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Students, so we meet again. Once again we have a lecture on stress distribution in soils. 
This is the fourth in the series; we have covered three lectures already. And apart from 
seeing the importance of stress distribution in soil mechanics, we have also got started 
with the computation of stress distribution using the method of theory of elasticity. It is 
worth recapitulating that theory of elasticity is based on certain very basic assumptions 
such as the medium is homogenous, isotropic, elastic and a continuum. We also assume 
or  we ensure  rather  that  any typical  adjacent  elements  in  the  medium,  they  undergo 
deformation  in  a  compatible  way.  So  taking  together  the  equilibrium  equations,  the 
relationships between strains and displacements, the stress strain elastic relationships and 
the compatibility conditions, we found that in all there are 15 equations and 15 unknowns 
and they can be solved to get what is known as a Laplace’s equation. 

This equation can be solved with the help of so called Airy’s stress approach. The Airy’s 
stress function is a function, which is a function of position. That means it is function of 
the co ordinates x y z of the medium, which means that it gives the distribution of the 
stresses, the overall pattern of the distribution of the stresses in the medium, both with 
respect to x y the horizontal direction and also with respect to the z direction. This stress 
function is a function when suitably differentiated will give you the stress components 
sigma x, sigma y and sigma z at any point, at which we desire to get the stresses. That is 
precisely what Boussinesq’s had done. He evolved a stress function, the credit goes to 
him for  evolving  that  stress  function  phi  which  is  applicable  to  a  three  dimensional 
problem  of  stress  distribution  in  a  medium subjected  to  a  concentrated  load  on  the 
surface.
 
Let us take a quick look at few slides to recapitulate all these, what ever we had discussed 
in the last few classes. So in the last lecture we continued with the theory of elasticity, 
saw how theory of elasticity has been used by Boussinesq’s and how Boussinesq’s has 
evolved his own approach based on theory of elasticity. And we also saw how to use 
Boussinesq’s approach to determine stress distribution due to one, a point load and two, a 
line load. Why did we choose a point load and a line load? A point load is a simplest  
form of loading, one can imagine a concentrated load at a point in a medium. See for 
example if this is the medium, at any point there can be a load. This is known as a point  
load or a concentrated load. We have a method to determine stress at any point P or say A 
due to this concentrated load. In other words if we have a number of concentrated loads 
and if we assume super position to be valid, then we can find out at this point A the stress 
due to each one of these concentrated loads which means in effect a line load.



(Refer Slide Time 03:45)
                         

After all a line load is nothing but a load consisting a number of concentrated loads along 
a single line. So if we get the solution for one concentrated load it means that we can get 
the solutions for every concentrated load acting at every point along a line. And all these 
when summed up or in other words when it is integrated over a finite length, we get the 
stress at the point A. These two are fundamental and very basic with the help of these 
concentrated and line load and the method for stress distribution determination due to 
these two loads we will be able to solve any problem.

(Refer Slide Time 05:42)
                          

Suppose we have rectangular area which has got a uniformly distributed load, knowing 



the distribution due to the concentrated load or a line load we can extrapolate it to a 
number of lines and cover the entire area. So the stress distribution due to a uniformly 
distributed load over a large area can be calculated. If the area is circular all that will 
happen is the pattern of summing up the effect that is integrating will change but the 
basic principle, concept the approach will still remain the same. So once we know the 
stress distribution procedure for concentrated load and hence the line load, we can apply 
it to any area. And there are of course methods available to also tackle arbitrarily shaped 
areas.
 
We shall be now proceeding further to see once again very quickly the equations and the 
method of computation of stresses under point loads and line loads. In this lecture we 
shall quickly take a look at the calculation of stresses due to a concentrated and line load 
as I  said just  now and then continue with application  of those to a  strip load,  two a 
rectangular area and three a circular area.

(Refer Slide Time 07:12)
                        

These as you can see or visualize represent three very typical cases in practice. Imagine 
as I have said a few times in the earlier lectures as well, a long compound wall. This has 
got a foundation and under this foundation there is going to be stresses induced due to the 
compound wall and this can be very well be taken as a small strip. Because it has got a 
very large length compared to the small dimensions in the cross sectional direction and 
this can very well be considered as a strip. So this is nothing but what is known as a strip  
load.  On the  other  hand if  we have  a  regular  foundation  under  a  column and if  we 
consider the load being distributed under this foundation, then the area of this foundation 
the base area of the foundation acts as a rectangular area over which there is uniformly 
distributed  load  where  B  is  the  width  of  this  foundation  and  L  is  the  length  of  the 
foundation, it could be square.  

(Refer Slide Time 08:36)



                          

If it is circular of diameter say D then again this principle can be applied and we can 
study the stress distribution below a circular load as well and that is what we are going to 
see today. We shall be taking a strip load extending it to a rectangular area and then we 
shall also see how to compute stresses below a circular area. A word about super position 
which I have mentioned briefly. If we have two loads the effect of one load and the effect 
of the other load can be determined separately and they can be added together to get the 
effect of the total load and this is known as the principle of the super position. 
 
Let me just briefly explain why this is important and how this can be justified. Let us take 
the stress strain relationship for the soil below the foundation. Let us say it is linear and in 
fact if you look deep into the method that we have used,  you will find that we have 
assumed the elastic properties E and new to be constants which means that this modulus 
E  is  a  constant  or  it  implies  that  the  stress  strain  relationship  is  linear,  sigma  E 
relationship is linear. If this is linear then this area of elasticity that we have used is called 
generally as linear elasticity theory. When we employ this theory of linear elasticity, only 
then the principle of super position is valid. 

Imagine we are applying a load and a corresponding stress say which we call as P1. This 
stress P1  is going to produce a strain that is epsilon one. Suppose I apply an additional 
stress of delta P that is going to produce an additional strain say delta epsilon. This means 
that the total stress applied is P1  + delta P, say P2 and the total strain is epsilon one plus 
delta epsilon say epsilon two. Now imagine that we are applying straight away the load 
P2  then this load P2  according to the linear theory of elasticity is going to have a strain 
epsilon two which is going to be exactly the same as this epsilon two. This means that  
whether we apply P1 and then an incremental stress delta P or whether we apply P2,  the 
final strain remains the same.  

This  means  that  the  principle  of  super  position  is  valid  rather  in  case  we  want  to 



determine the stress due to a load P2 which consists of two components P1 and delta P. It 
is possible to calculate the effect of P1 separately, effect of delta P separately and add and 
get exactly the same effect that P2 would have created if it had been applied directly. This 
is the principle of super position and very soon we shall see an example where this will  
be useful to us. 

(Refer Slide Time 11:29)
                          

Let us proceed further. Let me recapitulate, emphasize that we are dealing with an x y z 
co ordinate system as shown here. This is z, this is x y and there is an arbitrary point P 
and an element surrounding that in the medium, the centre of this parallelepiped or the 
element has got co ordinates x y z.

(Refer Slide Time 12:21)



                       

We have already seen that due to a concentrated load P, the stress sigma z at any point 
inside the medium is going to be given by this expression. And in this expression if we 
take out P by z square, we can write the stress sigma z in terms of a factor called the 
influence factor which is incidentally equal to this. Now these three expressions are valid 
for a concentrated load and therefore for stress at any point due to a concentrated load P 
the influence factor is this. 
 
(Refer Slide Time 12:42)

                    

These are the influence factors derived by substituting different values of r upon z in the 
expression for sigma z shown in the previous slide. So a series of influence factors can be 



obtained for a range of r by z varying from zero to 2.9 and therefore if you know in any 
given problem where the point at which you want the stress is lying. That means if you 
know the coordinates r and z, you can calculate If, If multiplied by P by z square will give 
you sigma z which we had seen in the earlier lecture and let us take a quick look at the 
example which we saw last time. 

(Refer Slide Time 13:22)
                     

(Refer Slide Time 13:55)
                     

Determine  the vertical  stress on a horizontal  plane  at  a  depth of 12 meters  due to  a 
concentrated load 800 kilo Newtons in an elastic medium. So the solution would be find 
out r by z, it so happens that if r/z is zero If  is 0.47745. This is happening because we 



want the stress on the surface where z is equal to zero, then the influence coefficient is 
this. Therefore the stress sigma z is this influence coefficient into P divided by z square 
and that is 2.653 kilo Newtons per meter square. 

(Refer Slide Time 14:11)
                        

(Refer Slide Time 14:42)
                         

If we have a line load, the effect of concentrated load can be summed up over this entire 
length and the effect of the line load at the point in the parallelepiped can be computed. 
The expression for sigma z will then be this and if we want to determine the stress due to 
a line load of magnitude small p equal to 400 kilo Newton per meter where small p is the 
intensity of loading along the line. Then for an x of 5 meters and z of 5 meters, we can 



compute the sigma z value as 12.73 kilo Newtons per meter square.  

(Refer Slide Time 14:56)
                         

Now comes the importance of the use of sigma z computation by the principle of super 
position.  Take for example two concentrated loads P1 and P2 and any point A in the 
medium P1 is 400 kilo Newton per meter. This is a line load actually 400 kilo Newton per 
meter in a direction like this and P2  1000 kilo Newton per meter again a line load along 
this. 

(Refer Slide Time 15:36)



                            

So we will compute this stress due to two line loads. At a point A which is at a distance  
of 10 meters horizontally from the load P1 and 5 meters horizontally from the load P2 and 
at a depth of 5 meters. Proceeding further we will compute the stress due to each load 
separately and apply the principle of super position. Suppose we take the first load, the 
first load is P1 we know its magnitude, we know the magnitude in the sense the intensity 
of loading, we know the point A its coordinates and therefore we can use the formula 
which we saw 2 slides earlier for computing sigma z due to a line load at any depth and 
the corresponding influence  factor.  We can find if  we apply that  principle  where the 
stress due to P1 in the slide is sigma z due to P1 at the point A will be this. If I substitute 
the value of P1 which is 400 hundred kilo Newton per meter and if I substitute the values 
of z and x where z is 5 meters and x is 10 meters, I will find that sigma z due to P1 is 
2.037 kilo Newton per meter square. 

(Refer Slide Time 17:02)



                          

Take for example the second load. If the second load is 1000 kilo Newton per meter and 
if the point A with respect to this load is at 5 meters horizontal and 5 meters deep, then  
this stress due to P2 this sigma z P2 will given by a similar formula where now we will 
have the load P2 and the coordinates x and z equal to 5 and 5 respectively. This when you 
substitute you get the stress due to second load as 31.835 kilo Newton per meter square. 
Since principle  of super position is justifiable  because of the approach being a linear 
theory of elasticity approach. We can get the total stress as the sum of these two stresses 
which is equal to the stress sigma z at the point A and that this is 33.872 kilo Newton per 
meter square.  

(Refer Slide Time 17:29)



                             

Now we come to subject matter of today’s lecture which requires the knowledge of the 
previous lecture and that is the reason why we went through recapitulating what we have 
discussed in the last class.  

(Refer Slide Time 18:25)
                              

We shall see how to compute the stress below a strip load. Let us take a look at this slide. 
The strip load here is defined by a width B and a very long length. The length is very 
large and that is why no specific length is mentioned here. For all practical purposes it 
can be taken as infinitely long compared to B. And now if you want the stress due to this 
load at point P then we can proceed using the line load formula. 
(Refer Slide Time 19:18)



                             

Suppose this is the load, we take a cross section along the load then this is the point P,  
suppose this is the load distributed over a length B, capital B as we saw in the previous 
diagram. In order to compute the effect of this stress at point P what we shall do is, take a 
very small element dr at a distance r, find out its effect and the stress due to it at the point 
P and then integrate it over the width capital B. So suppose this is the z axis taken at the 
centre then this r is the distance at which the element dr lies. Due to symmetry we can do 
the summing of or integration of the stress at P over the length minus B/2 to plus B/2.  

(Refer Slide Time 19:58)
                          

Actually this is amounting to applying the principle of super position repeatedly for every 
point  load  that  is  acting  over  this  length  capital  B.  There  lies  the  importance  of  the 
principle of super position and the knowledge of what is the stress due to a point load. If 



you add all the stresses due to each one of these then you get the vertical stress at the 
point P due to the entire load. Suppose we derive an expression for the stress due to the  
small  element  and we call  this  stress as d sigma z.  Then the stress due to the small  
element at the point capital B will be given by this. It is possible to derive this based on 
Boussinesq’s theory. Now by integrating this dz from minus B/2 to plus B/2, we will get 
the stress sigma z at the point p and it will turn out to be sigma z equal to small p by pi  
into beta plus sine beta cos beta plus two delta where these angles beta and delta are 
shown in the previous diagram. 

Let us take a look at it again. This is the angle beta made by the point B with respect to 
the edges of the loaded area and delta is the angle made with respect to the vertical by the 
line joining the nearest end of the loaded area. So knowing beta, delta it will be possible 
to find out sigma z at P. Suppose we find sigma z at P like this then by dividing this value 
by the unit load small p per unit length we get what is known as stress concentration. This 
stress concentration can be represented one upon pi into this (Refer Slide Time: 22:12). 
This means that for any applied load small p is possible to find out the corresponding 
stress sigma z using this formula. And for this purpose we can derive a table which gives 
sigma z by p as a function of x non-dimensionalized and z non-dimensionalized,  the 
stress sigma z is also non-dimensionalized. The distances x and z the coordinates or the 
lengths x and z also non-dimensionalized. This non dimensionalization is with respect to 
the width of loading that is capital B. 

(Refer Slide Time 22:24)

 

Now this table gives you the sigma z by p values, you can see that these values range 
from zero in  this  range,  as  we go further  away and as  we go deeper  they gradually 
decrease. So from this it is possible to calculate the stress at any point laterally as well as 
with respect to depth due to a strip load. Having understood how the stress is computed 
due  to  a  strip  load,  let  us  take  an  example.  The data  that  is  required  for  computing 
stresses due to a strip load or the width of the strip, the load per unit area, the coordinate  



system the x coordinate and the z coordinate of the point at which we want the stresses. 
And that is precisely what we have in this example. 

(Refer Slide Time 24:00)
                         

Determine  the vertical  stress on a horizontal  plane  at  a  depth of 6 meters  at  a  point 
distance 6 meters from the centre line and the strip itself is subjected to 800 kilo Newton 
per meter square and the width of the strip is 6 meters. Let us take the stress per unit  
length that is small p, in our case it is 800 kilo Newton per meter square. Next the width 
of the strip which is loaded is 6 meters which means that B/2, the factor which is half the 
width which is used for non dimensionalization will be 3. The coordinates of the point at 
which we want the stresses are x and z. 

(Refer Slide Time 25:10)



                        

That means we want a stresses on a horizontal plane at a depth of 6 meters at a point  
which is also at 6 meters from the central line. This can be found out by first working out 
the non dimensionalized coordinates that is x divided by B/2 and z divided by B/2 which 
as  you will  see  or  also respectively  2  and 2.  This  means  that  sigma z by  p can  be 
computed from the table which we had in the previous slide. Let us see what value of 
sigma  z  by  p  we  get  for  an  x  =  2  and  z  upon  B/2  equal  to  2.  That  is  the  non 
dimensionalized coordinates are two each. Let us go back to the previous slide (Refer 
Slide Time 22:24). See here at a value of x upon B/2 equal to 2 and z upon B/2 equal to  
2, we find that sigma z upon p is 0.1847 that is the stress concentration.
 
So going back to our calculation sigma z by p is 0.1847, how ever the load actually 
applied is 800 kilo Newton per meter square. This means the stress that will arise will be 
merely this multiplied by the applied stress p that means 0.1847 into 800 which will turn 
out to be 147.76 kilo Newton per meter square. This is all about strip; once we have the  
load per unit area it will be possible to calculate stress at any point. With the help of this 
we can calculate the stress on an entire horizontal plane, we can calculate the stress on a 
vertical plane, below the centre of the strip, away from the strip and this we will be able 
to get the stress distribution on a horizontal plane very easily. How the stress varies from 
the loaded area as we go away or as we go below. In other words with just one expression 
by applying it  repeatedly  to different  points it  is  possible  to  get the entire  pattern of 
distribution of stresses below the foundation or below the loaded area at any depth or any 
point away from the loaded area including points outside the loaded area. 

(Refer Slide Time 27:17)



                     

This can be now extended to rectangular areas. Let us see how. This slide shows a typical 
rectangular  area,  this  is  the  x  coordinate,  this  is  the  y  coordinate  and  this  is  the 
rectangular loaded area. The dimensions of the loaded area are L and B, L in the direction 
x and B in the direction y. In order to compute the stress due to this loaded area at any 
point at depth, we assume uniform distribution of the load above. All these yellow lines 
indicate a uniformly distributed load over the entire rectangular area. 

There  are  two approaches  to  this  problem, we can divide  the rectangular  area  into a 
number  of  strips  and  apply  the  concept  of  loading  on  a  strip  and  sum them  up  or 
alternately  which  will  amount  to  the  same  thing.  We  can  once  again  proceed  from 
fundamentals, take a small area find out the stress due to this loading over the small area 
at the point A or p where we want the stresses and then integrate it over the length L and 
the length B. This later one, this approach is what has been preferred and expressions 
have been derived already. Very well known expressions are already available based on 
theory of elasticity to compute the stress at any point A due to uniformly distributed load 
over this entire area. The result will be the same whether we compute the stress due to 
various strips and add them or we compute due to any one element and sum it up over 
length and breadth L and B. 

And you can imagine that it has to be the same because after all everywhere basically we 
are applying the principle of super position repeatedly for point loads or concentrated 
loads acting at every point on the loaded area. So the final result will be given by the 
same expression and in this case the expression will be due to an elemental area, the 
stress is this where small p is the applied load per unit area, dx dy are the dimensions of 
the small elemental loaded area where dx is the dimension in the x direction and dy is the 
dimension in the y direction, z is the depth at which we desire to have the stress, x and y 
are the other coordinates. As I said the approach that we shall be preferring is one in 
which this elemental stress d sigma z at the point p is integrated over the length and the 
breadth. So this is integrated over B and integrated over L, this expression (Refer Slide 
Time: 30:16) and finally the resulting expression is expressed in terms of the applied load 



per  unit  area  p  into  a  factor  called  the  influence  factor.  This  influence  factor  is 
represented as Imn where m is nothing but a ratio of the width B divided by a two with 
respect to the depth z and n is the ratio of the length L and the depth z.

(Refer Slide Time 29:27)
                    

Once again non dimensionalization, this influence factor by definition as we had seen in 
the earlier cases also is nothing but the stress that is rising due to applied load that is the 
unit applied load. So if the influence factor is multiplied by the actual applied load we get 
the stress due to the applied load p and this influence factor is called as Imn because we 
are now dealing with influence factor over an area or for stresses over a rectangular area. 
Since a rectangular area has two dimensions which are unequal, the corresponding non 
dimensionalized dimensions at every depth z will also be two in number m and n. And 
therefore influence coefficient will depend upon the value of m and the value of n and 
therefore it is denoted as Imn and will vary as m and n vary.
 
If we have plot that expression pImn, what ever expression we have derived pImn. In this 
suppose we take p as unit  load,  we take the influence coefficient  Imn,  calculate  it  for 
several dimensions L and B of typical rectangular areas. Then we get the complete range 
of influence coefficients and a graph with the help of which rather than computing every 
time  the  influence  coefficient  we  can  merely  measure  it  of  from the  graph.  See  for 
example in the previous slide once again. This previous slide indicates that this influence 
coefficient Imn is nothing but integration with small p which is a constant taken outside. 
That means the influence factor Imn is nothing but the double integral of 3 into z cube dx 
dy by 2 pi into this (Refer Slide Time: 32:56). This entire integration operation can be 
considerably simplified, can be used repeatedly if we can develop non dimensional charts 
in advance. And that is what we are having in the next slide. 

In this  slide we are having non dimensionalized charts  which will  give the influence 
factors for different values of dimensions of the loaded area and depths.  Suppose the 



longitudinal dimension is expressed as m times the depth where z is the depth and the 
dimension in the lateral direction is n into z. Then if you look at this graph we have m 
along the x axis, we have the influence factors along the y axis and all these yellow lines 
here they are all plotted for different values of n. If I know m and if I know n, I can read 
of from this graph the corresponding influence factor and the influence factor multiplied 
by the applied load per unit area small p will give you the stress at this point A.  

(Refer Slide Time 32:32)
                      

We have several points under this loaded area, all of them at the depth say z. Then for 
which point shall we compute the influence factors? It is found convenient to develop 
influence factor charts for a point such as A below the corner of the loaded area. And that 
is precisely what is used to compute stress below any point below the loaded area. If we 
know the stress at any point below the corner it is found that it can be used again and 
again to compute the stress at any other point below the loaded area. 

Let us see how. Take this loaded area xy. This is the loaded area xy, this loaded area xy is 
like this where this length is L this length is B. Then suppose I want the stress at a point 
below this corner, I can directly use the influence coefficient chart which we saw in the 
previous slide. Because they have been derived specifically for computing stress below 
the corner. If I want the stress below let us say any other point such as B it is easy to 
visualize that the stress at this point B is going to be the stress due to an area like this, due 
to the remaining area and also due to this and finally this (Refer Slide Time: 36:06). In 
other words I have divided this into 4 smaller areas 1, 2, 3 and 4 as shown in the slide 
here. 

Once I divided the given area into 4 parts 1, 2, 3, and 4. In this diagram they are shown as 
equal areas but in general they need not be equalized. Once I divide the area into four 
parts then suppose this is the point below which I want the stresses say that is at point B.  
Then B happens to be at  the corner  of  area one,  at  the corner  of area  two and also 



similarly at the corner of area three and area four. It is just that it is at a different corner 
of each one of these loaded areas. So if I want the stress at this corner of area one, I shall 
appropriately choose m and n.  See for example the previous slide (Refer Slide Time 
32:32) once again you find here by definition in this sketch, if the point A is below this 
corner then this dimension is m, this dimension is n. If I apply that concept to area one 
here then this dimension is going to be the dimension mz and this direction is going to be 
the dimension nz. If I extend this to the area two, area two happens to the identical to 
definition sketch in the slide and that means this dimension is going to be mz and this 
dimension is going to be nz. 

We can extrapolate this, we can apply this same concept or same principle to the other 
two areas and compute this stress repeatedly due to each one of these rectangular areas at 
one of their corners. And then we have been using theory of linear elasticity and therefore 
the principle of super position is going to be valid. All that we need to do now is having 
calculated the stress at point B due to each one of these loaded areas, we simply sum 
them up to get the stress at B due to the entire loaded area. It so happens that we have 
assumed uniform loading over the entire area but suppose the loading also varies, we can 
apply different loading intensities to each one of these rectangular areas. 

But  we must remember  that  within any one rectangle the intensity  of loading has to 
remain  same,  because  the  formulae  that  we  are  applying  are  all  meant  for  uniform 
loading. That means for this area one, the intensity could be different in principle from 
the  intensity  in  this  area  p2,  this  is  p1.  However  it  does  not  affect  the  method  of 
computation, the method of computation remains same, it is just that we shall be having 
different intensities to deal with in each one of these loaded areas and the influence factor 
multiplied by the corresponding intensity of loading will give us the stresses at the point 
B. So this diagram which we have already seen tells us the principle behind computation 
of stress at any point beneath the loaded area based on the stress computed at one of the 
corners of any one of these loaded areas. 

(Refer Slide Time 39:55)



                           

Now comes the extension of the principle to circular areas. It is not uncommon to find 
circular  foundations.  Where  do we find  circular  foundations?  Where  we have  pillars 
which are circular in shape, it is good to have circular foundations. We have bridges, we 
have even buildings or structures which all have let us say possibility of having a circular 
shape. A water tank for example could be circular in shape, it will have a few columns 
and  it  is  possible  to  use  circular  foundations  for  these  columns.  And  these  circular 
foundations will also be amenable to computation of stresses by the same principles that 
we have been using all these time. 

(Refer Slide Time 40:46)
                         

For example what  we have been doing all  these while  was when ever  we wanted to 
compute stresses beneath an area, we took an elemental area. Within that small elemental 



area the applied load intensity is constant and by using the concept of stress beneath a 
very small loaded area which is as good as a point load. We now take the expression for 
that loaded area and integrate it over the dimensions of the loaded area. We can do the 
same thing with a circular area. Look at this circular area it has got a radius capital R, it 
has an uniformly distributed load against denoted by small p in kilo Newton per meter 
square let us say and we want the stress at any point A. This point A in general could be 
anywhere beneath the loaded area but in this particular diagram I have chosen the point 
directly beneath the centre. This is the radius capital R, in order to find out the stress due 
to this loaded area we take a small elemental area here at an angle or rather at a distance 
small r with a width dr and having a length given by rd theta. This area will impose a 
stress over the point A which will be given by an expression shown in the next slide. The 
expression for stress beneath the loaded area, beneath its centre is given in the form of 
influence factor sigma z by p equal to If equal to one upon  R by z the whole square plus 
1 raised to the power of 3/2. 

(Refer Slide Time 43:11)
                          

This  means  that  once  again  we  have  non  dimensionalized  the  stress,  we  have  non 
dimensionalized the lengths in this case the radius and therefore we have an expression 
which is general which can be used for all circular  loaded areas and it  is possible to 
evolve. Obviously charts, so that we can avoid repeated computation of the stresses using 
this formula. If you see in the next slide this is graph which has been precisely derived in 
the manner which I mentioned a while ago. The z upon R is plotted along the vertical 
dimension that is vertical axis and the non dimensionalized stress sigma z by p is plotted 
along the horizontal  axis and this  is therefore a non dimensional  of vertical  stress or 
vertical stress concentration with respect to non dimensional depth z upon R. And this 
has been computed specifically  for a  point  below the centre  of the uniformly loaded 
circular area. It can be extrapolated also to point away from the centre and even away 
from the loaded areas in a manner similar to what we had done for rectangular areas.
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We are armed with if you take stock of what we have done, we are now armed with 
methods for computing stresses beneath a point load which is extrapolated to a line load 
which is then extrapolated to a strip load which is then generalized for a rectangular area 
or for a circular area. This means that almost all regular shapes have been taken care of. 
Wherever  we  have  regularly  shaped  foundations  it  is  possible  to  apply  this  simple 
concept of theory of elasticity and repeatedly apply the principle of super position of 
stresses due to a number of point loads and cover the entire area. And in each case we 
have  simplified  the  process  of  repeated  computation  by  taking  a  small  element  and 
integrating over the area. And not only that we have further simplified the process of 
computing the influence factor by developing non dimensional charts in which influence 
factor  can  be merely  rid  off  by knowing non dimensional  lengths  and widths  of  the 
loaded area,  non dimensional  depth or non dimensional  diameter  or  non dimensional 
radius in the case of a circular loaded area. 
 
So  this  in  sum and substance  is  the  theory  of  elasticity  approach  which  is  used  for 
computing stresses below loaded areas. We have of course used the assumption that the 
load intensity is uniform. How ever it is also possible to compute stresses for non uniform 
loading intensities, all that is required is to divide our given area into areas of uniform 
loading into a number of areas of different uniform loading intensities, apply the principle 
that we have seen repeatedly each one of these sub areas, apply the principle of super 
position and get the total stress. So what we have done is in this lecture, to summarize we 
have seen this  stress distribution beneath a strip load,  beneath a rectangular  area and 
beneath a circular area. And as I said we will be in a position to generalize all these and 
extrapolate it to more generalized instances.  
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For example in the next lecture we will see how exactly to use this concepts which we 
have developed, the influence charts which we have seen, in order to compute stresses 
beneath  a  rectangular  area.  We will  see  a  number  of  examples  of  different  types  of 
loadings or different types of loading intensities of uniform and non uniform, of examples 
of computing stresses beneath or at points which need not necessarily be located below 
the corners of the rectangulated area. We will extrapolate all those methods to circular 
areas and then finally we will see how best we can calculate the stress beneath an area of 
any arbitrary shape. We will see as I said a number of numerical examples as well in 
order to reinforce the understanding of the methods that we have used. 

So with this I conclude today’s lecture. I have necessarily gone into detailed explanation 
of the procedure, I have gone into detailed explanation of the principle of super position 
and the concept that has been used in the computation of the stresses beneath each one of 
the areas. This is basic to computation of the stresses in any generalized situation such as 
loading below an arbitrarily shaped area. And what is more, in the next class we will not 
only  be  seeing  a  number  of  numerical  examples,  we  will  also  be  seeing  a  very 
generalized  chart,  a  graphical  procedure  which  can  be  used  for  any  shape  circular, 
rectangular or even arbitrary shaped. Now the understanding that we have developed in 
the today’s lecture is very essential to understand how the chart has been developed. In 
fact the chart has been developed by a person by name newmark, an engineer by name 
newmark whose name I have mentioned in the one of the earlier lectures. So with this I 
will conclude today’s lecture. 
Thank you. 


