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Hello students let us have a look at lecture number 5 on consolidation and settlement. As 
usual let me briefly recapitulate what we had seen in some of the previous lectures. 
Actually in the last lecture we made a beginning with the mathematical solution of the 
consolidation equation, the one dimensional consolidation phenomenon we found and it 
could be expressed mathematically and solved. The idea of solving is to be able to predict 
the amount of settlement that will take place at any given point of time and consequently 
to determine the over all percent of consolidation that will occur at any given point of 
time. When I say percent, what I mean is percentage of the total consolidation or the total 
settlement and we already know that on the basis of e log p curve by knowing the change 
in void ratio and the change in pressure, we can determine the total consolidation or for 
that matter the total settlement even with out knowing the rate at which the water is 
flowing out, the rate at which the void ratio is decreasing or the rate at which the stress 
transfer is taking place in the soil. 
  
This means that the total consolidation can be computed directly even without going into 
the mathematical theory of one dimensional consolidation. One of the reasons is 
obviously because the total consolidation theoretically takes place over a time period 
equal to infinity and therefore at infinity what is the total consolidation? Remains the 
same irrespective of what the problem is and it doesn’t therefore depend upon the rate. 
Now once we know how to determine the total consolidation and once we have a theory 
for determining the rate of consolidation we can say that we understood and solved the 
problem of consolidation completely. 
  
Let us now take a look at what we saw in the last lecture how we introduced the theory of 
one dimensional consolidation. So the theory of one dimensional consolidation, we saw 
by means of some parameters which are used for representing the compressibility and in 
terms of an analogy which simulated the consolidation phenomenon in such a way that 
we could understand it very well. The simulation was so perfect that it was explaining 
practically every aspect of the time dependant nature of the consolidation phenomenon. 
The mathematical formulation closely follows this analogy as applied to a real field 
situation.  
 
Let us see what we covered in the last lecture. We defined three compressibility 
parameters, the compression index, the coefficient of compressibility and the coefficient 
of volume decrease. When at a later date we solved some typical problems on 
consolidation and settlement, we will come to know the utility of each one of these 
coefficients. Why we need different compressibility parameters for different purposes we 
will be using each one of these depending upon what is the data available and depending 



upon what is required. So this will become evident when we have some problems at on 
hand to solve. What’s important to notice however is that Cc is a non dimensional 
parameter and it is dependant upon void ratio change and the logarithm of the stress 
change where as av coefficient of compressibility depends upon the volumetric change or 
the void ratio change and the stress change, effective stress in particular and nv is nothing 
but av upon the constant volume of the solids. 
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We know that if the total volume is 1+ e0 the volume of solids is 1 upon 1+ e0 at any 
point of time where e0 is the initial void ratio and therefore av upon 1+ e0 is a parameter 
that represents compressibility in terms of the original volume of the solids which is 
invariant. And therefore it serves as a convenient denominator, a parameter in the 
denominator for comparison of different clays or different soils with different av’s or 
different degrees of compressibility. 
  
Let us take a quick look at the analogy since we are going into the mathematical 
representation of this analogy we defined a cylinder with a piston and a spring with an 
outlet for water and we saw that the cylinder represented the soil, the spring represented 
the soil skeleton, water represented the pore fluid and the piston with its opening 
represented the pores and the valve represented the degree of opening of the voids or the 
permeability of the soil. Now we saw in the next stage that initially the soil is at rest, 
there is no so called excess hydrostatic pressure because there is no load.  
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But the moment you apply a load at t =0, the water takes the load and then gradually it 
passes it on to solids and ultimately at the end of the consolidation phenomenon at t equal 
to infinity, you will find that water would have escaped to such an extent as to once again 
bring back hydrostatic equilibrium and the spring would have got compressed by an 
amount delta final which is obviously equal to the load that is now completely transferred 
to the spring p divided by the spring constant k where p is the applied load.  
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So if we take the consolidation part alone, as soon as we applied load at t =0 there is no 
deformation of the spring, the load carried by the water is the complete load p and the 
load carried by the solids is zero. But at the end of the consolidation phenomenon 
situation is different, the load carried by water is p minus the load carried by the spring 
and at time t equal to infinity after the consolidation phenomenon is completed k delta f 
becomes equal to p and therefore water carries no load where as the solids carry the entire 
load capital P. 
  
Now let us see the real situation as well. In the real situation if we apply a surcharge q 
there is an initial pore pressure u = q and when you just apply the load and at t =0 
therefore u will be equal to q and sigma dash is equal to zero. Now if we take the 
situation at the end of the consolidation phenomenon then the pore pressure is equal to u 
final and sigma dash is equal to sigmaf final and if we proceed further we find that 
ultimately the pore pressure gradually gets dissipated and u becomes equal to zero and 
entire sigma dash is carried by the solids in the form of q. Now this u the so called excess 
hydrostatic pressure is visibly a function of depth and time. This is the variation of u at 
any point of time. 
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It is worth mentioning here that it is zero at this permeable layer and also zero at the 
bottom permeable layer. What happens is if we just go back one slide, what happens is at 
t =0, as soon as we apply the load entire applied pressure q is carried by the water. And 
therefore water takes a pore pressure u in the form of excess hydrostatic pressure that is 
pressure over and above the hydrostatic equal to u throughout its depth. Since this point 
upper layer is permeable and the lower layer is also permeable, at these two points inside 
the clay layer, in the compressible layer the pressure is u whereas just outside because it 
is a raining layer the pressure is zero.  



That means there is a infinite hydraulic gradient which means that instantly the pore 
pressure u will get dissipated completely and that’s why as shown in this diagram, we 
have pore pressure equal to zero at the two ends and maximum at the end at the centre 
and this goes on. The ends keep on constantly having a pressure u =0 whereas at the 
centre pressure the pore pressure is maximum but its value goes on changing with time. 
Ultimately it decreases to such an extent as to transfer the entire load to the solids in the 
form of sigma dash. 
   
Let us take a look at mathematical formulation quickly to the extent we had introduced it 
last time. We defined a number of parameters, one is av. What is av? av is nothing but 
minus de by dp that is, it is the rate of change of void ratio with pressure, how the void 
ratio changes as pressure is increased. Since the void ratio decreases with increase in 
pressure av is minus de by dp. Then we also defined a parameter called degree of 
consolidation corresponding to any depth in terms of e. You may express it usually as is 
usual in the form of a percent. 
  
This is denoted as an uz that means the degree of consolidation at any depth z. It will be 
equal to at any given point of time, the initial void ratio minus the void ratio at that depth, 
at that time divided by the total change in void ratio. And now this void ratio has to be 
related to pressure and through the pressure it has to be related to the excess hydrostatic 
pressure and then we can relate that to the rate at which water flows out.  
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So that we can get the value of degree of consolidation at any point of time. So for this 
purpose suppose we take advantage of the fact, the total stress is always equal to the pore 
pressure plus the effective stress then p2 at any instant, at any second instant you can say 
will be equal to the effective stress in the first instant plus the excess hydrostatic pressure 
in the first instant.  



Or in general if I take any instant i, it will also be equal to pi+ui or it will be equal to p+u 
in general at any point of time or you can say p+ u is a constant and therefore dp is minus 
du. So we have a very interesting observation here to make, this dp is related to de here 
through minus av whereas it is related to pore pressure change as dp equal to minus du.  
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So this gives us a way to express this degree of consolidation through e1- e and p- p1 and 
finally u-ui and finally we get the degree of consolidation is 1-u upon ui where ui is initial 
excess hydrostatic pressure and we know that the initial excess hydrostatic pressure is 
nothing but the external stress applied, that is in our case q. So now what this means is if 
we sum up all these, we say that de is equal to minus av dp and it is also equal to av du. So 
here we have the indication as to how to link the change in hydrostatic pressure, excess 
pressure for that matter through the change in stress to the degree of consolidation or 
change in void ratio.  
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For this purpose we made a series of assumptions, all the assumptions are here. 
Homogenous, saturated, incompressible, one dimensional compression is valid, Darcy’s 
law is valid and e-p idealized linear relationship is valid.  
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So for the purposes of mathematical formulation we will consider a typical compressible 
layer with 2 permeable layers on either side. This is known as a double drainage system. 
The importance of this double drainage system will become evident after we finish the 
formulation of this problem in mathematical terms or rather 2 directional or you can say 
double drainage system. This earth fill is nothing but the external load applied. We also 
saw last time that at the end of the mathematical analysis this is what we are going to 
have that is we are going to have the degree of consolidation as a function of depth and 
the time. 
  
For convenience the degree of consolidation expressed as a function of a non dimensional 
depth and a non dimensional time. Non dimensional depth is the actual depth, absolute 
depth divided by the total thickness of the layer and the non dimensional time is nothing 
but cv t by H square. I have still not defined what is cv? And therefore at a later date we 
will again come back to this definition. These lines here which show the variation of uz 
with depth and time are all similar in pattern but as time increases, you can see here that 
the degree of consolidation is going on increasing or the pore pressure is going on 
decreasing and these are therefore nothing but lines of equal degree of consolidation with 
depth and these are therefore known as isochrones.  
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Now since the degree of consolidation varies with depth we preferably need to have a 
parameter which gives us an average degree of consolidation over the entire depth of the 
clay layer and we will be seeing how that is defined.  
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Suppose we know how the average consolidation over the entire depth can be 
determined. Then we will find that this average consolidation varies with time as shown 
in this diagram that is it goes on increasing with time and ultimately at time t equal to 
infinity it’s completed that is 100% degree of consolidation is achieved. 



So now with this background we will launch into the derivation of the mathematical 
expression for one dimensional consolidation that is what is going to be the subject 
matter of today’s lecture. That is derivation of mathematical expression for one 
dimensional consolidation, let us see how. What we really need as I have told a couple of 
times already is basically an equation which relates the rate of out flow water through the 
voids and the rate at which the void ratio changes or the volume changes or the settlement 
is taking is place or the compression is taking place. So if we can relate these two 
quantities, we are in a position to model the hydro dynamics of a system and the resultant 
consolidation.   
 
Let us take a look at this slide which shows a typical element in a homogenous soil 
medium, let me sketch it for convenience for better understanding. We know that we are 
dealing with a soil medium and we will be considering a typical element in the medium. 
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We have assed homogeneity, so if we can analyze and understand any one element it’s as 
good as understanding the phenomenon over the entire medium. Now what is the 
phenomenon that we are going to understand? We are interested in knowing how water is 
flowing out of this element. Let us see, it is very easy to utilize the knowledge that we 
have of flow through this element. Suppose a certain amount of water is flowing into this 
element and coming out, now the element is saturated.  
 
Suppose this element is totally incompressible then what ever water flows inside will also 
come outside. Every drop of water that’s entering this saturated element will push out a 
corresponding drop of water and therefore what ever flows in will also come out. But we 
have a system where the soil is saturated but as the water flows out the soil compresses. 
We have a system in which the element compresses so what this means is its volume 
decreases as q goes out there is small reduction of volume in the water. 
And therefore there is a difference in the quantity of flow between the out flow and the in 
flow and it is in the problem of consolidation it is this net out flow that we are interested 
in. See how we can obtain is by simple basic considerations.  
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Suppose there is an in flow which can be represented as a vz where vz is the velocity. 
Velocity as we know is nothing but flow per unit time and in this case if we consider unit 
area then vz will be nothing but velocity is nothing but flow per unit area per unit time 
and if the area is of finite dimensions delta x delta y as shown here where x y z axis are 
also shown. Then the inflow and out flow because they are going to be different in this 
medium.  
 
Let us represent the inflow as vz that is flow per unit area per unit time and out flow as vz 
plus an incremental flow that is a rate of change of flow multiplied by the depth over 
which the flow takes place. That is vz plus del vz by del z into delta z. But however we 
know that this rate of out flow of element is going to be equivalent to the degree of 
compression that take place ultimately. So let us see what this rate of out flow is so that 
we can express it in terms of this volume and then relate it to the volumetric changes. The 
net out flow from the element, per unit time would obviously be this minus this. So del vz 
by del z into delta z will give us the net out flow per unit time per unit area. So if I 
multiply this by the area delta x delta y then I will get the out flow per area delta x delta y 
over the whole element but still per unit time.  
 
And therefore this is nothing but the rate of out flow from the element. We know that 
velocity as per Darcy’s law is nothing but coefficient of permeability into the hydraulic 
gradient. If we represent the head change from the top to bottom as h or delta h then delta 
h by delta z represents the hydraulic gradient.  
And since the gradient or the head causing flow that is h decreases as the flow takes place 
in the direction of flow, vz will be equal to minus k delta h by delta z. This is a very well 
known equation; you must have already covered this as Darcy’s law in the chapter on 
permeability flow through soils flow nets and so on. Now what this means is we can 
represent ultimately the rate of out flow in terms of the permeability of the soil in terms 
of the rate of change of hydraulic gradient and in terms of the volume. It’s a very 
interesting equation which completely captures the physical phenomenon that we know 



in the soil, the rate of out flow of water is related very closely to the coefficient of 
permeability. And we know that is what is causing the entire phenomenon of 
consolidation in clays. 
 
Then we know their flow of water depends upon the rate of change of gradient and that’s 
also captured here and the quantity of flow obviously depends upon the volume of the 
element and therefore that is also entering into this equation. Now this rate of out flow 
must be equal to the rate at which compression takes place. Let us see at any instant 
during the consolidation phenomenon if the void ratio happens to be e, then the volume 
of the voids in the soil would be e upon 1+ e because volume of the solid skeletons 
remains constant  and 1+ e is the total volume therefore volume of the voids is e upon 
1+e. And if I take the entire soil element of dimensions delta x delta y delta z, then the 
volume of the voids in the element at any point of time to begin with will be e upon 1+ e 
delta x delta y delta z. 
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Now as the flow takes place from inside the element to the outside, these volume 
decreases. So the volumetric change in unit time that is the rate of change of volume 
which is nothing but the rate at which the compression takes place is going to be the 
derivative of this volume of voids with respect to time and that’s what is the rate of 
change of voids.  
Since this must be equal to the rate at which out flow is taking place, let us equate this 
and we then have k del square h by del z square into delta x delta y delta z is equal to all 
these which means that if we cancel out the volume of the element which obviously is not 
zero because we are dealing with a finite size dimensions of the element the volume of 
the element is not zero. If the volume of the element were zero, there would have no 
problem to discuss at all. Therefore in this case (Refer Slide Time: 25:42) these two can 
be cancelled out, we will have del square h by del z square is del by del t of e upon 1+e. 



Now this h which is the head causing flow is nothing but u upon gammaw where u is the 
excess hydrostatic pressure.  
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So this del square h by del z square can be written as u upon gammaw and so we will have 
k upon gammaw del square u by del z square where u now is the excess hydrostatic 
pressure. This must now be equal to del by del t of e upon 1+ e this, so let us equate 
them. If you equate, this (Refer Slide Time: 26:35) is what you get but before equating let 
us see what this del by del t e upon 1+ e is. We have just now stated that 1 upon 1+ e is 
the unchanging constant volume of the solids.  
 
So volume of the solids is 1 upon 1+ e which remains constant and therefore del by del t 
of e upon 1+ e is nothing but 1 upon 1+ e of del e by del t, this being constant can be 
taken out. We have already seen that de is related to du and from the previous slide from 
this previous equation we can equate this change in void ratio with k del square u by del z 
square. That is if we equate the rate of flow with the rate of compression and transfer the 
terms containing u to the two sides of the equation then this is what we get (Refer Slide 
Time: 27:49). In this k, av these are all soil parameters, constants and so this whole left 
hand side can be written as cv del square u by del z square equal to the right hand side 
which is del u by del t. In this we have now defined a new parameter cv which is nothing 
but the coefficient of consolidation.  
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And this equation which we have is the differential equation which expresses u as a 
function of z and t then this is what we were after. We were in fact precisely interested in 
this equation because we wanted to know the rate of change of u with time so that we 
would be in a position to predict the compression corresponding to any time t. Now this 
coefficient of consolidation is yet another parameter which we have now defined which 
makes the total number of compressibility parameters that we have so far defined to four. 
 
So let us take a quick look at these parameters. We have defined 4 parameters, the first 
one is minus de by de log p. It has no units because void ratio has no units and log of the 
ratio of pressures also has no unit where as av which is a linear relationship between e and 
p will have the units of inverse of stress. Because e has no unit, 1 upon dp will have the 
units of inverse of stress that means centimeter square per kg or meter square by kilo 
Newton or so and such units. Now another parameter which we have defined was av 
divided by the total volume 1+e or in other words you can say av multiplied by the 
constant volume of the solids. This obviously will have the same units as av that is meter 
square by kn because 1+ e has no units.  
 
Now the last parameter cv which we have just now defined is k upon mv gammaw. Since k 
has units of centimeter square per second and mv has units of meter square per kilo 
Newton and gammaw has units of kilo Newton per meter cube. Effectively we will have 
here units centimeter square per second or meter square per year. We have come to a 
stage where we now have the governing equation for this phenomenon of consolidation. 
This equation cv del square u by del z square =del u by t is the equation which controls or 
depicts very clearly the phenomenon of consolidation and not only the phenomenon of 
consolidation, it is seen that in general this represents any process where diffusion is the 
major phenomenon. So this equation is also known very often as the diffusion equation. 
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This equation has to be solved, if this equation is solved then we will get an expression 
for u in terms of z and t. Now what is important here to notice is on the left hand side, we 
have rate of change of pore pressure, hydrostatic excess pressure as a function of z and on 
the right hand side we have its rate of change with respect to time. So if we solve this 
obviously u as a function of z as well as t can be obtained. Then what is the best way to 
solve this. The best way to solve this would be to assume the solution as product of a 
function of only z and a function of only time, this is known as the principle of separation 
of variables in theory of differential equations.  
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And suppose following that we express the excess hydrostatic pressure as a product of 
two independent functions. One a function of only z another a function of only t then 



there are certain advantages in solving them. We do not need to or rather we do not have 
to go through the process of treating simultaneously a function which is dependant upon z 
and t. At any given point of time one of the functions remains constant when we do any 
operation on the other function and vice versa. Since we have already written the 
differential equations cv del square u by del z square equal to del u by del t and we have 
defined u as Fz ft. 
  
Let us substitute this value of u by suitable differentiation in the consolidation equation 
that means del two u by del z square is required. So differentiate Fz phi t with respect to z 
since when you differentiate u with respect to z, phi t will remain constant. So we have cv 
phi t F double prime z which is the second derivative of u with respect to z and on the 
right hand since we have del u upon del t and when you differentiate with respect to time, 
the function Fz remains constant. So we have Fz into phi dash t where phi dash is the first 
derivative of u with respect to time.  
 
We can completely separate the two variables z and t by bringing this here and this here 
so that we will have an equality of this kind. Now let us a take a look at this equality, this 
equality suggests that on the left hand side we have no time parameter and on the right 
hand side we have no depth parameter. That means the left hand side is completely 
independent of time and right hand side is completely independent of depth.  
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And that’s only possible if this ratio is equal to some constant. One is a function of z and 
the other is a function of time and they are equal and that’s only possible if the ratio is a 
constant and let us represent this constant as minus A square.  
The reason why we are representing it as a square and as a negative quantity will become 
evident, it’s for a getting an elegant equation which can be solved comfortably. If we take 
the ratio as the constant equal to minus A square then we get an equation like this which 
is a very elegant and convenient equation consisting of the derivatives of the function in 
terms of z and we also get another part where phi dash t is minus A square Cv phi t. So 
we have one equation which is consisting of the derivatives of z only and another 
equation consisting of the derivatives of only the function of time phi. This function 
which is a function of only z from theory of differential equations has a solution Fz given 
by C1 cos Az plus C2 sin Az it’s a harmonic function and this solutions has two constants 
C1 and C2 and we need to determine these two constants c1 and c2 from known conditions 
of the problem in order to be able to evaluate Fz. We can continue like this with phi t as 
well. 
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So continuing the second part of the equation would be phi dash t equals minus A square 
Cv phi t or in other words in a manner analogous to the equation which we wrote for z, 
we can say phi dash t plus A square Cv phi t equal to zero. Just as the expression with 
respect to z had a standard solution C1 cos Az plus C2 sin Az. This equation also has a 
standard solution phi t equal to a constant C3 into exponential minus A square Cvt. So 
now we have two solutions one in terms of z and another in terms of t and these contain 
constants C1, C2 and C3.  
 
Now since the function u, the expression for u is Fz phi t. The expression for u now will 
obviously be the product of this and this. So u will be equal to C1 cos Az plus C2 sin Az 
multiplied by C3 e minus A square Cvt. In this there are two constants inside the bracket 
and one outside and in addition to that there is that constant A which we had introduced 
in the beginning.  
If we unify these by expanding the bracket then we will have C4 cos Az plus C5 sin Az 
into e to the power of minus A square Cvt for the excess hydrostatic pressure u, which 
means now that in order to be able to compute u we should be able to determine the 
constants C4 C5 A. Although they were originally 5 constants, effectively we have now 
brought it down to 3 constants. Now these 3 constants C4 C5 and A have to be determined 
and in order to determine 3 constants we need 3 conditions. Since this is a problem in 
which the parameter which is to be determined that is u is a function of depth as well as 
time.  
 
We need to have a boundary condition which depends upon the depth or which is related 
in some way to the depth as well as the so called initial conditions which is related to the 
time factor t. So we need in all 3 conditions some of them could be conditions relating to 
the depth and some of them could be conditions relating to time t. The conditions relating 
to depth z are known as the boundary conditions because we only know usually the 
conditions at the boundaries of the clay layer because what is happening inside the clay 
layer is not yet known and that’s what we are trying to look at or determine. 



 
So at the boundary we can define certain conditions which are very obvious and which 
have to be obviously satisfied and these are at the boundaries of the given depth of or the 
thickness of the clay layer. So these are known as the boundary conditions where as the 
so called initial condition relates to the magnitude of the pore pressure at some point of 
time t if it is known. So what’s the time t at which the pore pressure value is known, if we 
know at some point of time the pore pressure value that can serve as an initial condition 
for us. So we look for these conditions.  
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Let us take this clay layer and our already existing knowledge of pore pressure variations. 
This is our clay layer on top we have a permeable layer, at bottom we have a permeable 
layer and because of these. This is known as the double drainage case and what happens 
is because of these when we apply load, although initially the pore pressure from top to 
bottom is equal to u, equal to the applied load q. At the very next instant at the boundaries 
because pressure is u or equal to q on the inner side of the boundary and is equal to 
atmospheric or zero on the outer side of the boundary. The pressure u immediately gets 
dissipated it becomes zero here and which means that the pressure distribution as we 
already have seen becomes some what like this. It is zero here, zero here (Refer Slide 
Time: 41:22) and some pressure has already got dissipated at the centre and so it has 
reduced a little bit from the initial value how ever it is still the maximum at the centre of 
the clay layer.  
 
So we can from here state or stimulate the boundary conditions like this. If z is the 
coordinate which describes the depth then at z =0 and at z =2 h where 2 h is the depth of 
the clay layer, we know that this pressure u the excess hydrostatic pressure u must be 
zero and not only at the initial instant but once the pressure got dissipated will continue to 



be zero at all times until the entire process is completed. We can say at z equal to zero 
and at z equal to 2 h, u the excess hydrostatic pressure is zero at all times for t greater 
than zero, except at the very first initial instant as soon as the load is applied the excess 
pore pressure is just equal to the applied pressure q. So now we already have two 
conditions and possibly we can determine 2 out of these 3 constants. One other condition 
that we need is an initial condition because since 2 of these are boundary conditions and 
are related to z, we must now look for a condition which tells us how the hydrostatic 
pressure excess hydrostatic pressure varies with time and that also can be easily 
stipulated when t is equal to zero, u the excess hydrostatic pressure will have some initial 
value.  
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So this initial value of the excess hydrostatic pressure may be called as u initial or may be 
called as some fixed value u0 or in any case it will always be equal to applied stress q. So 
at t equal to zero, u is equal to the initial excess hydrostatic pressure what ever be the 
value and this is valid through out depth of the clay layer, at t equal to zero through out 
depth of the clay layer we will find that u is equal to a fixed value equal to q that is 
uniformly distributed. So that is another condition which we can advantageously used in 
order to determine the constants. So if we do that, if we apply these boundary conditions 
then what will happen is we will get an expression for u. 
  
Let us go back for a moment. This is the equation in which we want to determine the 
constants. Since we know the values of z or the value of u at certain values of z and at 
certain time t, what we can do is to substitute this values of z or this value of t here and 
write down the expression for u. And if we do that then successively by substituting these 
conditions one by one, first this condition then second and then this third condition, we 
will be able to get a series of equations which can then be solved and we can evaluate the 
constants and substitute them back in the expression for u, so that we get this expression 
which represents ultimately the variation of u with respect to depth and time. 



  
Take a look at this expression. This is sigma of n =1 to infinity. What this means is that 
this pore pressure is a function of the total depth. It’s a function of the initial pore 
pressure and it’s a function of the parameter n pi z by 2 H. It’s a function of Cv, it’s a 
function of the depth total depth H. If we take this as the expression defining u then here 
we have a parameter Cvt by H square which we have already defined in an earlier slide as 
the non dimensional time factor t. We can easily quickly verify mentally that Cvt upon H 
square is not dimensional and since t is the only variable here, Cv and H are either 
geometrical and material constants. This is nothing but a non dimensionalized time. 
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So it is known as the time factor, this T is usually written as Tv to indicate time factor for 
vertical consolidation at a slightly later time, we will see that we also have what is known 
as a radial consolidation phenomenon where also there is a time factor, a non dimensional 
time factor we will define analogous to this. And that we would like to denote at that 
point of time as Tr therefore this Tv stands for this non dimensional time, indicating time 
factor for vertical consolidation. If I substitute this non dimensional time factor here in 
place of this small t then I have an expression for excess hydrostatic pressure which 
becomes like this. 
  
In this there is an integration, there is a summation. So if we do this then we will be in a 
position to get a final expression for u. Let us see how that is done. Now this solution of 
all this requires the initial condition which we have already seen and if we assume this 
initial condition that u = ui and ui is equal to a constant value u0 then we can substitute 
that and integrate and then we will have u is equal to m equal to zero to infinity 2 u0 by M 
sin Mz by H e minus M square T.  
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Here we have now introduced a parameter capital M, to understand this we need to go 
back a little bit. Here we find that in the summation sign there is a value of n which varies 
from 1 to infinity. The reason why we have brought this summation sign is the solution to 
this equation is in terms of sine and cosine and when we substitute the boundary 
conditions we found that the constant A works out to something which can be expressed 
in terms of pi, which is n pi to be précised. Then this equation is valid for all values of n.  
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And therefore there is one solution for u corresponding to each value of n which means 
that the final real solution is the sum of all the solutions corresponding to all the values of 
n which are possible. The values of n that are possible are only 1 to infinity and therefore 
integer values which are possible for n are only 1 to infinity and that’s why we have 
infinite number of solutions, n equal to 1 to infinity and this parameter or this entire 
factor within that summation sign and this will finally give real value of u taking into 
account all possible solutions.  
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Continuing further we found that we can further simplify or further rewrite this 
expression for u in terms of another parameter capital M which depends upon a parameter 
small m which is related to capital M and as capital M is equal to 2 m +1 into pi by 2. 



That is when we go into the details of the consolidation equation, we will find that we 
have this parameter m small m which could be even or odd and then we will find that 
values corresponding to even values of n do not exit or they vanish and finally the 
solution really contains only the terms corresponding to odd values of m which from a 
general point of u can always be expressed as 2 m +1 and that’s how where we had m pi 
upon 2 since only odd terms are to be considered. Now we have 2 m +1 pi by 2 and this 
is for convenience represented as capital M. 
  
So we have here a function in which u is dependant upon the initial pore pressure 
distribution, the parameter capital M, z upon H that is the non dimensional depth and the 
non dimensional time factor t or Tv. Once we have this, going back to our set of 
expressions which we had defined, the degree of consolidation uz corresponding to any 
particular depth can be expressed as 1 minus u upon ui but ui is u0. Therefore this is 1 
minus u upon u0. Since we already have evaluated small u, we can get the expression for 
capital Uz which is the degree of consolidation at any depth, as this. In this again we have 
non dimensional time factor, the parameter capital M. This a particular expression can be 
graphically represented in the form of isochrones as shown here.  
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In that expression for Uz we had non dimensional depth z by H and the non dimensional 
time factor Tv. So suppose we substitute different values of T, T =0, 0.05, 0.1 and so on 
up to 0.9. Then we find that at different values of z by H we will get different Uz values 
and this is how the Uz values will vary, these are known as isochrones indicate meaning 
that these are the values of Uz corresponding to constant time or constant time factor.  
 
Here we have a line for example corresponding to T =0.05 that means at this depth say a 
depth corresponding to a non dimensional value z upon H equal to let us say 0.1, there is 
a time T =0.5 certain Uz value, let us say this. Then at the same time at another depth, we 
have Uz=0. So the uz values vary with depth and at any particular time T this will be the 



nature of distribution of Uz with depth. There are two particular values of time which are 
important the reason why they are important we will see a little later. The two values of 
capital T which are important from a practical point of view are T capital corresponding 
to 0.5 and T capital corresponding to 0.9. That is the reason why we take this is, 
corresponding to 0.9 factor Uz value is know to be 0.848 and similarly corresponding to 
Uz equal to 505, we also have a corresponding time factor known as T 50. 
 
Now we can use this in the computation of the degree of consolidation corresponding to 
any time as we will see a little later. Now there is one more aspect, one more parameter 
which is of importance. We have been able to determine the degree of consolidation as a 
function of depth but in any given practical situation rather than looking for the degree of 
consolidation at any particular depth, we would like to know the average degree of 
consolidation over the entire depth of the clay layer. And now since we know what is Uz 
it is possible to determine the average U by simply integrating it with over the entire 
depth and averaging it over the depth 2 H.   
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This can be done step by step to get this final expression and now if you take this final 
expression, the final average degree of consolidation and related to capital T and see its 
variation, you will find that the average consolidation varies with time factor Tv in such a 
way that it becomes maximum, it becomes 100 % at T equal to infinity.  
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So now in today’s lecture we have seen the details of the derivation of an expression for 
U which is nothing but the mathematical treatment of the phenomenon of one 
dimensional consolidation. 
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In the next lecture we will develop further understanding of the physical nature of this 
mathematical expression that we have derived. Then we will go into the details of 
determining the coefficient of consolidation Cv which is very important from point of 



view of determining the time factor from point of view determining the pore pressure and 
the degree of consolidation not to speak of the average degree of consolidation. We will 
reinforce all these concepts with the help of a few examples. 
Thank you. 
 


