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Welcome students we meet once again for a lecture on stress distribution in soils. We 
have come a long way in the last two lectures. We now have a fairly good idea about 
what this problem of stress distribution is all about. In the first lecture we had seen the 
importance  of  this  problem,  where  this  problem  is  arising,  where  we  need  stress 
distribution  in  soils,  where  we  are  particularly  concerned  about  the  ability  of  the 
foundation to withstand the stresses from the superstructure without distress. Under all 
these circumstances we need a method to compute these stresses. So in the last lecture in 
particular we were trying to take a look at the methods that are being used for computing 
stresses. 
 
So  let  us  take  a  look at  one of  these  slides.  This  slide  summarizes  briefly  what  we 
discussed in the last lecture. Let’s read it. We saw in the last lecture particularly what is 
the method for computing  stresses which is  based on the  theory of elasticity.  If  you 
remember I mentioned that there are major contributions based on the theory of elasticity 
to the subject of stress distribution from scientist such as J Boussinesq who gave a theory 
for  computing  stresses  based  on  theory  of  elasticity  rather  a  method  for  computing 
stresses based on the theory of elasticity. This was followed in the year 1938 almost 40 
years later by Westergaard who extended the method of Boussinesq to circular areas. 
Then came in 1942 a contribution from Newmark for computing stresses beneath any 
arbitrary area. Then we also saw in the last lecture how to compute the stresses due to a 
concentrated load.  



(Refer Slide Time: 03:57 min)

We saw in fact two broad approaches, one which I called the approximate method and 
another so called Boussinesq solution. If you recollect in the approximate method we just 
assume that soil is a particulate material. The stress from the foundation gets transmitted 
to the soil through the grains and in that process it disperses. If this is the foundation, we 
saw that the soil distributes the stress and at any depth z the area over which the stress 
gets distributed is no longer length into breadth but it is length plus depth into breadth 
plus depth.  And so if there is a load P here, its gets uniformly distributed over this area 
of L plus z into B plus z. This is in approximate method because the actual line which 
represents the boundaries of the area of distribution is approximate. Now on the other 
hand,  the  boussinesq’s  solution  takes  a  different  approach.  It  is  based  on  theory  of 
elasticity. 



(Refer Slide Time: 04:24 min)

Let  us see in today’s lecture how to use Boussinesq’s approach for computing stress 
distribution due to a point load and then due to line load. Let us briefly recapitulate what 
theory of elasticity is all about. It is necessary although we have covered it in the last 
lecture, to briefly go through this so that we will be able to appreciate Boussinesq theory 
a little better.  If you see this slide, we started with the assumption that soil is a semi 
infinite medium or half space. It is a continuum meaning there is no break, although the 
medium is consisting of granular material with distinct boundaries between the grains. 
We assume this to be a continuum; next we assume the medium to be homogeneous. The 
advantage is every element of the medium is similar to any other element.

If we understand the behavior of one element then we can extrapolate it to all the other 
elements and hence to the entire half space. That is the idea of assuming homogeneity, it 
considerably simplifies the problem, and in nature of course it may be difficult to find 
perfectly homogeneous material. We will see later on how best non homogeneity or in 
homogeneity can be included. We also assume that the soil has equal properties in all 
directions that is isotropic. Most importantly we assume that the soil has no weight which 
meant that there were no initial stresses and there was no initial deformation. 



(Refer Slide Time: 05:31 min)

The idea is that we will be in a position to calculate the stress in the medium, purely due 
to the applied stress due to a foundation. The self weight of the material of the soil which 
contributes a stress by itself can always be computed, if we know the depth and if we 
know the unit weight of the soil. And therefore theory of elasticity need not be used for 
computing  the stress due to the weight.  Then modulus of elasticity  is  assumed to be 
constant,  also  Poisson’s  ratio  and  other  elastic  constant  and  then  lastly  principle  of 
superposition is valid. That means if for example more than one load is applied to the 
foundation, the stress due to each load is added to the stress due to the next load and 
therefore we apply the principle of superposition.
 
In all these we have made an assumption also that the foundation is perfectly flexible, so 
that the contact pressure at the interface between the foundation and the soil is uniform. 
All these assumptions and their importance have been laid out very clearly, both in the 
last  lecture  and  I  have  emphasized  it  again  this  time.  Are  they  really  applicable,  a 
question automatically arises in the mind. Are we over simplifying the problem or we 
justified in making these assumption or they really acceptable? To some extend they are 
acceptable,  to a great extend application of this  theory in practice has vindicated our 
stand  that  it  is  reasonable  to  assume  the  soil  to  be  homogeneous,  isotropic  and  a 
continuum and also elastic in nature.  

You can say that the validity of the method, validity of these assumptions used in the 
method of computing stresses has been borne out by trails in the field. And therefore we 
can justifiably say that the method can be used with reasonable confidence in practice. 
However it must be noted that there can be deviations from the conditions which have 
been assumed. If there are deviations we shall have some approximate way of accounting 
for those deviations, using as a basis the expression which we will be deriving on the 
basis of these assumptions. 



That is we will derive a set of conditions, a set of equations or expressions for these ideal  
situation and any deviation from this will be accounted in some empirical way. Let us 
take a look at the next slide. This shows the soil element and the coordinate system, this 
we have seen already in the last lecture two.

(Refer Slide Time: 09:16 min)

So this is the element which we shall be analyzing to find out what is the stress in the 
element. And this is the coordinate system that we shall be using and this is the load P 
which is known as the point are the concentrated load, due to which we are interested in 
finding out what this stress at point P. We were taking a look at the fundamentals of the 
theory of elasticity  yesterday.  The theory of elasticity  assumes 4 or 5 major  tenants. 
Number one, it says that the material is in equilibrium.



(Refer Slide Time: 09:21 min)

A typical element inside the soil is in equilibrium under the action of the stresses which 
are acting on it. This is an essential condition and justifiable condition because in practice 
we want safety. We want the element to be in equilibrium, therefore the foundation will 
be in equilibrium and hence the superstructure. Therefore it is a perfectly valid, justifiable 
requirement to state that equilibrium must be satisfied by the element, for the set of forces 
or stresses which will be acting on it. We have seen in one of the diagrams earlier that 
every  surface  of  this  parallelepiped  is  subjected  to  one  normal  stress  and  two shear 
stresses. If we calculate the forces on each one of these planes and write down the well 
known equations of equilibrium for sigma x is equal to zero, sigma y equal to zero and 
sigma z equal to zero, this is what we will get. 



(Refer Slide Time: 10:39 min)

You can see here I have written three equations, one of them says sigma Fx is equal to 
zero and you find that it has a term which is noting but the rate of change of sigma x in  
the x direction, then the rate of change of shear stress dow x y in the y direction, rate of  
change of shear stress x z in the z direction plus so called body force x in the x direction. 
This is a force, which is force per unit volume which I mentioned yesterday. If we write 
equations for Fy equal to zero and sigma Fz equal to zero, we will get similar equations. 
All these three together constitute the so called equilibrium equations of a typical three 
dimensional problem of stress distribution.
 
In this if z is the vertical direction, z in fact represents the force in the vertical direction  
per unit volume of the soil which means that it is nothing but the weight per unit volume 
of the soil. It is nothing but gamma of the soil. We have just made an assumption that 
gamma or the medium weight does not exit. The medium is weight less and which means 
therefore we are ignoring the body stresses. We will also be ignoring the stress x, we will 
also be ignoring the stress y that means we shall be ignoring all these body stresses. And 
then the equations of equilibrium will simplify to nearly rate of change of stresses sigma 
x, sigma y, dow x y, sigma z and so on. 
You  will  see  here  that  there  are  3  normal  stresses,  6  shear  stresses  but  moment 
equilibrium equations if we write and solve we will find that dow x y is same as dow y x,  
dow x z is same dow z x. We will also find that dow y z is same as dow z y which means 
that  effectively  we  will  be  having  3  normal  stresses  and  3  shear  stresses  which  are 
unknowns.  We have  3  equations  but  we have  6  stresses  which  are  unknowns,  so  6 
unknowns  3  equations.  Obviously  equilibrium  condition  alone  will  not  help  us  to 
calculate  stress  distribution  because  we have  lesser  number  of  equations  and greater 
number of unknown stresses. Therefore we need to make or we need to consider some 
other condition as well. And that is why we went yesterday also to the second condition 
which is the strain displacement relations.



What are these strain displacement relations? I had explained yesterday again that if any 
typical  surface of the parallelepiped is considered,  it  elongates as well as distorts.  So 
there will be normal strains as well as shear strain. In a parallelepiped on every surface 
there will be two normal strains and one shear strains and therefore in all,  in a three 
dimensional  problem we will  have  normal  strains  epsilon  x,  normal  strain  epsilon  y, 
normal  strain  epsilon  z.  And  also  distortion  or  shear  strains  which  are  nothing  but 
variation or deviation in the angle where the original value of the angle was 90 degrees. 
So the change in angle of an original 90 degree angle is known as shear strain. It can be 
shown from geometry that the shear strain will be equal to this in the x y plane, in the y z  
plane this and z x plane this (Refer Slide Time: 14:37).
 
You will find on the right hand side of all these equations, there are notations such as u, v 
and w. These are nothing but displacements. So effectively now we have strains and the 
displacements  related  to  each  other.  After  all  strain  is  nothing  but  displacement  by 
original  length  or  change  in  length  by  original  length.  Therefore  strain  displacement 
relationship can be expressed as, epsilon as a function of u or v or w. And that is what we 
have; if you see this once again we have 6 equations.  And how many unknowns are 
there? There are of course 6 strain components but the displacements are also unknown 
and therefore we have 9 unknowns. Though we have 3+6, 9 equations, we have 6 + 9, 15 
unknowns. Obviously we are therefore not yet ready to solve this problem completely to 
obtain the stresses. Not only that, in this second set of equations which we have written 
down there are no stresses that means there are additional unknowns coming into the 
picture in the form of strains and displacements. 

Actually therefore these 15 are the unknowns of this problem, is not only the stresses but 
the strains and the displacements are also unknown. Primarily of course in this chapter 
which  we  are  discussing  we  are  interested  in  the  stresses  and  therefore  our  basic 
unknowns are the stresses.  However we need to solve all  these equations  in order to 
arrive at finally the stress values. There are obviously inadequate numbers of equations 
compared to the number of unknowns. Therefore we need to look for some additional 
conditions but without increasing the number of unknowns. And that is what really theory 
of elasticity does for us. Let us see the next transparency. Take a look at this, here I have 
written  down  these  stress  strain  relationships.  Actually  in  the  previous  two  sets  of 
equations really there was no theory of elasticity coming into picture. 

It was all equations pertaining to the equilibrium or the deformation of a typical element 
in the medium, in a continuum. Theory of elasticity really enters the picture now. If you 
see, the first equation is nothing but strain on the left hand side, modulus of elasticity and 
all the stresses on the right hand side, Poisson’s ratio is also included. This equation is 
extremely  simple  to  understand  and  derive.  Any  strain  in  any  direction,  we  know 
according to theory of elasticity must be equal to the stress divided by the modulus of 
elasticity. I am simply assuming that stress is linearly propositional to strain or in other 
word sigma is equal to some constant which I am calling as the modulus of elasticity into 
the strain. If you see this epsilon x is the strain in the x direction, it must be therefore 
obviously getting a component from the normal stress sigma x which is also in the same 
direction as epsilon x. 



So the component contributing to normal strain in the epsilon x in the x direction will be 
sigma x upon E, but when we are dealing with an element; If sigma x is contributing to a 
stress or a strain epsilon x due to Poisson effect, due to the Poisson’s ratio of the material, 
this material if it undergoes compression it will undergo in the vertical direction. It will 
undergo elongation in the lateral  or horizontal  direction which means that this is also 
going to affect the strain in the horizontal direction. If this stress sigma x is affecting the 
strain in the x direction,  due to Poisson effect it  will  also affect these strain in the y 
direction.  Now conversely the stress  in  the y direction  will  affect  the strain in  the x 
direction through the Poisson’s ratio. And that is what we have written here. We have 
seen that if there is a compression in the vertical direction here, there is an elongation in 
the  horizontal  direction.  Similarly  therefore  here  if  sigma  x  upon  E  is  a  positive 
contribution  to  epsilon  x,  the  contribution  from sigma y through Poisson’s  ratio,  the 
contribution from sigma z to epsilon x will both be negative.
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And so the stress strain equation or rather the strain stress equation or relationship for 
epsilon x in terms of the three unknown stresses will be like this. We have to appreciate 
the fact that we have succeeded in creating an equation based on theory of elasticity in 
which we have not introduced any new unknown. 

The unknowns are sigma x, sigma y, sigma z and epsilon x which were also there in the 
previous  equations.  The constant  epsilon and new are material  constant  and they are 
supposed to be known and they are constant. We can determine this epsilon and new in 
the laboratory for the material through certain test and therefore epsilon and new are not 
unknowns. If we now go to the strain in the y direction, an identical equation can be 
written in terms of sigma y, sigma z, sigma x also strain in the z direction. Similarly by 
similar argument and assumption of linear elasticity we can say that the shear strain in the 
plane x y will be the shear modulus G into dow x y where dow x y is the shear stress. 
This G also can be expressed in terms of the well known modulus of elasticity in the 



Poisson’s ratio as E upon two into one plus new. This can be continued further and we 
can write similar  equations for gamma yz and gamma zx.  These constitute  the stress 
strain relationship.
 
Now we are in a  very comfortable  position to  solve a  problem of  stress  distribution 
because we have not introduced any additional unknowns here and therefore our number 
of unknowns remains same as before that is 15. But on the other hand whereas we had 9 
equations  earlier,  we now have 6 additional  equations  which  mean we now have 15 
equations and 15 unknowns. These can therefore,  theoretically  speaking we solved in 
order to get the stresses. Once we get the stresses, we have after all  the stress strain  
relationship right here in front of us. If we know the right hand side,  we can always 
calculate the left  hand side and if we know these strains we can always calculate the 
displacements. And therefore we can say that this approach can be used to completely 
solve  the  problem  of  not  only  the  stress  distribution  but  also  the  strains  and  the 
displacements which are also unknowns in a typical problem. This is a set of equations 
which theory of elasticity attempts to solve.
 
If you try to solve the 15 equations step by step, you can finally arrive at a condition 
which is known as the Laplace’s equation. I shall not be going into the details of this, you 
can  always  obtain  the  details  of  this  solution  process  from  any  book  on  theory  of 
elasticity. This is an equation which is known as Laplace’s equation, the left hand side is 
nothing but consisting of second derivatives of the stresses and the right hand side is zero. 
We have made an assumption, we should not forget that the body stresses x, y and z are 
zero here. If the body stresses are zero then we have a Laplace’s equation. It may be 
worthwhile mentioning here, although I shall not go into details that if the body stresses 
are not assumed to be zero, we can still solve the problem. Then on the right hand side we 
will have a non zero term and the equation will be then known as Poisson’s equations.
 
However we are interested now in the problem of stress distribution using the method of 
Boussinesq and we shall confine ourselves therefore to that main assumption which he 
has made and the corresponding equation which we have, that the main assumption if you 
remember is the medium is weightless and therefore the equation that we shall apply now 
in our conditions is the laplace’s equation. How do we solve this Laplace’s equation to 
get the unknown stresses? As I said once we solve this and get the unknown stresses, we 
can always go to the stress relationship, get the strains and then the displacements. So let 
us see how this is solved. Once again I may not be in a position or it may not be required  
to go into the elaborate details of solving the Laplace’s equation. 

I will just mention that the Laplace’s equation is solved by defining a so called stress 
function. This function phi here is known as Airy’s stress function. This Airy’s stress 
function is a function which tells you what the stresses are in a medium and how they are 
distributed  in  terms  of  an  equation  like  this.  This  equation  has  been  derived  by 
Boussinesq for those 15 equation’s which we had considered earlier.  And the special 
property of this function phi is del to the power of 4 into phi =0. If you remember, let us 
take a look once again at the Laplace’s equation. This Laplace’s equation can also be 
written as del square (sigma x plus sigma y plus sigma z) =0 where this del square stands 



for a sum of the partial derivatives, del square by del x square, del square by del y square 
and del square by del z square. But this is of the second order. On the other hand this 
stress function phi satisfies the condition, del to the power 4 into phi, this is del to the 
power 4 into phi that means the fourth order derivatives come into picture. Fourth order 
derivatives of this function phi equal to zero. 

(Refer Slide Time: 28:51 min)

This  has  been  shown  in  the  theory  of  elasticity  that  this  will  satisfy  that  Laplace’s 
equation. This will serve as a function, that is a function of position, a function of the 
coordinates r, z of this form which will satisfy the condition del to the power 4 into phi 
equal to zero, will  also satisfies the Laplace’s condition which we saw earlier,  which 
means that this is a valid solution and this will give us the stresses. From here the stresses 
have been obtained by Boussinesq. If you see here there are constants c1, c2, and c3. The 
solution  which  we  have  derived  or  evolved  so  far  has  not  considered  any  specific 
problem. Although I have been saying that we are interested in this stress distribution 
problem, up till now we have not specified what the stress distribution problem which we 
are considering is. We have not stated whether it is a problem of a wheel load on an 
embankment or a dam sitting on a rock foundation. We have not stipulated whether it is a 
foundation problem or a tunnel problem. This means that up till now whatever solution 
we have evolved is a very general solution and therefore it consist of certain constants 
and these constants will vary from problem to problem. 

And thus this same solution will apply to different problems, however in each problem 
there will be a different value of the constants c1, c2 and c3  and these c1, c2  and c3 are all 
determined from the specific boundary conditions of that particular problem. They will 
all be determined from the specific boundary conditions of the given problem. I am not 
again, going into the details of the all the boundary conditions. But just to illustrate one 
boundary condition which we can easily appreciate is on the surface of the medium, there 
is no vertical stress. That means at z equal to zero where z is the depth and at z is equal to 



zero on the surface there are no stresses, sigma z is zero. So that is a boundary condition. 
That is an example of a boundary condition, there will be other boundary conditions as 
well. And all these are taken into account and Boussinesq has arrived at a solution for the 
stress distribution problem in general of this shape.

Lastly if you see this next slide, I have mentioned something known as compatibility 
condition. Let us take a look at what these compatibility conditions are. I have just now 
stated  that  this  is  a  general  solution  valid  for  all  problems  of  stress  distribution 
irrespective of whether it is a tunnel or retaining wall or a dam. Then one condition which 
must be inherently satisfied is that when under these stresses, strains and deformations or 
displacements takes place,  our basic assumption of continuum should not be violated. 
What it means is, suppose I take this surface of the soil. Suppose I consider this element  
actually it is a three dimensional element like this. I consider also the adjacent element, 
actually these are so called contiguous elements meaning they are adjacent, touching each 
other.  However  for  convenience  in  imagination,  I  have  drawn  them  as  to  separate 
elements. 

(Refer Slide Time: 31:44 min)

You see when these two elements are adjacent elements, when each element undergoes 
some strain or deformation. If this material has to remain as a continuum then there must 
be some relationship that must exit between the strains on the deformations of the two 
elements. Otherwise what will happen is for example, suppose this undergoes a strain and 
takes a shape like this.  And if  this  takes a shape like this (Refer Slide Time:  30:35) 
obviously there is a loss of contact between the two elements. 

That means these two strains are not compatible. You can extend this concept at three 
levels that is along this surface and along this surface. At this corner and at this corner 
and at all  points the displacements must be similar or equal,  so that the two surfaces 
remain  in  contact.  Then  from  this  point  to  this  point,  if  there  is  a  variation  in 



displacement here that means if there is a strain then the strains must be same in both. On 
the other hand it is not enough if only strains are same, if this now undergoes a deformed 
shape like this, then the slope of the deformed shape at every point must be also equal to 
the  slope  of  the  deformed  shape  of  the  other  corresponding  surface.  And  also  the 
curvature of this  surface must be same as the curvature of this  surface.  All these are 
stated mathematically and a set of conditions known as the compatibility conditions have 
been derived in the theory of elasticity. I am not going now into the details of all those 
equations and how they have been derived, but suffice it to understand that the complete 
compatibility  between  adjacent  elements  in  terms  of  strains  and  displacements  and 
curvatures has to be maintained and that is possible provided we satisfy the compatibility 
conditions.
 
So  a  typical  theory  of  elasticity  solution  will  consider  equilibrium  equations,  will 
consider strain displacement relationship, will consider compatibility conditions and then 
solve and get the value of stresses through the Airy’s stress function. So if you look at the 
slide you find that our basic attempt is to derive the Laplace’s equation and then to use 
the stress function approach to get the stresses. Though this is precisely what has been 
done by Boussinesq. 

(Refer Slide Time: 32:43 min)

You take a look at all these stresses, first one is a stress sigma x, next one is the stress 
sigma y, third one is the stress sigma z. What are these stresses? Let us just go back for a 
moment.  You see here this is the element,  sigma x, sigma y, sigma z are the stresses 
which are acting in the respective directions on this elements. So these are the stresses we 
are talking about. You see here, the stresses are sigma x, sigma y and sigma z. And what 
is of greatest interest to us is the vertical stress sigma z. 
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Luckily for us the expression for sigma z is a very simple and compact expression. It is 3 
P z cube upon 2 phi L to the power of 5 or 3 P by 2 phi into z cube by r square plus z  
square to the power of 5/2. That is 3 P by 2 phi into z cube by r plus z square to the power 
5/2 where r is noting but square root of x square plus y square and L is nothing but square 
root of x square plus y square plus z square or square root of r square plus z square. What 
do these mean? Here you can see this is x, this is y, this is z and r is nothing but this step  
(Refer Slide Time: 34:06). This figure shows the cylindrical coordinates system and in 
the case of cylindrical coordinate system rather than having stresses sigma x, sigma y, 
sigma z, we will be having stresses sigma r, sigma theta and dow r z. These can also be 
computed by the same business approach and the corresponding expressions that we shall 
be getting if we solve, will be like this. 
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Sigma r will be given by an expression like this, sigma theta by an expression like this 
and the shear stress dow r z by an expression like this. The parameter mew that comes 
here  is  nothing  but  the  Poisson’s  ratio.  Let  us  see  the  next  slide.  This  slide  is  of 
importance, this talk about the vertical stress sigma z and if you look at the value or the 
expression for sigma z, you find that capital P is the load applied. This is a constant that 
is 3/2 is a constant, r and z are the coordinates of any point at which we want the stress or 
at which sigma z is equal to this. Therefore we can express this sigma z in terms of some 
constant quantities and in terms of some quantities like r and z which vary in the medium 
depending upon the point of interest. So if you rewrite this equation in the form sigma z 
equal to P upon z square into a parameter called If or influence factor. That influence 
factor, if you compare these two will turn out to be equal to If equal to three upon two phi 
into one upon r by z whole square raised to the power of 5/2. This influence factor is  
nothing but a factor which includes the constant term 3 and 2 phi and the ratio of the 
coordinates r and z. And if we can evaluate this If  or the influence factor for different 
ratios of r and z, then we have a way of generalizing the stress computation problem.

The vertical stress sigma z and the expression can be generalized to a great extend, if we 
write it in the form P by z square into the influence factor. Because the influence factor 
can be computed irrespective of this problem and kept ready for different values of r by z. 
And that is what you will be seeing in the next slide. You see here a table of influence 
values  for  vertical  stresses  due  to  a  point  load  P  on  the  surface  of  the  medium.  A 
concentrated load P will cause different vertical stresses at different r by z ratios and the 
corresponding to each r by z ratio, we will have an influence factor If which was given by 
the expression which we saw in the previous slide. 
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And you find here r by z varies from 0 to 0.9, 1 to 1.9, 2 to 2.9, we can go on adding but 
very often in practice we confine ourselves or restrict ourselves to this range of r by z 
values.  If required we can always go back to the general expression for sigma z and 
substitute the appropriate value of r by z and go ahead with the computation of sigma z, 
however if we want to simplify and make use of this table. 

This table can be used for all values of r by z which range from 0 to 2.9. You see the 
values of the influence coefficients at the top, near the surface where r by z is 0, we have 
maximum influence coefficient 0.478. That means maximum stress occurs directly below 
the load and as we go away, either in the radial direction or with respect to depth z, we 
find that the influence factor gradually goes on decreasing to a lower value as 0.0018 at 
an r by z of 2.90 which means if we go either radially or downwards from the load then  
the influence factor goes on decreasing and therefore the stress goes on decreasing. In 
addition if you go back to that equation, you find that it is not only the influence factor 
which goes on decreasing with r by z and therefore brings down sigma z. Sigma z is a 
fraction  involving  P  and z  square  which  means  that  it  is  inversely  proportional  to  z 
square, which means as depth increases sigma z goes on decreasing as a function of the 
inverse of this square of distance. That means it decays very rapidly, although we go 
down by a distance z, depth wise, the stress decreases by a magnitude of z square. That 
means there is an inverse square formula in operation and the sigma z therefore both 
laterally and with depth will go on decreasing. But you will also find that up to certain 
distance initially it will increase and then it will decrease, which we shall see now.

This is a table  of the r by z values and influence factor.  This table  conveys a lot  of 
important information. For example if we put r equal to constant, how does the stress 
vary or if you put z equal to constant in this, how does the stress vary or which are the 
points irrespective of different r by z which will experience the same stress which will 
have the same influence factor or same stress at least? This we can analyze as follows. If 



you take a close look at the table of vertical stresses as I mentioned, we can analyze the 
effect of the variation of z, the variation of r and how the stress itself varies. So coming 
back to this slide, a close look at the vertical stress expression will tell us, at constant 
depth z what happens to the stress values, at constant radial distance r what happens to 
the stress values and what constant stress values will occur where? Take this table, I have 
given here once again the influence factor and the expression for sigma z in terms of the 
influence factor and now I am going to consider, at r equal to zero the effect of z.

(Refer Slide Time: 40:47 min)

I am taking a constant value of z and at a constant value of z as r increases, how the 
influence factor varies and how the stress varies? Suppose we start with r equal to zero, at 
r equal to zero the influence factor can be computed from here to be equal to 0.4775. And 
as I mentioned while showing the previous slide at r = 0, the maximum stress occurs. So 
here this shows that r = 0, the influence factor is 0.4775 and the maximum stress that  
occurs at r = 0 is P upon z square into 0.4775. 



(Refer Slide Time: 41:01 min)

Whereas at the same depth z, as the value of r changes from zero, as it goes to a higher  
and higher value. We find that at constant z and varying r, at r by z = 0.5, influence factor 
reduces to almost half this value and the stress reduces to almost little more than half of 
the maximum. And when r/z = 1 that is r and z are equal, the influence factor sharply  
drops down to a very low value of 0.0844 and the stress also reduces to a very low value  
of 0.177 of the maximum value which is occurring at the surface. 

(Refer Slide Time: 43:07 min)

At z equal to two or rather at r/z =2, the influence factor further drops down and the stress 
becomes 0.18 times the maximum stress here. From this table whatever we are able to 



figure out, can be understood better from a graph. Take this graph, this load is acting at 
the center here, these are the x and z coordinate. I am taking a constant z and different 
values of r. At different values of r, I have just shown you that the influence factor goes  
on decreasing as you go away from this point and therefore the stress goes on decaying 
and this is what is a typical stress distribution at a constant value of z. This is important 
or very useful.  It  shows that  the effect of the load fortunately for us does not go on 
extending  to  very  long  distances,  it  starts  decaying  after  a  reasonable  distance  and 
becomes very close to a value of almost zero at a reasonably short distance. What this 
means  is  if  two  foundations  are  kept  side  by  side  at  a  reasonable  distance  then  the 
influence of one foundation may not affect the stresses due to the other foundation. This 
is an important idea. This shows that if two foundations can be spaced in such a way that 
one does not affect the stresses due to the other, then the soil will not be subjected to 
unduly  excessive  stresses.  Just  imagine  I  have  one  more  foundation  and  one  more 
concentrated load just very close to this. Then that will also have a distribution like this, 
which  means  that  there  is  an  overlap  between  the  two  distributions  due  to  the  two 
concentrated loads which means that there is a zone which will experience stresses due to 
both the loads. And therefore the total stress that zone will experience will be almost 
double the value of the stress due to one of the foundations. In practice sometimes it is 
unavoidable to keep two foundations close to each other and therefore in such instances 
we have got to take the relative influence of each foundation on the other. 

Let us see the next slide. We shall try to understand what happens to the influence factor 
and the stress at constant r but varying z. As before this is the expression for the vertical 
stress where this is the influence factor. This 3/2 phi into this (Refer Slide Time: 45:24) 
represents the influence factor. If r is constant here, sigma z will vary with z. How does it 
vary? 

(Refer Slide Time: 45:41 min)



We can see that as it varies, somewhere it has got to be maximum or minimum. In order 
to  find  out  where  sigma  z  reaches  its  maximum  value  with  respect  to  z,  we  can 
differentiate this expression with respect to z. The d sigma z by d z can be put equal to 
zero and if you differentiate this with respect to z and put equal to zero and solve for r 
upon z, you will find that r upon z is nothing but 0.817. That means sigma z becomes 
maximum as we go down at an r by z value which is given by 0.817 or by a certain line 
which depicts r by z which will make an angle theta equal to 39 degrees 15 minutes. At 
this value of r by z, the corresponding maximum value of stress will be sigma z max 
equal to 0.0888(P/ z square). That means this is the influence factor, which means that the 
vertical stress sigma z reaches a maximum value at some depth. This implies that it is not 
the maximum value at other depths and this is interesting as once I have pointed out in 
one of my earlier lectures.

The vertical stress first goes on increasing with depth, it reaches a maximum value and 
then again drops down, luckily for us and therefore at very great depths the stresses will 
be decaying and they will have a less than maximum value. Let us see the next slide. This 
slide show how the vertical stress varies with depth at constant r. So let us say these are 
the two axes, take a distance r this is z, this is r. If I draw a line of r by z, this is what that 
line we look like. 

(Refer Slide Time: 47:31 min)

If at a constant r given by this line, I try to plot the value of sigma z computed by the 
previous expression then I will find that sigma z is some value at z equal to zero and will 
gradually go on increasing,  will reach a maximum value at some value of z and then 
again it will decrease and will become almost steady as we reach a very high value of the 
depth. And this line which gives effectively the ratio r upon z will have an inclination 
theta given by the expression in the previous slide that is 39 degrees 15 minutes. So in 
effect you will find that the maximum value of stress will occur at a point here which 
when joined to the origin will make an angle of approximately 39 or 40 degrees with 



respect to the vertical. Lastly let us take a look at how the stress varies in the medium 
which are the points of equal stress. The same equation for sigma z can be again used and 
if we try to calculate at different values of r by z, the value of z and find out all those r by  
z values corresponding to h, we get the same sigma z and join all of them, we will get 
what are known as isobar or pressure bulbs. 

(Refer Slide Time: 48:47 min)

Because this represents pressure, this is in the form of a bulb we call it a pressure bulb 
and since it represents lousy of all points which have the same pressure. Rather since this 
bulb represents a line of equal pressure this is also known as isobar. This figure actually 
represents that if I apply a load P, as I go down 0.5 times the magnitude of P will be the 
pressure at some depth. As I go further down it could reduce to 0.25 times the magnitude 
of P and then at some depth it can become 0.1 times the magnitude of P or I can get a 
pressure per unit area here or the stress per unit area here which will be roughly 10 % of 
the magnitude of the applied load.
 
What this signifies is that beyond this, the stress that is imposed by P is not much. It is 
almost in significant because if we take 10 % to be significant anything less than 10 % to 
be not so important or not very significant which is a very valid assumption in practice. 
Then any pressure bulb which is beyond this which corresponds to a stress level of less 
than 0.1 times P may be unimportant. From the point of view of influence of this P, may 
be very well assumed to be restricted to a pressure bulb defined by 0.1 P.
 
Let us take a look at the next slide. This is the statement of a small example problem. 
Determine the vertical stress on a horizontal plane at a depth of 12 meters corresponding 
to a concentrate a load of 800 kilo Newtons applied on a semi infinite media.  



(Refer Slide Time: 50:52 min)

Applying  our  expression  for  sigma  z,  which  is  P  by  z  square  into  the  influence 
coefficient. At r/z =0 we find that influence coefficient is 0.47745 which means that the 
stress sigma z is nothing but 2.653 kilo Newton per meter square. You see how simple 
the problem of stress computation has become. This has helped us to find out the stress at 
r/z =0, that is at r =0 and z =0, at that top surface. This is the maximum value of the stress 
due to the applied load in this particular problem. 

(Refer Slide Time: 51:02 min)



(Refer Slide Time: 51:45 min)

And by taking different values of r by z and different values of corresponding I f we can 
go on computing stress at different locations. This can be extended also to line loads. 
Line loads are nothing but uniformly distributed loads. Suppose we consider a line load 
of P kilo Newton per meter, we can compute these stresses due to this line load by the 
same expression. Only thing is that expression will now be integrated for all the points 
along the line load. And if we do that the Boussinesq expression for sigma z for a line 
load will turn out to be 2 P by phi into z cube by x square plus z square whole square 
maneuverability.

So now if there is a line load of 400 kilo Newton per meter, at x = 5 meters and z = 5 
meters we will get a value of sigma z from these expression equal to 12.73 kilo Newton 
per meter square. See now how simple the computation of stresses has become, although 
we used the theory of elasticity which involved solving a number of equations. We find 
that luckily for us all those equations can be solved in a very general manner and we can 
arrive  at  simple  expressions.  So we need not  solve those equations  again  and again, 
luckily for us those expressions and the corresponding influence coefficients are more 
than sufficient to compute the stress. And by taking different values of x and z or r and z 
we can go on calculating the stress distribution in the entire medium.
  
Coming to the end of this lecture, I can say that we have seen the basics of theory of  
elasticity, the Boussinesq problem and how it is used for computing stress distribution 
both due to a point load and due to a line load. We have also seen two simple examples of 
application of these expressions.  Tomorrow or in the next  lecture we shall  be seeing 
details of how to compute stress distribution below a rectangular area, below a circular 
loaded area and below an area of any arbitrary shape.  
Thank you.                                                                                                                              


