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Kinematics of Fluid Flow 

Welcome back to the video course on fluid mechanics. In the fluid kinematics which we 

were discussed in the last few lectures, the last lecture we discussed about the Reynolds 

transport theorem, then the conservation of mass, the continuity equation which we have 

derived based up on the integral formed and also seen that we can use either integral form 

of differential form. Today we will discuss about the linear motion deformation then 

rotational flow and then we will go to the potential flows and further we will see the 

applications of the potential flow. 
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We can see here, linear motion deformation, so volumetric dilation rate as we discussed 

in the last lecture, it is the rate of change of volume per unit volume, say del v that means 

the velocity vector. We can express this as del u by del x plus del v by del y plus del w by 

del z, where u v and w are the velocity component in xyz direction. 



As we can see in this figure, if it is a 2D problem, linear motion with respect to linear 

motion deformation you can see that Vu is the velocity here at location at delta x, a way 

the velocity will be u plus del u by del x plus delta x and v is the velocity direction here 

then the other say at a distance delta y the v velocity will be v plus delta v by delta y. 

Like this we can see the linear motion with respect to fluid movement and deformation. 
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Here we can see that with respect to the deformation the volumetric dilation rate is 0 for 

an incompressible fluid so that we can see that the variation of velocity of the direction of 

the velocity simply cause linear deformation or fluid element shape does not change, that 

means the volumetric dilation rate is 0, since the fluid is incompressible and then 

variation is already in the direction of the flow that means shape does not change so that 

we can cross derivative such as del u by del y only cause angular deformation. But if you 

take the direction of flow like del u by del x, that means the velocity u is in the direction 

of x and del u by del x is the deformation in the x direction and if you take the velocity 

component y direction then if you take del v by del y or the velocity component z 

direction del w by del z. 

So, all this in the direction of the velocities or in the direction of the corresponding 

Cartesian coordinate so that we can say that only linear motion takes place there is no 



angular deformation, so with respect to this, here we can say this del u by del x plus del v 

by del y plus del w by del z is the total volumetric dilation. Now, this we will further 

elaborate in the case of angular motion and deformation. 
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If the velocity is the dilation or in the change in velocity changes in the direction of that 

coordinate system then it is only linear motion, but if it is in the other direction say for 

example, del u by del x if we are considering del u by del y, it will be an angular motion 

or it will make an angular motion or deformation. So rotation of fluid particles certain 

velocity gradient like u plus del u by del y or delta y, here we can see that the change is in 

the other coordinate systems. So, u is in this direction of x that means x is in this direction 

and velocities are in that direction and v is in the y direction so but if the deformation is 

with respect to y. 

The deformation change in u is with respect to y means del u by del y and say for two 

dimensional problem if the change in velocity for v in the direction of x or del v by del x 

then we can see that there will be rotation of fluid particle and then certain velocity 

produced which may cause angular motion and the deformation. This aspect is very 

important when we see whether there is any rotation or there is no rotation that means 

rotational flow or irrotational flow. So whether there is any angular deformation takes 



place that is very important to see based up on that we can say that the flow is rotational 

or the flow is irrotational. 
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For example, if you take this fluid element, say which is in 2D we are considering, so 

delta x is the length of the fluid element delta y is the width of the fluid element which 

we are considering. Initially the shape is say just like in a rectangular shape shown here 

but due to deformation that means there is change of velocity in y direction for u that 

means del u by del y and velocity v in y direction changes with respect to x are del v by 

del x. 

Then you can see that the there is angular deformation takes place at the rate of delta here 

in this figure and then the angular deformation is in this direction so A is stricter to A 

dash and B is V to B dash and then with respect to this we can say that there is say 

rotation and the rotation rate is return say omegaOA that means the rotation of this fluid 

element with respect to this OA is the omegaOA is del v by del x and the rotation of the 

fluid element with respect to OB if this is origin O. 

So, omegaOB is the rotation is del u by del y. If it is del u by del x or del v by del y, then it 

is only linear motion and there is no deformation place in the other direction as spread 

here. But if the deformation is with respect to other axis that means u is changing with 



respect to y and v is changing with respect to x for a two dimensional problem as 

explained here, so omegaOA is del u by del x and omegaOB is del v by del y. 
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This rotation of the element say about the z axis, if we consider z axis also then the 

average of the angular velocity so omegaOA and omegaOB of two mutually perpendicular 

lines OA and OB we can write omegaz is equal to half del v by del x minus del u by del y 

with respect to the angular deformation if this is xy and this is z direction, so we can see 

which we consider this is OA and this is OB and then deformation takes place and then 

omegaOA, we have already seen here omegaOA is equal to del v by del x and omegaOB is 

equal to del u by del y. 
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Here, we can see that omegaz is the rotation of the element about z axis and then we can 

write this omegaz which is the rotation about the perpendicular axis with respect to x and 

y is obtained as half del v by del x minus del u by del y, so omegaz is equal to half of del 

v by del x minus del u by del y. 

Like this we have the rotation that we defined in the direction of z that means with 

respect to OA and OB in this figure we have found the rotation omegaOA and omegaOB. 

Similarly, like this we can derive the rotation of the element in the x axis that means 

omegax can be defined as half del w minus w by del y minus del v by del z and then 

similarly the rotation of the element about y axis will be half del u by del z minus del w 

by del x.  
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Now, the rotation of the element, finally the rotation vector for rotational flow can be 

represent as omega is equal to as shown in this slide we can write omega is equal to 

omegaxi with respect to ijk triode, that means with respect to the xyz direction if you 

define unit vector i j and k then the rotation vector can be written as omega bar is equal to 

omegaxi plus omegayj plus omegazk where ijk are the unit vectors in xyz direction and 

omegax omegay and omegaz are the rotation components in xyz direction as we find 

earlier. 

The rotation vector finally we can write as half curve of the velocity vector written like 

this so that is equal to half del cross V bar, that is equal to half of say with respect to ijk 

del by del x del by del y del by del z of uvw so it can be written in this vectorial rotation 

like this and then the rotation vector can be written as a curl of the velocity vector like 

this. Now with respect to this rotational vector we can define a term called the vorticity 

and this vorticity is related to the fluid particle rotation. 

So the vorticity can be defined as in the case of a rotational type of fluid, the vorticity we 

can define as say as psi vorticity psi is equal to two times say the omega vector so this is 

equal to del cross v bar, so this is called as the vorticity of the fluid moment so for 

rotational flow we can define the vortices as two times the rotational vector which is here 



or that is equal to del cross the velocity vector. This is defined as vorticity. So rotational 

flow determination of the rotational vector vorticity is very important as we had defined 

in the previous slide, so first we are starting with respect to a fluid element and then we 

are giving some rotation and say for example, for the velocity change in the x direction u 

with respect to del u by del y and v is with respect to del v by del x. 
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Like that we are taking and then finally we are defining the rotational vector with respect 

to z axis as half of del u by del x minus del u by del y and the rotational vector in the 

direction of x axis half of del w by del y minus del v by del z and finally the rotation in 

the y direction is half of del u by del z minus del w by del z del w minus del x and then 

finally the rotational vector is defined and finally we are defined the vorticity with respect 

to this rotational vector as two times of omega bar or del cross v. 
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Now, with respect this say wherever rotational flow is concerned with respect to the 

rotation and vorticity we can also define another term called Circulation. So, circulation 

is defined as the line integral of the tangential component of velocity taken round a 

closed contour. If you consider a closed contour, the term circulation is defined as 

circulation is equal to capital gamma is equal to the integral VSdS. 

So, with respect to this figure it is defined here, we are considering say a closed contour 

and there circulation is defined as the line integral of the tangential component of the 

velocity taken. The limiting value of circulation divided by area of the closed contour, as 

the area tends to 0, is the vorticity along an axis normal to the area. So with respect to 

circulation also we can define the vorticity, that means, it is the limiting value of 

circulation divided by the area of the closed contour as the area tends to 0 is the vorticity 

along an axis normal to the area. 

As for as rotational flow is concerned, the rotational say vectors omegax omegay omegaz 

and then the vorticity and then circulation is very important term with respect to this. 

generally we will be describing the rotational fluid motion. 
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Now, after this rotational flow, we discuss about the irrotational flow. Irrotational flow 

that means here as we have seen in the previous slide, here in the case of irrotational flow 

there is no scope for rotation, that means fluid is only in the direction of the changes 

which is only in the direction of the velocity changes takes place in the direction of x for 

velocity component u and say in the direction of y for velocity component v and in the 

direction of z for velocity component w. 

So, irrotational flow where we can define this del cross v bar is equal to 0, that means the 

rate of angular deformation or rate of shear strain say here this gamma is del v by del x 

plus del u by del y so there is no rate of angular deformation rate of shear strain is to be 

neglected, this tend to 0. So, the irrotational flow is defined where cross v is equal to v 

bar is equal to 0. 
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So, for the irrotational flow we can see that we do not have to consider the rotational 

components like omegax omegay omegaz as we have seen earlier, so for irrotational flow 

the vorticity is 0 or del cross v is equal to 0 that means if we consider the rotational 

component z direction so here, all the rotational components are 0. So omegaz is equal to 

0, that means say half del v by del x minus del u by del y is equal to 0 or we can write say 

del v by del x is equal to del u by del y. 

Similarly, we can write with respect to omegax omegay and omegaz, that means for 

irrotational flow we can write for irrotational flow omegax is equal to 0 omegay is equal 

to 0 and omegaz is equal to 0, this omegaz is equal to 0 this gives say as we have defined 

omegaz is half del v by del x minus del u by del y that gives say this is equal to 0 that 

means we can write del v by del x is equal to del u by del y. 
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The other components like say as we have defined earlier, if you can take the component 

omegax is equal to 0 that will give del w by del y is equal to del v by del z and similarly if 

we consider the component in the direction on omegay is equal to 0 del u by del z is equal 

to del w by del x, so here for irrigational flow all the rotational components are 0s. 

So that we can write del w by del y is equal to del v by del z and then del v by del x is 

equal to del u by del y and then del u by del z is equal to del w by del x. Like this we can 

define all the terms say when omegax is equal to 0 del w by del y is equal to del v by del z 

when omegay is equal to 0 say del u by del z is equal to del w by del x and when this 

omegaz is equal to 0 then del v by del x is equal to del u by del y, that means all the 

vorticity components are 0.  
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Now, with respect to this we will just see one example with respect to this irrotational 

fluid flow, we will discuss a small example here, so here we want to see there is a two 

dimensional flow for here the example we are going to discuss is the irrotational flow 

example. For irrotational flow, the fluid flow in two dimension can be expressed by the 

equation v bar is equal to 2 xy I plus x square minus y square j so this 2D flow v bar is 2 

xy i hat plus x square minus y square j hat, so we are determine whether the flow is 

rotational or irrotational. 

Since the velocity vector is now defined as 2 xy i hat plus x square minus y square into j 

hat, this is the velocity in two dimension, so u can be in the velocity in x direction can be 

written as say u is equal to 2 xy and then v is equal to x square minus y square, here we 

are considering the two dimensional flow, so w is equal to 0, u is equal to 2 xy v is equal 

to x square minus y square and w is equal to 0. Now, we will take each component of 

what we have already defined rotational components omegax omegay and omegaz as per 

our definition on omegax is equal to half del w by del y minus del v by del z is equal to 0. 

Since the flow we want to show whether the flow is rotational or irrotational to show that 

if it is totally irrotational, then all the components so omegax omegay and omegaz should 



be 0. For this particular problem is concerned, here you can see that w is already 0 and 

then we don’t consider z direction since z component is not there. 

So, the flow is in two dimension so that we can see that omegax is equal to half omega del 

w by del y minus del v by del z so w is already 0 so this component will be 0 and del v by 

del z since there is no variation with respect to z so this will be also 0 so that we can 

show that omegax is equal to 0. Similarly, we will now do it for omegay. 
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So, omegay as per our definition is omegay is equal to half del u by del z minus del w by 

del x, here again del u by del z, there is no change of velocity in the direction of z, this 

also tends to 0 and w is already 0. Finally del omegay is equal to 0 and then the third 

rotational component omegaz is defined as half of del v by del x minus del u by del y, so 

that we can write this is equal to, so here the v is as far as our definition is concerned u 

bar is equal to v bar is equal to 2 xy i plus x square minus y square j. 

So u is defined as 2 xy and v is defined as x square minus y square so that del v by del x 

if you differentiate v with respect to x, del v by del x we will get as say when we 

differentiate this will be 2 x and the del u by del y will be again 2 x, so half of del u by 

del x minus del u by del y it will be ha lf of 2 x minus 2 x so that also is equal to 0. So 



that finally we can see that all the rotational component omegax omegay and omegaz are 0 

and here the flow is irrotational. 

Here, we have approved for the given velocity for two dimensional case say we have 

shown that omegax is equal to 0 rotational component omegax is equal to 0 omegay is 

equal to 0 and omegaz is equal to 0 and hence we can conclude that the flow is 

irrotational flow and then say for two dimensional flow field you can see that omegax and 

omegay always 0 since say as for the definition say for two dimensional flow w is the 

velocity component direction w is equal to 0 and then other say the velocity variation of v 

as per our definition here velocity variation v with respect will also 0. 

For two dimensional flow omegax and for omegax is equal to 0 so similarly with respect 

to omegay direction omegay del w since w is 0 del w by del x already 0 and since there is 

no variation of u with respect to z so del u by del z is also 0 so for two dimensional flow 

we can say that omegax or omegay are always 0, since u and v are not functions of z and 

w is 0. Finally for irrotational flow, for two dimension flow we have only to check 

generally omegaz is whether 0 or not. If it is irrotational flow, then we can say that del v 

by del x is equal to del u by del y, this is the observation for two dimensional irrotational 

flow. If it is flow is rotational, there will be the values for omegax omegay and omegaz so 

like this we can differentiate whether the given flow is rotational or irrotational 

depending up on the problem. 

This is about the rotational flow and irrotational flow, so most of our say when we 

discuss about the fluid kinematics it is important that we should determine whether the 

flow is rotational or irrotational since have to changes as per the principle so the theories 

which will be using well if it is rotational flow then it will be different and if it is 

irrotational flow it will be different and for rotational flow as we have seen we have to 

determine the rotational flow component omegax omegay and omegaz and also we have to 

determine the vorticity and circulation. But as far as irrotational flow is concerned we are 

dealing with only in the variation with respect to xyz direction with respect to del cross v 

is equal to 0 and then we can define the various terms as far as irrigational flow is 

concerned. 
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So before going with respect to the rotational flow further will be discussing about the 

potential flow later but before going to the potential flow here we will discuss the 

differential form of the continuity equation. We have already seen earlier that when we 

derive the general equation, fundamentally given equation, we can either use the 

differential approach or integral approach depending upon problem concerned. 

For the conservation of mass or the continuity equation, in the last lecture we have 

already discussed about the integral approach how to derive the continuity equation and 

then we have also investigated some problem of the integral approach of the continuity 

equation. 

Now, we will discuss about differential form of the continuity equation. To derive the 

differential form of the continuity equation, let us consider a fluid element just like in the 

slide so here xyz direction the velocities are u p and w and so let us consider the fluid 

element of delta x where delta y by delta z. 
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So with respect to xyz direction, let the velocity be u p and w, with respect to this say the 

cubic element which we are considering on this face of the flow with respect to the fluid 

flow which we have concerned. On the left hand side, the velocity let it be rho u minus 

del rho u by del x into delta x by 2 into delta y into delta z and then other side it will be 

rho u plus delta rho u by delta x into delta x by 2 into delta y into delta z. 
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Now, we are considering the x direction, so similarly for y direction z direction also we 

can write and then finally we can find the net rate of mass outflow in xyz direction. If we 

consider the net rate of mass out flow in x direction we can write del rho u by del x into 

delta x into delta y into delta z as for as the fluid element which we considered here. So 

the rate of change of flow what is the possible outflow with respect to this element the 

control volume which we are considering, we can write net rate of flow will be is equal to 

del rho u by del x into delta x into delta y into delta z and then net rate of mass outflow in 

y direction can be written as del rho v by del y into delta x into delta y into delta z and 

similarly in z direction you can write with respect to the velocity component w del rho w 

by del z into delta x into delta y into delta z. 

Finally with respect to the xyz direction we can add this all net rate of mass of flow we 

can write as del rho u by del x plus del rho v by del y plus del rho w by del z multiplied 

by delta x into delta y into delta z. so with respect to this, now for the system concerned 

or for the control volume concerned, now the mass is concerned so that we can say that 

now use in the equation d the total derivative of the mass of the system DM of the system 

by DT is equal to should be equal to 0 since with respect to the conservation of mass then 

the rate of change of total rate of change should be DM by Dt is equal to 0. 
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Now, if you write with respect to the earlier formations so this variations we have to 

consider with respect to time that is del rho by del t and then with respect to the xyz 

changes which we have discussed in the previous slide so finally with respect to DM sys 

by Dt is equal to 0 can be written as del rho by del t plus del rho u by del x plus del rho v 

by del y plus del rho w by del z is equal to 0, so this is called the continuity equation in 

the differential form so this is one of the fundamental equation of the fluid mechanics this 

is varied for steady, unsteady compressible or incompressible flow. This is the continuity 

equation using the differential form of the formulation derived based up on the 

conservation of mass principle. If the flow is the fluid is incompressible then we can see 

that there is no change in with respect to rho the density. 

So that density this rho can be taken no need to consider so that there is no change with 

respect to time of with respect to space. For incompressible fluid, incompressible liquid 

we can write del u by del x plus del v by del y plus del w by del z is equal to 0, so this is 

the differential form of the continuity equation or the differential form of the 

conservation of mass as far as incompressible fluid is concerned so del u by del x plus del 

v by del y plus del w by del z is equal to 0 at any point of the fluid mass, fluid which we 

are considering for the particular domain which we are dealing with. 

Earlier we have seen the continuity equation based up on the conservation of mass for 

with respect to integral approach therefore we have shown that A1 V1 is equal to A2 V2 

where A1 and if we consider a system like this say a fluid flow between section 1, 1 and 

2, 2 with respect to the integral approach, where A1 is the cross sectional area section 1, 1 

and A2 cross section 2, 2 and V1 is the velocity of flow at section 1, 1 v2 is the velocity of 

flow at section 2, 2 then with respect to the continuity with respect to the conservation of 

mass based up on the integral approach we have seen that A1 V1 is equal to A2 V2 and 

then here as we derived so with respect to differential approach we can say if it is 2D 

flow then we can write del u by del x lus del v by del y is equal to 0. 
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If it is 3D flow, as we have already derived it is del u by del x plus del v by del y plus del 

w by del z is equal to 0 so this is the continuity equation in the differential form. The 

same continuity equation if you consider say sometimes we have to deal with the polar 

coordinate system or cylindrical coordinate system in terms of the radial direction R and 

theta and z, in that case the continuity equation can be derived as shown in this slide. 
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The velocity component can be written as say V bar is equal to Vr unit vector e r plus V 

theta unit vector e theta plus Vz unit vector e z. Here this er e theta ez are unit vector with 

respect to r thetaz and r thetaz are directions. Theta is the angle and r is the radial direction 

z is the vertical direction, so corresponding to this as we have derived earlier in the 

Cartesian coordinate system we have derived the continuity equation in the cylindrical 

polar coordinate system as say in the final equation is del rho by del t plus 1 by r del r rho 

v r by del r plus 1 by r del rho v theta by del theta plus del rho v z by del z is equal to 0. 

As we have seen earlier, for the incompressible fluid there is no change with respect to 

density rho, we can write this equation as 1 by r del r vr by del r plus 1 by r del v theta by 

del theta plus del v z by del z is equal to 0 so when we are solving some particular 

problems where the cylindrical coordinate system should be used say for example called 

cylinder or in a pipe flow it is to be considering cylindrical or polar coordinate system 

then we can use this kind of continuity equation which is derived here for general 

equation and for the incompressible fluid. 
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Now, with respect to this continuity equation we will just discuss one problem, so the 

problem here is say an example for the continuity equation in the differential form. 
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For a fluid flow in open channel we want to derive for unsteady flow in a prismatic open 

channel. We want to show that the continuity equation can be expressed as del q by del x 

plus t into del t into say want to prove that del y by del t, so this is del y by del t del q by 

del x plus t into del y by del t is equal to 0, where t is the top width of the channel which 

is considered, Q is the discharge of the time t and x and y are the directions as shown in 

this figure. 

We want to derive the unsteady flow equation or we want to shown that if Q is the 

discharge flow through a channel or we want to show that del Q by del x plus t into del y 

by del t is equal to 0 with respect to the continuity equation. Let us consider the open 

channel flow which we is in a prismatic channel, so the flow depth is y and area of cross 

section is A and top width is t as shown in this figure and then let us consider a small 

strip like v I is equal to t into dy of depth y and then let us consider the two section of the 

open channel at AA and at BB. 

Here, the discharge entering at section AA is Q1 and passing through at section BB is Q2 

and at time t is the depth of flow is y and then it is changing at delta t say change of flow 

and now we are considering the section between AA and BB at distance delta x as shown 

in this figure. 
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From the figure which we have seen here, from this figure we can write the flow between 

section AA and BB, let us assume this Q2 is greater than Q1 at any instant of time t. so Q2 

minus Q1 we can write as the change on discharge like between section A and section BB 

so Q2 minus Q1 is equal to del Q by del x into delta x we are considering. Now a time 

step delta t, at delta t volume rate of excess outflow over inflow can be represent as del Q 

by del x into delta x into delta t, so delta t is the time difference delta x is the distance 

between section AA and BB. 

The volume rate of excess outflow over inflow is del Q by del x into delta x into delta t 

and then the water surface drop say as shown in this figure water surface drop delta y can 

be written as delta y is equal to del y by del t in to delta t and finally decrease in storage 

between AA and BB can be written as minus delta s is equal to minus delta A into delta x 

so this is equal to minus t into delta y into delta x is obvious from this figure here, so this 

is equal to minus t del y by del t into delta t into delta x so the decreasing storage between 

AA you can write as delta s is equal to minus delta A into delta x so this is equal to minus 

t into delta y into delta x as obvious this figure here so this is equal to minus t del y by del 

t into delta t into delta x. 



Now by continuity equation which we have derived by working the conservation of mass 

this decreasing in storage between A should be equal to this change in storage which is 

described here that is volume rate of excess outflow over inflow so we can equate both 

this. 
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So that we can find write as del Q by del x into delta x delta t is equal to minus t del y by 

del t into delta t multiplied by delta x, delta x delta t be cancel and finally we can 

obtained del Q by del x plus t into del y by del t is equal to 0 which is what we have to 

ask to show. For unsteady flow in prismatic channel here we have shown that del Q by 

del x that means the discharge change of with respect to x del Q by del x plus t into the 

top width del y that means the change of depth with respect to time del y by del t that is 

equal to 0. 

So that is continuity equation differenced form for open channel flow so that we have 

shown that del Q by del x is equal to t into del y by del t is equal to 0 which is the 

continuity equation for this is the continuity equation for open channel flow. Before 

proceeding to the potential flow we will solve one more example with respect to the 

continuity equation the differential form which we have derived here, so here the problem 

is for a steady state incompressible fluid flow. 
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For a steady state incompressible fluid flow velocity components are given as u is equal 

to 2 x square plus 3 y square plus z square, if x is in the direction y and z is defined here, 

u is equal to velocity component u is defined as 2 x square plus 3 y square plus z square 

and velocity component v is defined as 3 xy plus 2 yz plus 5 z, we have to determine the 

w component of the velocity. 

This u is in this direction v is in the y direction and the w is in the z direction, here with 

respect to u and v components are given with respect to continuity equation we want to 

determine the velocity component w. From the continuity equation which we have 

derived we can write del u by del x plus del v by del y plus del w by del z is equal to 0 so 

now with respect to since u is given in this problem. 
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U is given as 2 x square plus 3 y square plus z square so that we can write del u by del x 

is equal to if you differentiate this function we will get del u by del x is equal to 4 x and it 

is also given v is equal to 3 xy plus 2 yz plus 5 z so that we can write del v by del y is 

equal to 3 x plus 2 z. Now from the continuity equation here we have written del u by del 

x plus del v by del y plus del w by del z is equal to 0. 

We can substitute del u by del x and del v by del y so that we can obtain del w by del z, 

after substitution for del u by del x and del v by del y we will get del w by del z is equal 

to minus del u by del x minus del v by del y, this is equal to minus 4 x minus 3 x minus 2 

z so del w by del z is equal to minus 7 x minus 2 z. 

Now we want to determine the velocity component in the z direction w, to get w we can 

integrate this del w by del z, so on integration get minus 7 xz minus z square plus 

constant f of xy so this f of xy can be determine from the other condition which we will 

be given for the problem. So now from this continuity equation, differential from is used 

to determine the one component the z component of the velocity, but the velocity 

component the x and y is directions are given. 

Like this we can use this continuity equation the differential form for various problems as 

one of the fundamental equation. Now we have seen the rotational flow irrotational flow 



and the continuity equation in the differential form. Now we will go to the potential flow, 

we discuss the mass of the potential flow. Before going to the potential flow let us see 

what is the velocity potential? 
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Generally as for as fluid mechanics concerned say if we define terms like velocity 

potential function etc., these can be used to represent the fluid flow in a terms expressed 

in fluid kinematics. Here we are going to define the velocity potential and then its various 

application of velocity potential. Generally it is expressed as phi as a function of xyz and 

t. 

In three dimension xyz and with respect to time so this is the velocity potential is 

represented as phi and it is defined, so the velocity potential is defined as the velocity 

component in x direction u is equal to del phi by del x that means the variation of phi the 

velocity potential with respect to x and velocity component in y direction, if we take the 

differential of say the velocity potential y direction that velocity component y direction 

and the velocity component w z direction w is represent as the del phi by del z. 

The velocity potential is defined such that the velocity in xyz direction, if we consider the 

fluid flow and here if xy and z are the Cartesian coordinate system and then the velocity 

in x direction is u, velocity in y direction is v and velocity in z direction is w. So we are  
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defining term called velocity potential which is varying with respect to xyz and t such 

that this velocity variation in x direction u we can write as del phi by del x and velocity 

variation y direction we can write as del phi by del y and velocity variation z direction we 

can write as del phi by del z. That is the way which we defined this velocity potential the 

consequence of rotationality or the flow field and it can be defined for 3D flow. We can 

also define as tem called stream function which is consequence of conservation of mass 

restricted to 2D, so that will be discussing later so the velocity potential here phi is 

defined such that velocity component in xyz direction u p and w can be defined as del phi 

by del x del phi by del y and del phi by del z. 
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Now if we use the continuity equation the differential form of the continuity equation 

which we have derived earlier so that for in 3D we have derived that del u by del x plus 

del v by del y plus del w by del z is equal to 0 for xy and z direction. 

So, now if we apply this say we have also defined U is equal to del phi by del x, v is 

equal to del phi by del y and w is equal to del phi by del z. So we will substitute for uvw 

in this equation of the continuity equation so if you substitute here u v and w, that we will 

get as del square phi by del x square plus del square phi by del y square plus del square 

phi by del z square so that is equal to 0. 
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This equation is called the Laplace equation represented as in this slide del square phi is 

equal to 0, it is Laplace equation and it governs inviscid incompressible irrotational of 

flow field so the potential this kind of flow is called potential flow and the theories 

related to this kind of flow is called potential flow theory and the govern equation for this 

inviscid or nonviscus incompressible fluid flow irrotational inviscid incompressible and 

irrotational flow field is the Laplace equation defined as l square phi is equal to 0 as 

derived here. 

So, this type of flow is called potential flow and for this kind of flow we can have say if 

we consider any domain where we are considering the potential flow, the given equation 

is del square phi is equal to 0 and then say for example, if we consider the flow in a 

homogeneous isotropic aciform system like this, we can have two types of boundary 

conditions. Now the given equation is defined and we can have two types of boundary 

conditions generally defined are: one is the Dirichlet boundary conditions say which is 

also called Direct boundary conditions. So here we can describe say the potential phi is 

equal to phi1 bar and on this direction at this place we can phi is equal to phi2 bar and 

then another type of boundary conditions we can also defined del phi by del n is equal to 

this direction imperil neighbour[49:35] there is no flow, so here also del phi by del n bar 

is equal to 0. 
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So two types of boundary conditions can be defined this kind of problem, one is the 

Dirichlet boundary conditions and then Newman boundary conditions and sometimes 

also mixed form boundary conditions can be used and now this velocities to obtained 

from the expression from the potential which is defined from the Laplace equation and 

then the pressure flow can be obtained from the Bernoulli’s equation it should be 

discussing later part so for the potential flow the velocities obtained from the laplace 

equation and the pressure is obtained from the Bernoulli’s equation. 

Potential flow as we have defined it is inviscid this potential flow is used for inviscid 

incompressible and it is irrotational flow and the flow fields are governed by the Laplace 

equation and called as potential flows and the lines are constant potential is called the 

equipotential lines and it forms the orthogonal grids with stream lines to form a flow nets 

which will be discussing later. 
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With respect to the potential flow we will just discuss a small example here a potential 

flow for 2D incompressible fluid flow velocity components are given as u is equal to 4 xy 

and v is equal to a square plus 2 x square plus 2 y square we have to show that velocity 

potential function x is and we are determine the velocity potential, so for this problem the 

potential phi exists for irrotational flow. 
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Only the condition is del v by del x is equal to del u by del y, so with respect to this now 

we can show that u is equal to u is given as 4 xy and if you differentiate with respect to y 

del u by del y is equal to 4 x with respect to when you differentiate and this function v 

when we differentiate del v by del x is equal to again 4 x. 

So that we can see that del v by del x is equal to del u by del y that flow is irrotational 

and then as per the problem we want to determine that first we have to show that velocity 

potential function is exists and then since the flow is irrotational, the velocity potential is 

exists and then we have to determine the velocity potential. By definition u is defined as 

del phi by del x and u is here defined as 4 xy and then phi is also equal to 2 x square y 

plus say phi is d phi by d x. 
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So we integrate this we will get say here one integration will get 2 x square phi plus f1 y 

and then V is defined as a square plus 2 x square minus 2 y square and which is equal to 

del phi by del y or integration of this function phi is equal to a square y plus 2 x square y 

minus 2 by 3 y cube plus f2 x and both solutions should be same since phi is obtained 

with respect to x here phi is obtained as 2 x square y plus f1 y and with respect to v we 

got phi is equal to this function in a both solution should be same since phi is same. 



So we can write 2 x square y plus f1 y is equal to a square y plus 2 x square y minus 2 by 

3 y cube plus f2 x or we can write f1 y equal to you get f1 y is equal to a square y minus 2 

by 3 y cube plus f2 x, so to keep the above expression valid for all values of y it should be 

f2 x has to be constant in this equation. So, finally we can write the velocity potential phi 

is equal to a square y plus 2 x square y minus 2 by 3 y cube plus constant. 
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And since phi is the velocity potential constant and represent a family of lines, phi may 

be written without a constant as finally phi can be written as a square y plus 2 x square y 

minus 2 by 3 y cube. So like this the definition of potential we can use to determine the 

velocity or the velocity is given we can determine the potential function and this is valid 

the potential flow is valid for inviscid incompressible and irrotatinal flow and the field 

are given by Laplace equation and the flows are called the potential flow. So, further we 

will be discussing about the potential flow and related theories in the next lecture. 


