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Students once again we meet. Today’s lecture is on stress distribution in soils. This is the 
sixth  in  the  series  that  we  had so  far.  This  shall  also  be  the  final  lecture  on  stress 
distribution in soils. So in today’s lecture we will be devoting much of our time to solve 
problems and that is to understand the application of the theory that we have seen so far, 
mainly the Boussinesq’s theory. We shall also quickly review some of the points that we 
have discussed in the previous lectures. This will be something like a winding up lecture 
in which we shall not only quickly review or summarize what we have discussed so far. 
But also see the application of mainly the Boussinesq’s theory. 
 
So first let us take a quick review of what we did in the last lecture. The lecture that we 
had just prior to this, we discussed that the three different types of loads that we apply 
normally through a foundation on to the soils. The three types of loads are as you know 
very  well  point  load,  line  load,  strip  load.  You  may  also  add  if  you like  uniformly 
distributed load, this is actually nothing but a strip load but acting on a rectangular area of 
finite dimensions rather than at an area of very long length and short cross section.

(Refer Slide Time 02:20)
                          

How ever basically there are only three different types of loads, the uniformly distributed 
load  is  just  a  variation  of  this.  We  also  saw  how  these  loads  act  on  the  various 
foundations  of  different  shapes  and  how  to  determine  the  stresses  beneath  those 
foundations. 



Let us take a look at next slide. We also discussed in the last lecture more details than 
that we had discussed in the earlier  lecture about how to calculate stresses beneath a 
rectangular area, what is the theory, how to use an influence chart.
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We saw for example different types of charts Fadum’s chart, Newmark’s chart and the 
Boussinesq’s influence table. We also understood how this theory is applied to circular 
areas. This is the influence coefficients table, this is the basis of the calculation of stresses 
beneath a point load. And therefore we must understand this table very well and its use. If 
you  look  at  this  table  we  have  a  parameter  R  upon  z  in  the  first  column  and  the 
corresponding  influence  coefficient  on  the  second  column  and  this  is  repeated  for 
different  R by z values in the subsequent  columns. If you see here R is the distance 
measured radially from the point of action of the concentrated or the point load. So that 
must be remembered and z is the vertical depth at which the point, where we want the 
stress lies.  
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The ratio R upon z is directly related to the influence factor, the influence factor contains 
R upon z as a non dimensional term. So for different values of R by z we already have the 
influence factor. If how ever in any given problem the R by z value does not lie within 
this range, rather than using this table we shall directly use the closed formula that we 
had seen in the last lecture. How do we apply the influence table or the table containing 
the influence coefficients for point load? Take a look at this figure. 
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Suppose this is the point load we are normally interested in finding out the stress at any 
point such as C directly beneath the load P or some times away from this. If it is directly 
beneath the load P, if the centre C of a horizontal rectangular area is below the point P 
then the formula that we have seen in the case of point loads, the Boussinesq’s theory 



based formula is directly applicable here. That means this is the schematic which can be 
used for determining the vertical  stress due to a point load P at any point C directly 
beneath P but on a horizontal plane of finite dimensions. The point C as I said could lie  
away from the centre line also. In this case we have the reverse of that problem. Here we 
have the concentrated load, we have a finite area L M N K the centre of which is directly  
beneath the point P. We already know how to calculate the stress at a point C directly 
beneath P? Now if this happens to be the centre of a rectangular area of finite dimensions 
then we can apply this formula repeatedly or the integral of this to find out the total load 
on that finite area denoted by LMNK of dimension 2 A upon 2 B.
 
We had seen an example of how to do this in the last lecture. This diagram, the next one 
for  example  illustrates  the  case  where  we  want  to  determine  the  load  over  again  a 
rectangular area but this centre of this rectangular area is no longer under the line of 
action of the load or the point of action of the load P. In this case what is required is to 
apply the Boussinesq’s theory either the formula directly or if the values concerned are 
within the range,  then the point load influence coefficient  table.  We need to use this 
repeatedly to obtain the total load carried by rectangular area LMNK whose centre is not 
directly below P but away from it by a certain distance.
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In this figure for example C is away from the O which defines the line of action of the 
load P. In order to determine the total load carried by this LMNK, what we need to do is 
to divide this into a set of rectangles. We must remember that the formulae we have are 
applicable only for the corner of a rectangle. So we must divide the given rectangle in 
such a way that the given point or the point at which we want the stress lies at the corner 
of given area. For example if we divide this LMNK into an area a M N small b and 
subtract from that area small a capital L K small b, we have in effect 2 areas each one of 
them has the point O lying at the corner of two rectangles. So thus for example small a M 
N and this CO has the corner at O, for half the given area and the other half defined by 
NKb bounded by NKb also has a corner lying just directly below the point P. 



So we can apply the known formula already available formula, once for this rectangle 
and once for the mirror image the other rectangle. And this can also be repeated for the 
smaller rectangles OALN similarly O this point K b and that is what we have written here 
aLKb. This way we can find the total load on any area, any rectangular area whose centre 
may be lying away from the point P or its line of action. In the above diagram we have 
taken C on a line parallel to the x axis but in general it need not necessarily be on a line  
parallel to x axis. The rectangle could be even rotated. We have to nevertheless divide 
this into equivalent rectangular areas and by using appropriate geometries and addition 
subtraction, we should be able to get total load on any desired area. 
 
If we have a strip load then we use a different chart in which z and x, the coordinates in  
the two directions are given in non dimensional terms and influence coefficient values are 
available in this chart. The range of z in this chart is 0 to 2.5 and the range of x is from 0  
to 3 which mean that the use of this table is restricted to a non dimensional width of 2.5 
and a non dimensional x coordinate dimension of 3. That means the horizontal width is 3 
meters  in non dimensional  terms and depth in  non dimensional  terms of the point  at 
which we want the stress is 2.5. 
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This means that if we need to determine stresses at any point deeper than this or any point 
whose z non dimensional with respect to B/2 is larger than 2.5 or the x dimension is 
larger  than 3 when non-dimensionalized.  We need to  go back to  the actual  formula, 
substitute  appropriate  values  and get  the  results.  If  you remember  we had also  seen 
another diagram with respect to this, a cross sectional diagram which illustrates the angle 
beta,  delta  which are to  be used in  employing the formula that  we have for stresses 
beneath a strip load. So either the formula or the table can be used for computing the 
stress. In today’s lecture we shall proceed further and we shall see some more details of 
how to compute stresses beneath rectangular and circular areas but we shall stop not only 
with that we shall proceed further and we shall see how to compute stresses beneath an 
area of any arbitrary shape.  
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The last one requires the use of a graphical chart  which is known as the Newmark’s 
influence coefficient chart. That we shall see towards the end of this lecture. We already 
know how to determine the stress at any point below a rectangular area, when particularly 
the  point  at  which  we  want  the  stress  is  located  directly  beneath  the  corner  of  the 
rectangular area. Let us see a diagram. This is the chart known as the Fadum’s chart  
which gives the influence chart rather influence coefficients for a rectangular area of non 
dimensional values mz, nz at a point A, at a point depth z. 

(Refer Slide Time 13:06)
                                 

This requires that we should pay attention to the point, that the desired point at which we 
want  the  stress  is  directly  below one of  the  corners.  The  table  which  also  gives  the 
influence coefficient for different non dimensional ratios n and m, where n and m have 



been defined even earlier  or in this  chart  you can see that  m is  nothing but half  the 
longitudinal dimension, non dimensionalized with respect to the depth and n is half the 
cross sectional dimension, non dimensionalized with respect to the depth and for different 
values of m upon n or rather m and n for a whole range of m from 0.1 to infinity and a 
whole range of n ranging from 0.1 to infinity. That means practically all values of m and 
n that is a rectangular area of very small dimensions to very large areas, very large loaded 
areas occupying very huge extents we can determine the stresses beneath such areas, 
remember for a uniformly distributed load. 

This particular table has been evolved by Newmark based on Boussinesq’s theory. Let us 
see the application of some of these formulae or these charts that we have been familiar  
with and let us start with application to rectangular areas. Let us read this problem and 
understand this. The centre of a rectangular  area on the ground surface has Cartesian 
coordinate 0, 0, 0. So there is a ground surface, there is a rectangular area. On the ground 
surface its centre has coordinates 0, 0, 0 that means this is the origin which means that we 
can take the x axis like this and the y axis like this. 
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The next line is, the corners of this rectangle have coordinates. Let us take plus minus 
6m. That means this point has got 6 meters, this point has got -6 meters dimension or 
rather coordinate. The y coordinate is 15, the y coordinate is 15 here as well, and then this 
depth is zero because this is on the surface. Then we also have +15 and -15, so -15 would 
come in this direction. So here we will have -15, 0 and we will have -6, -15, 0. These are 
the four corners of the rectangle, so the loaded area has been defined. But what we need 
is for a given loading on this rectangular area, uniformly distributed over the entire area 
of  magnitude  1.5 kilo  Newton per  meter  square,  we need to  estimate  the  stresses  at 
several points. This being an illustration we have chosen points at several locations in 
order to thoroughly understand the application of this table. The points which we have 
chosen have coordinates, all of them being at 6 meters depth. We have taken one single 
horizontal  plane of course the depths can vary. But in order to illustrates the relative 



effects due to various positions of the point we have taken the depth constant.

(Refer Slide Time 15:13)
                               

We have points such as 0, 0, 6 which would mean x coordinate is 0, y coordinate is 0, 
depth is 6 which mean it is this point. So this is point one, the next point is 0, 15, x that  
means x coordinate is 0, y coordinate is 15, depth is 6 that means this is the point. Let me 
just make a small correction in this. The y coordinate is positive in this direction and 
therefore this will be minus, this will be minus, these two will be plus (Refer Slide Time: 
17:44). With this correction now point two P2 will lie at 0, 15. The x coordinate is 0, y 
coordinate is 15, depth is 6 that means this is will be P2 and P3 will lie at 6, 0, 6 that 
means the x coordinate is 6, y coordinate is 0, depth is 6. That means this will be P 3, this 
mid point will be P3. 
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So we have centre, mid point one of the sides, mid point one of the other side and then 
we have 6, 15, 6 that means this corner, this is P4. Lastly we have a point at 10 meters 
along the x axis, 25 meters along the y axis in the positive direction and 6 meters depth. 
So there is a point P4 here whose coordinates are 10, 25, 6. Let us see how to determine 
the stresses beneath this. Remember we need to have the point at which we want the 
stress to be below the corner of a rectangle, that is the starting point. Let us take a look at  
the illustration that I have just now sketched on this paper. A clear illustration is available 
on the monitor. The rectangle is A B C D this point is C, as you can see here (-6, -15, 0), 
(6, -15, 0), (-6, 15, 0) and (6, 15, 0) that is this corner.  

The point P1, P2, P3 where the point P1 is located directly below the origin here at a depth 
of 6 meters. P2 is located below the mid point of this side, P3 is located below the mid 
point of this side, P4 is located at this corner and P5 outside the area. In order to better 
comprehend, in order to understand better the relative locations of these points we shall 
sketch just the plan of this problem. Here is the plan. This is a plan view an illustration of 
the problem. A B C D is here, this A B C D is here. Then the points P1, P2, P3, P4 lie at the 
centre, mid side and at the corner whereas the point P5 is out side the area at point G.
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So these are the points P1, P2, P3, P4, P5 at which we want the stresses. So now what we 
need  to  do  is  to  successively  put  these  points  below  the  corner  of  a  rectangle  and 
calculate the influence coefficient and then compute the vertical stress. For example if I 
take P1, if I consider these 4 small rectangles which meet at this point P1, I can say that P1 

is already at the corner of four different rectangles. So if I can calculate the influence 
factor for one rectangle and the corresponding stress, then I will get the same influence 
factor and the same stress because the other three rectangles are also meeting at the same 
point P1.  They have the same dimensions, so the stress at point P1 can be computed by 
multiplying  by  four  the  stress  obtained  due  to  one  of  these  four  rectangles.  The 
dimensions of which are 6 meters in the horizontal x direction and 15 meters in the y 
direction. 

(Refer Slide Time 20:02)
                               

Whereas for P2 we can take it  to be lying at  the corner of two larger rectangles.  For 



example this rectangle of 6 meters width and 30 meters in the y direction has P2 below 
one of its corners. Similarly for this rectangle ending in B here and C here also P2 lies at 
one  of  the  corners.  Therefore  the  influence  coefficient  for  P2 can  be  obtained  by 
considering this larger rectangle and its mirror image the other larger rectangle and by 
multiplying the influence coefficient by two and the load that is coming on the area, we 
can  get  the  stress  at  the  P2.  Similar  logic  applies  for  the  point  P3 we  can  take  two 
rectangles of 15 by 12 meter dimensions, one rectangle here one rectangle here. But for 
point P4 since it is directly below the entire ABCD at the corner C, we can directly take 
the entire area as contributing to the stress and the dimensions of that area would be 12 
by 30 meters. As far as point G is concerned we need to do this in two stages. 

For example AEGK can be considered to be one rectangle where G is below one of its  
corner. However the given loaded area is only ABCD, so if we take a larger area AEGK 
we will be over estimating the stresses at the point G. So we need to subtract from this 
the stresses that we have obtained in addition because of considering a larger area. So we 
take rectangle DFGK which has a corner again above the point  G and therefore  this 
rectangle and its influence coefficient can be computed and the stress can be computed 
and subtracted from the stress that we obtained for the total area AEGK. Similarly BEGH 
also can be considered to be a rectangle with a corner at G and the influence coefficient 
for this and the stress corresponding to this can be computed and also subtracted. But 
however  now  if  you  see  CFGH  figures  in  both  these  rectangles  which  have  been 
additionally added. Since this is getting subtracted twice,  we need to add at  once the 
stress due to CFGH. Since that also has G as one of its corner, the stress distribution can 
be computed by the same manner by taking an influence coefficient for the area CFGH.
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Let us see how this is done. For P1 since it lies at the centre of the rectangular area, m will 



be 6 upon 6 where 6 is the half the dimension in the x direction and the next 6 is the 
height  or  the  depth  at  which  we want  the  stress.  And n  will  correspond to  half  the 
dimension in the y direction that is 15 divided by the same depth H that is equal to 2.5. If  
you look at the influence coefficient table. Let us take a look at that table. If you take this  
table we have m equal to 1.0 and n equal to 15 upon C. Let us take a look, m =1 and n = 
2.5, actually it should be 2.25. So if we go here and consider the influence coefficient 
chart we already have here, corresponding to m =1 and n = 2.25 which comes here we 
can work out the influence coefficient. That will be some where here (Refer Slide Time: 
25:56) and that influence coefficient is what we need to consider and that comes out to be 
0.202 and the corresponding stress will be four times this influence coefficient into the 
load and the load that is coming on this is also known, if you take a look at the problem. 
The load that is coming on this is 1.5 kilo Newton per meter square and therefore this 
influence coefficient into 4 into 1.5 will give you the stress. 
 
Similar logic can be applied to P2 and based on the explanation that I gave a little while 
ago,  as  to  which  rectangle  should  be  considered  for  P2,  which  rectangle  must  be 
considered for P3 and similarly for P4. We can compute the influence coefficients and the 
stress but for P5 we need to consider the area AEGK, a larger area containing the point G 
and subtract from that,  two of the smaller areas and add the areas CFGH which gets 
subtracted  twice.  And  the  corresponding  influence  coefficient  and  the  corresponding 
stress can be computed and the final value of stress would come out to be 0.012 kilo 
Newtons per meter square. 

(Refer Slide Time 27:15) 
                          

Let  us  take  another  example,  this  is  again  the  example  of  a  rectangular  area.  The 
dimensions are 5 meters by 2.5 meters. The problem is very similar to the previous one. 
The  load  is  200  kilo  Newtons  per  meter  square  instead  of  1.5.  We  again  need  to 
determine the stress at a point A at a depth of 3.5 meters rather than several points at  
several different locations as we did in the previous problem. We shall now consider only 



one point but it is located outside the given area. The method that we shall apply will be 
exactly the same as what we applied for the point P5 in the earlier problem. 

(Refer Slide Time 28:02)
                         

Let us take a look at this solution. The given area is 5 meters by 2.5 meters, the point A 
lies outside the given area and therefore in order to compute the stress at this point we 
take initially L larger area. The larger area would have dimensions 2.5 in the x direction 
and 7 in the y direction. All that we need to do is to compute the stress due to uniformly 
distributed load on PQAB which will be a larger area and subtract from that due to RABS 
and that is what we have. The sigma z due to PQRS which is the area of the interest is 
equal to sigma z due to PQAB and sigma z due to SRAB both at the point A, the later is  
subtracted from the formula. 

The  solution  is,  first  take  the  larger  rectangle  compute  m,  compute  n  determine  the 
influence  coefficient  from  the  influence  coefficient  table.  Because  the  influence 
coefficient table that we use for rectangular areas have m and n values ranging from zero 
to infinity. And therefore they cover the entire range of m, n values that are feasible or 
practicable. Here therefore there is no problem in determining influence coefficient for 
any value of m and any value of n lying between zero and infinity. 
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So we use that chart, for m and n we get equal to 2 and 0.714. We get influence factor as 
0.172. The corresponding stress will now be this influence coefficient multiplied by the 
load equal to 34.4 kilo Newton’s per meter square. We do not multiply this by either 4 or 
2 because the rectangle is only one and we are determining the stress below one of its  
corners.  Now  RSAB  is  similar,  m  will  be  this  much  n  will  be  0.714  and  the 
corresponding influence factor from the table would be rather 0.113 and sigma z will be 
2.55. We note that because there is only one rectangle involved in this, as well as this. 
We are not multiplying this by either 2 or 4. We are only multiplying it by one and that is  
implicit and that is why, it is not mentioned. So also with PQRS, PQRS has a stress value 
sigma z corresponding to a value of m and n equal to 2 and 2 upon the depth which is 
also 2 and that will give us influence coefficient for that smaller area. And that needs to 
be added and then we can get PQRS, algebraically added and we get PQRS.
 
Now suppose we want to compute stresses below circular areas. Then we need to use a 
different table. The table that we can possibly use are two in number, either we can use a 
table in which z by R varies from say 0 to 5 and corresponding influence factor values are 
given. This is one of the possibilities; another possibility is where influence factors are 
given at regular intervals from 0 to 1 and the corresponding capital R by z ratios is given. 
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It is the former table which is useful for calculating stresses below a circular area. The 
range here is 0 to 5 which means that if in any given problem the depth is such that the 
ratio depth by radius of the circular area, loaded area is more than 5. Rather than using 
this table we shall have to use the formula directly. If we want to use this table which is 
the ideal one for computing influence factors for loaded areas which are circular and not 
the second table where we have influence factor corresponding to capital R by z. We will  
see shortly that the second table has its own advantage. The second table is useful for 
generalizing the problem of computing stresses and this generalization would eventually 
lead us to compute stresses not only beneath circular area for which this table has been 
evolved  but  also  areas  which  are  either  rectangular  or  for  that  matter  any arbitrarily 
shaped area. 
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We shall come back to this second table later on or in a short while. It is the first table 
where we have z by R versus If that we shall  be using for computing stresses below 
circular loaded areas. 

Let us take the example of a circular loaded area and see how to compute the stresses. 
The statement of the problem is a circular foundation of diameter 3 meters. So diameter 3 
meters, it stands on the horizontal surface of a semi infinite medium and it carries a load 
of 900 kilo Newtons. There is an area with diameter as 3 meters standing on a surface of 
a semi infinite medium and it carries a uniformly distributed load of 900 kilo Newtons 
over  the  entire  area.  That  means  the  load  which  can  be  considered  to  be  uniformly 
distributed  over  the  entire  area.  That  is  load  intensity  per  unit  area  will  be  this  900 
divided by the area which is 900 divided by pi into d where d is 3, so d square upon 4. 
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This will be the uniformly distributed load that comes on the circular area and for this we 
need to find out the stress at any point. The point in which we are interested is the vertical 
stress on a horizontal  plane along the central  axis of the foundation at a depth of 12 
meters. That means the point we are interested in is located directly beneath the centre at 
a depth of 12 meters. The radius R is 1.5 meters, the depth z is 12 meters. So we need to  
use the influence coefficient charts or the formula depending upon whether this value of 
R and the ratio R by z lies within the range of table or not. This diagram show that this is 
a circular area of radius 1.5 meters uniformly loaded, the load per unit area is 900 by pi 
into d square by 4 and the formula that is to be used for computing influence factor is this 
(Refer Slide Time: 35:44) provided the ratio R upon z lies beyond the range of the table.  



In fact here it does lie beyond the range of the table, so since the influence coefficients 
table includes values of z by R up to 5 only. We shall use the formula for computing If. 
According to this formula here, If is one minus one upon R upon z whole square plus one 
to the power of 3/2, R is 1.5, depth is 10 meters. 

(Refer Slide Time 35:29)
                           

So with this it is possible to compute influence factor and you can get the influence factor 
as 0.023 and the stress as 0.023 that is the influence coefficient, into the stress per unit 
area or the load per unit area which is 900 by pi d square by 4 which is in fact equal to 
127. This will give you a stress of 2.92 below the centre of the loaded area at a depth of 
10  meters.  We  come  to  the  last  and  one  of  the  most  important  aspects  of  stress 
distribution problems. As I said it is possible to compute very easily,  relatively using 
these influence charts, the stresses below rectangular and circular areas. But what about 
areas other than circular or other than rectangular.  For these we use a graphical chart 
evolved by Newmark, that is known as the Newmark chart. Let us take a look at this. The 
principle of the Newmark’s chart is based on the stress distribution beneath a circular 
loaded area. 
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Suppose you take this circular loaded area, the influence factor is one upon rather one 
minus one upon R by z whole square plus one. You remember that we saw a table some 
time back in which we have the influence factor corresponding to different R upon z 
values. So that is what we make use of here. For different values of R by z we know 
therefore what are the corresponding influence factors or rather for a given influence 
factor we would know what are the R by z values which correspond. Obviously for the 
same influence factor there will be several R values and several corresponding z values 
which will same R upon z ratio. So what this signifies is that for different combinations 
of R and z, we will be able to develop areas which will have influence factors equal to a 
predefined value. 

All  these areas of different R upon z values giving the same influence factor will  be 
concentric circles, if the depth remains constant. This gave an idea to newmark to convert 
or represent influence factors in terms of sectoral areas of circles as shown in the next 
figure or the table. This is the table which is used and this is the chart (Refer Slide Time: 
39:49).  This  chart  gives  you  for  a  predefined  depth  scale,  different  R  values  and 
corresponding areas with same influence factor. 
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This means that every single sectoral area that we see here has got the same influence 
coefficient value. Because for each one of them R upon z remains the same. Then what is 
the value of each one of these small sectoral areas. It is possible to choose any given 
values  of  influence  factor  and  plot  these  concentric  circles  to  predefined  scale  AB. 
However Newmark has plotted after several trials and based on his experience, a chart 
with influence value equal to 0.005 which means that every small area here contributes in 
terms of influence factor a value of 0.005. This means that suppose we have a rectangular 
area similar to the red area that is depicted in this figure. Then every small area that 
comes within this  rectangular  area corresponds to an influence value of 0.005, which 
means that the total influence value for this entire rectangle will simply be equal to the 
area of all the sectoral elements put together. That means the sum of the areas of every 
small elemental sectoral area.
 
This gives us an interesting method of computing stresses beneath any area. All that we 
need to do is to choose a scale AB as the scale for the depth at which that is the value of z 
at which we want the stresses. This chart that is shown here has been plotted for a depth 
scale given by AB equal to z. Therefore in order to use the same chart for all values of 
loading, for all depths all that we need to do is always take the length AB of this chart as 
equal  to  the  depth.  Automatically  the  value  of  R  here  proportionately  changes  and 
therefore a circle of a given R or a given R upon z will continue to be representative of 
the same influence factor 0.005. That is the essence of this newmarks graphical chart for 
determining vertical stress. This means that if we have an area which is non rectangular 
which  could  be  trapezoidal,  which  could  be  triangular,  which  could  be  simply  a 
quadrilateral or even a circle, we can replot the drawing of the loaded area, the plan of the 
loaded area using a depth scale AB equal to the depth at which we want the stress. Now 
this shows that if we want a different depth we need to convert the dimensions of the 
loaded  area  correspondingly  to  a  different  scale.  So  the  depth  decides  the  scale  and 
suppose  we  now  have  an  area  which  is  not  rectangular,  we  can  still  determine  the 
influence factor by just counting the number of elements that come within the given area. 
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Let  us  take  a  numerical  example.  This  numerical  example  reads  like  this.  Using 
newmarks chart  compute the vertical  stress below a rectangular  area of dimensions 8 
meters by 5 meters. As I said this chart can be used for any shape of any area how ever 
we shall take the example of a rectangle which is much simpler to examine. And we shall 
verify our  results  that  we obtained by the newmarks chart  by computation  using the 
influence coefficient table. If we were to plot this, then this area would be 8 meters by 5 
meters. The depth scale for the influence coefficient chart is known a length AB, plot 
these 8 meters using this scale and also this dimension 5 meters using this scale. And then 
place this let us say A B C D area in such a way that its centre lies over the centre of the 
influence  coefficient  chart.  Then  we  just  measure  the  number  of  areas  and  get  the 
influence factor. Influence factor multiplied by the load that is coming on the area that is 
100 kilo Newton per meter square will give you the stress at this point.
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So our area is 8 meters by 5 meters, depth is also 5 meters and therefore the dimension 
LM, the scale of the diagram represents the depth of 5 meters. So LM defines the scale of 
the chart and LM is equal to depth equal to 5 meters. This means that if I plot to scale an 
area 8 meters by 5 meters in dimension it will look like this. And let us say I interested in 
stress at a point E which is in the middle of the shorter side. Then this is the shorter side, 
the middle of the shorter side lies directly over the centre of the chart. 

After  drawing this  rectangle  to  scale  on a  transparent  sheet  of  paper  and then  super 
imposing it over this diagram in such a way that the point of interest lies exactly at the 
centre,  we can get the influence factor the total  influence factor corresponding to the 
whole  area.  The  sum of  all  the  elemental  areas  which  come  here  is  the  one  which 
corresponds to the total  influence factor. We need to calculate and count each one of 
these  elemental  areas.  We  can  make  an  allowance  for  areas  which  are  not  lying 
completely within the steady area shown in the rectangular form in red color. But we can 
count the number of elemental areas by giving due weightage to partial areas as well. 
Then  the  solution  will  be  like  this,  the  total  number  of  elemental  areas  lying  under 
ABCD,  counted  on  the  basis  of  the  newmarks  chart  works  out  in  this  case  to 
approximately 55.  

(Refer Slide Time 47:48)



                          

The vertical stress would obviously be the influence coefficient for one elemental area 
that is 0.005 multiplied by the total number of elemental areas that we observed under 
this chart for the given area, that is 55 and the loading intensity that is 100 kilo Newtons 
per meter square. So this works out to 27.5 kilo Newtons per meter square that is the 
vertical stress below the mid point of the shorter side, one of the shorter sides of the given 
rectangle.  You can see here that these dimensions are such that we will get m and n 
values corresponding to this which will lie well within the influence coefficient table. So 
we can also calculate the vertical stress here using the influence coefficient table. If we 
were to use that then we need the dimensions A, B and the non dimensional values of m 
and n. We find here A is 8 meters, b is 2.5 meters the reason is the rectangle that we need 
to consider would be 8 meters in this direction and only 2.5 in this meter in this direction,  
because point E lies at the corner of this smaller rectangle. 

It  also  lies  at  the  corner  of  the  other  mirror  image  rectangle  and therefore  what  we 
determine as the influence factor for one rectangle is also valid for the other rectangle. 
And the stress at E or the point below E due to both rectangles together will be simply 
twice what we get for one rectangle.  So let us see. For one rectangle the length is 8 
meters A therefore is 8 meters and B is only half the total width because the point E lies 
at the mid point of the shorter side. So B is only 2.5, H is already defined 5 with the stress 
we need is at a depth of 5 meters. So this gives us m = 1.6, n = 2.5 by 5 that is 0.5 and 
corresponding influence factor is 0.110.
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The stress would be the value that we get corresponding to the influence factors readings 
that we get from all these and that into 2 into 100 would give you the stress arising due to 
the area. There is a marginal difference between the influence factor that we get from 
newmarks  chart  and  from  the  influence  coefficient  table.  The  chart  involves  an 
approximate counting of the total number of elemental areas coming within the given 
area and therefore it is slightly approximate. Whereas the value given by the influence 
coefficient table is far more accurate. Let us take one more example, this is also a loaded 
area but this is not rectangular. The corners of this loaded area are (6, 15, 0), (-6, 15, 0), (-
8, -15, 0) and (7, 12, 0).  

That means this loaded area is a quadrilateral. In order to determine the vertical stress at 
any point say a point with coordinates (2, 2, 12) that is at a depth of 12 meters a point  
having  x  coordinate  2  and  y  coordinate  2  meters.  We can  compute  the  stress  using 
newmarks  chart.  The  intensity  of  loading  let  us  is  again  1.5  kilo  Newton per  meter 
square. Then this would be the definition sketch of the problem. This is the rectangle, 
given rectangle, point G is the point (2, 2, 12).
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So we draw this rectangle to the scale LM that is shown here, LM being taken equal to 
the depth of 12 meters and then we draw this rectangle and super impose over the chart  
and count the number of squares and then we get the solution as using newmarks chart, 
87 elemental areas multiplied by the influence coefficient value of one area that is 0.005 
into the load 1.5 that is 0.653 kilo Newton per meter square.
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I  have given here a few exercises  that  you can attempt,  in order  check for your self 
whether you have understood approximately or reasonably well,  whether you need to 
work further, whether you need to go over this lecture over and over again until you get  
the  matter  clear  in  your  head,  depends upon how clearly  you have  understood these 
various problems and how you are able to solve them. Therefore this is an exercise for 



which I shall not be giving the full detailed solution; I shall only give the final answer. 
This is a rectangular area, 2 meter square carries a load of 1250 kilo newtons. What is the 
stress due to this at 2 meters? So this is a problem of a point load on a rectangular area.  
The answer is 105 kilo Newton per meter square. 
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The next problem is an area of size 3 meters by 2 meters, we want the load that is total  
load being carried by this area. When its centre is at a depth of 5.5 meters and not directly 
below the concentrated load but at a distance of 4 meters from the line of action of the 
concentrated applied load. The applied load is 50 kilo newtons acting on the surface, the 
answer  will  be  1.80  kilo  newtons.  There  are  two  more  problems  here.  There  is  a 
rectangular area, the coordinates of which are given. The coordinates very clearly show 
that it’s a quadrilateral. The vertical stress is required at a point (5, 5, 10) meaning at a 
depth of 10 meters, at a point having x y coordinates both equal to 5 meters.
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You can draw this to the scale of the newmarks chart, super impose this on the newmarks 
chart and get the total number of areas lying within this. That will give you the total 
influence factor that multiplied by the load 2 will give you the final answer of 0.95 kilo 
newtons per meters square. Lastly I would like you to solve example 6 that of the circular 
area using newmarks chart rather than using the formula as we did earlier.  
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You can compare the two in order to understand how much difference is created by using 
the newmarks chart. The influence coefficient tables which contain influence coefficient 
values  correct  to  the third forth decimal  place always give you stresses a  little  more 
rigorously. Whereas the newmark chart give you the stresses some what approximately. 
The advantage  of  the newmark chart  therefore  lies  mainly  in areas  which are not  in 



regular  shape  that  is  neither  rectangular  nor  circular.  Now  just  to  wind  up  let  us 
summarize. You need to understand very clearly some of the terminology that we have 
used in the course of these 6 lectures. We have used terminologies like semi infinite mass 
and elastic material, different types of loads point, line and strip, uniformly distributed 
loads and then we have used terminologies such as influence coefficient tables, influence 
coefficient  chart,  influence  coefficient  factor,  influence  coefficient  value,  influence 
coefficient say just coefficient. We have also used the terminology critical depth, that is 
the depth at which the stress transmitted reduces to approximately 10 % of the uniformly 
distributed loads. 

You  need  to  understand  these  terminologies  very  well  in  order  to  appreciate,  there 
importance in the assumptions that have been made in the application of the Boussinesq’s 
theory and therefore the limitations of the Boussinesq’s theory itself. Take a look at the 
limitations. The first limitation is that Boussinesq’s theory assumes very ideal condition 
and impact is these ideal conditions are never met with and therefore that makes a lot of 
difference. The solutions obtained are deviant from the real stress values in the field. The 
initial  stresses  due  to  the  weight  or  ignored  because  the  medium  is  assumed  to  be 
weightless in Boussinesq’s theory. This also adds to the error in computational of the 
vertical stress because the self weight of the material does impact on the vertical stress. 
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Lastly the error that arises due to the use of Boussinesq’s theory due to the idealized 
conditions that we assume in Boussinesq’s theory works out to approximately 15 to 30 % 
clays and 20 to 30 % in sands. The reason is, it is a little more in sands and a little less in  
clays that is because of the nature of the material. The more the idealized assumptions are 
closer to reality as in the case of clays, better will be the closeness of the results and 
lesser will be the errors. 
So in this lecture we have covered three different areas and the influence coefficient chart 
and  the  limitations  of  the  elastic  theory.  This  completes  our  understanding  and  our 



discussion of stress distributions in soils. We shall next pass on to another chapter called 
the theory of consolidation.  With this  I  conclude,  we shall  meet  again to discuss the 
theory of consolidation. Thank you 


