is my rotation 

pattern. What next? I take this to a member level; I take member ab and I take a member bc. 

Under this rotation, this thing looks like this and bc looks like this. Note I have a situation where 

in a member, I know the rotations at the two ends and the displacement, if any, of b relative to a. 

Since I know these, can I find out the bending moments at the two ends, which are Mab, Mba 

here? Here, it is going to be Mcb and this is going to be Mbc. Can I find these out in terms of these 

rotations? Sure. Apply the slope deflection equations. What do they give me? thetaab is equal to 

0, thetaba is equal to 1 and deltaba equal to 0.  
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I just need to plug that into the slope deflection equations and my Mab turns out to be equal to 4 

EI upon L thetaab, which is 0, plus 2 EI upon L thetaba, which is 1, minus (6 EI upon L squared) 

into 0. This is equal to 2 EI upon L. Similarly substituting, you get Mba is equal to 4 EI upon L or 

I can put this in this terms. These are the moments given. Theta1 is equal to 1. If theta1 was 

actually theta1, which is an unknown, then what would be Mab and Mba? Just multiply by theta1. 

This is linearity. We can just find out Mab in terms of theta. Similarly, for bc, if I apply it, you 

will see that Mbc (I am not going to go into the details, you can apply it yourself), you will get it 

equal to 4 EI by L theta1 and Mcb is equal to 2 EI by L theta1. I have got the member in moments 

now. Once I have got the member in moments, what do I do? Let us look at it; let me draw it. 

 

(Refer Slide Time: 50:19) 
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I am now drawing the original structure; the original structure is this way. What do I have? I 

know Mab, Mba, Mbc, Mcb; I have got these in terms of theta1. By equilibrium, let us look at a few 

things. By equilibrium, what is the moment at this point? The moment at this point is in this 

fashion, that is equal to Mab and the moment at this point is equal to Mbc and remember that at 

this point, I had applied a moment M1. If I take moment equilibrium of this, I am only taking 

moment equilibrium of this, what do I get? I get Mab plus Mbc minus M1 is equal to 0. Therefore, 

Mba plus Mbc is equal to M1 – this is my equilibrium equation. Now, what is Mba equal to? I you 

look back, Mba is equal to 4 EI upon L theta1? What is Mbc equal to? Also 4 EI upon L theta1 is 

equal to M1. That means 8 EI upon L theta1 is equal to M1, which implies that theta1 is equal to 

M1 L upon 8 EI. I have found out my unknown rotation. Once I have found out my unknown 

rotation, can I find out my Mab, Mba and Mbc?  

 

(Refer Slide Time: 52:32) 

 

 
 

Since I have got theta1, my Mab is equal to 2 EI upon L into theta1 (theta1 is M1 L upon 8 EI), 

which will become M1 upon 4; Mba, which is 4 EI upon L into theta1, is going to be M1 upon 2. 

Similarly, Mbc will be M1 upon 2 and Mcb will be M1 upon 4. I have Mab, Mba, Mbc and Mcb and 

since I know all of these, I can draw the bending moment diagram because this is now a 

statically determinate structure where I know the member and moments. 
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If I were to show you the member and bending moment diagram, this is M1 upon 4, this one is 

M1 upon 4. If I were to draw the bending moment diagram, it would look like this. I will leave 

that as an exercise for you where this one is M1 upon 2, this one is M1 upon 2, this is this way 

and this is this way. Why is there a discontinuity at this point? What is the discontinuity? M1. 

What is the applied moment over here? M1. So, this is the discontinuity.  

 

How did we go about applying the displacement method? We actually found out the kinematic 

indeterminacy then found out the degree of freedom. Then the next step is, given a unit 

displacement corresponding to the degree of freedom find out the displaced shape of the 

structure. Once you find out the displaced shape of the structure, you can find out the displaced 

shape of each member. For each member then, once you know the displaced shape, you know 

the member and rotations and the displacement of one end relative to the other. You can apply 

that into your slope deflection equations to get the bending moments at the two ends.  

 

Once you get the bending moments at the two ends, you can then apply equilibrium equations to 

relate the unknowns and find out the value of theta1 in this particular case. Once you know the 

value of the rotations, then you can always go back, substitute and get the member and moments 

exactly. Once you know the member and moments, then you have a statically determinate 

structure for which you can find out the bending moment diagram. These are the steps in what is 

known as the displacement method. 

 

Do not worry if you have not been able to understand the quickness with which I have gone 

through. I have just established the procedure for you today. I have taken a very simple question 

and gone ahead with it. This I am going to expound on…. Since I know that this is a topic that 

you have not covered earlier, I am introducing the topic to you today; later on, you are going to 

see how this method is developed over the next many lectures.  

Thank you very much.  


