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Welcome back to the video course on fluid mechanics. In the last lecture we were 

discussing about the kinematics of fluid flow. So in the kinematics of fluid flow as we 

discussed, we are studying fluid mechanics without much consideration to the forces up 

on which the fluid flow is governed. So, without much concern to the forces, we are 

trying to derive various equations and various theories as far as the fluid flow is 

concerned. 

We have already seen the various velocity field then the acceleration field and also we 

have seen how the flow can be expressed in one dimension, two dimension and three 

dimension flow that can be steady state or unsteady state; all these aspects we have seen 

in the previous lecture, also we have seen the fluid flow can be described in terms of 

either lagrangian description or eulerian description. 

In the lagrangian description, we are just tracking certain fluid particles and seeing with 

respect to time what happens to those fluid particles. But in eulerian approach what we 

are doing is we are taking a particular point or particular section of the fluid flow and 

then with respect to space and time we are just taking what is happening to the fluid 

particles passing through the particular point or section.  

Generally, in fluid flow problems, we are generally using eulerian approach. Since it is 

much easier and we are much interested what happens to the fluid flow at the particular 

section or particular point. So, we have also seen that as far as the fluid flow is 

concerned, we can describe with respect to the acceleration is concerned we can have a 

local acceleration and also we have conductive acceleration. So total acceleration with 



respect to the local acceleration, conductive acceleration and with respect to this we have 

also discussed about some numerical examples. 
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And also we have seen when we discuss the fluid flow parameters we will be describing 

the time rate of change for given particle with respect to Local and with respect to 

conductive cases as shown in this slide and this is called as the material derivative. 
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These things we have discussed in the last lecture, now we have seen that in the fluid 

flow can be described in three dimensions with respect to x, y and z coordinates and with 

respect to time, but many times it will be very convenient if we can describe fluid flow 

with respect to the stream lines, since stream line as we have seen earlier, stream line is a 

continuous line drawn tangential to the velocity vector at every point that is known as 

stream line. 
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Since the flow is with respect to the direction we are describing the stream lines, it is 

always advantages if we can describe the fluid flow with respect to the stream line 

coordinate system. If the velocity vector is defined as v is equal to the unit vector I into u 

plus unit vector j into v plus unit vector k into w in three dimensions, then the differential 

equation for stream line we can defined as dx by u is equal to dy by v is equal to dz by w. 

So this is as far as the three dimensional flow in x y z directions the velocity component u 

v w are concerned. 

The differential equation for stream line is generally described as dx by u is equal to dy 

by v is equal to dz by w, so the stream line is the continuous line drawn that is tangential 

to the velocity vector at every point. So this will be very usefully if we can say most of 



the fluid flow if you can describe in terms of the with respect to stream line coordinates it 

will be very advantages in many of the fluid flow problem. 
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Here in this slide the stream line coordinates with respect to stream line coordinates the 

flow is described so stream line is a coordinate system defined in terms of the stream 

lines of the flow, here in this slide you can see this stream lines are drawn with x and y 

axis in two dimensions. Here, the stream lines shows with respect to flow stream lines are 

shown here with respect to n is equal to n1 n2 like that, so its normal direction with 

respect to that is shown as s1 s2 like that so you can see just like a flow net where the 

stream lines and then its normal lines which is the potential line generally. 

Instead of describing the fluid flow with respect to this xy coordinate system, here we can 

describe the fluid flow with respect to this s and n, so the stream line and then its normal 

into direction of the fluid flow, so we have much advantages as shown in here, so the 

flow is described with respect to the stream line coordinates. 
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This has got the advantages as for as the fluid flow is concerned, the stream lines give the 

natural coordinate system. That is one of the important advantages of the stream line 

coordinate system since in natural coordinate system itself is flow, so the direction itself 

taken as the coordinate system so we can describe many of the fluid flow properties with 

respect to this coordinate system and flow is described as one coordinate along the stream 

line s and then second coordinate normal to the stream lines n. 

As described in normal lines and then stream lines s, here in the previous figure, so s 

indicates the stream line and then this normal line are also drawn. So with respect to this 

the flow is described with respect to along the stream line s and second coordinated 

normal to the streamline n. So flow plane is orthogonal curved net of lines, instead of the 

Cartesian coordinates system which we generally described here, the flow plane is 

orthogonal in orthogonal curved net of lines and the advantages that velocity is always 

tangent to the s direction or the stream line directions. 

So that we can describe the velocity vector as v bar is equal to v into s bar which is the 

stream line coordinate system. So many times we will be describing the flow system with 

respect to this stream line coordinates since it has got advantages compare to the other 

coordinate system which we generally use in mechanics. 



The acceleration is described as DV bar by Dt. So that is here as into x bar plus a n into n 

barso where as and an are the acceleration components in the direction of stream line and 

its normal direction so the acceleration is described as x bar plus an n bar, so this stream 

line coordinate system is most of the time used since it has got it soon, advantage in fluid 

flow description. Now, before going to the some of the fundamental theories and 

principles with respect to the fluid kinematics, we will discuss the control volume and 

system representations. This we have seen earlier, but since we are going to derive these 

equations, before that we will further discuss, what the control volume is and what is the 

system representation? So, a system is a correction of matter of fixed identity. 
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If we consider, for example, here in this board what is inside whether it is fluid either it is 

water or gas what ever inside in this ball, this is a fixed it has its own fixed identity and it 

is a collection of matter inside fixed boundaries so for example as the mass of the air 

drawn into an air compressor or the air inside this board. So all this system approach is 

very much used in fluid mechanics, in most of the time we will be interested to see what 

happens to the fluid inside a system and then a control volume as we have discussed 

earlier control volume is approach is used in fluid mechanics. So control volume is the 

volume in space through which the fluid flows, for example, if we consider a small pipe 

like this here, when the fluid is for from one direction to another. 



So the control volume if we consider between one section to another section so in 

between that space through the fluid flow it is the control volume here considering as for 

as the derivation of various fluid flow theories are concerned and also some times we can 

have deforming of control volume. Here, you can see this is just like a balloon so it can 

deform so that one time there is a very less fluid or for gas is inside and then if you blow 

it up then you can see that it is full. So this is deform so this is called a just like in a 

balloon it is called a deforming control volume so it either a deflating balloon or just like 

a deflating plastic material as shown in here so this shows the deforming control volume. 

So many times instead of a fixed control volume we can also use deforming control 

volume as far as the fluid flow theories of development of the equations depending up on 

the problem. Now before going to the derivation of the continuity equation based up on 

the consideration of mass and other equations we will discuss one theorem called 

Reynolds transport theorem. 

This Reynolds transport theorem is one of the fundamental principles used in a fluid 

mechanics based up on which many of the fundamental theories or fundamental 

principles are derived. According to the Reynolds transport theorem, according to this 

laws governing fluid motion using both system concepts and control volume concepts so 

we have seen in the case of system concept and control volume concept, so most of the 

time this Reynolds transport theorem is the law which governs the fluid motion either in 

system concept or control volume concept. 

To do this we need an analytical tool to shift from one representation to the other, that 

means when we are describing the fluid flow from a system approach to the control 

volume approach or the from the control volume to the system so we need a analytical 

tool which can easily used so that we can shift from one representation to the other. So, 

this Reynolds transport theorem provides this tool. Reynolds transport theorem is 

generally used, as we have seen most of the time we will be using either a control volume 

approach or a system approach so when we want to shift from one approach to one 

representation to another representation we can use this Reynolds transport theorem 

which is described here. 



According to the Reynolds transport theorem it gives the relationship between the time 

rate of change of an extensive property for a system and for a control volume. We can 

describe a fluid flow with respect a system or a control volume. For example, take any 

properties like velocity pressure or any of the other properties of fluid flow then Reynolds 

transport theorem use a relationship between the time rate of as returning this slide this 

gives the time rate of change of an extensive property for a system and for the control 

volume. If there is a system inside on which we are dealing, then we are considering 

control volume between that how with respect to time the property is changing the 

Reynolds transport theorem describes. Here, we can see a control volume. 
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On this section, the velocities V1 and at the second section here velocities V2 and here 

delta1 is V1 into delta t, that means the fluid movement with respect to time delta1 is V1 

into delta t and here delta2 is equal to V2 into delta t, then with respect to the changes 

taking place here is the control volume of the fluid, initially it is like this and after delta t 

so the control volume is shifting like this in this slide, delta changes after t plus delta t, so 

delta is a control volume which we are dealing. 

The control volume is changing after delta t time, so after t plus delta t this is the position. 

So, this is the initial position number 1 and this is after sometime delta t the position is 



number 2. Finally we can see that transfers taking place between the control volumes 

minus 1, this is the change taking place with respect to this. 
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According to the Reynolds transport theorem, if we consider the system property B is the 

extensive parameter which we are dealing. Here, B system t is equal to B control volume 

t, so in the previous slide if B is the extensive property we are dealing with so B system at 

time t is equal to B control volume at time t. so the system is equal to control volume plus 

2 minus 1, so here in the slide the system is control volume plus 2 minus 1 gives the 

system as far as between this, as mentioned here, the system is control volume plus 2 

which is described in this figure and then minus 1 as shown in that figure, so B is the 

extensive parameter. 

According to the Reynolds transport theorem we can describe with respect to the control 

volume and system like this, so DB system by Dt the total derivative of the extensive 

property DB divided by Dt or DB by Dt is equal to a partial derivative of the extensive 

property B with respect to control volume B, del Bcv by del t plus the property what is the 

something adding to the system from the buoying to the out of the system B out minus B 

in that is equal to del B by del t plus rho A2 V2 b2 minus rho A1 V1 b1. 



So, we have seen here V1 is the velocity at this section and V2 is the velocity at this 

section and so the control volume is considered here. Now, for the extensive parameter 

which we are described here according to the Reynolds transport theorem we can write 

DBsys divided by Dt with respect to system is given as with respect to the control volume 

del Bcv by del t plus changes taking place with respect to the inflow and out flow so B out 

minus B in so that is with respect to time what happens whether how much is coming to 

the system and how much is going out of the system, so that is the Reynolds transport 

theorem. 

Finally DB system by Dt can be represent as del Bcv by del t plus roh A2 v2 b2 minus rho 

A1 V1 b1, where rho is the density of fluid which we are considering here and A2 is the 

cross sectional area at section 2 and A1 is the cross sectional area section 1 and V2 is the 

velocity at section 2, V1 is the velocity at section 1. 

Finally, we can write this in an integral form this Reynolds transport theorem can be 

written like this DB system DB by Dt is equal to del by del t of we can integrate with in 

the control volume del by delt of integral roh bdv plus on the surface what happens in the 

control surface integral rho b v n hat which is the union vector dA, that means finally 

what happens to the system is given such a way that here you can see that with respect to 

system if you are considering just like a pipe like this so what happens to the extensive 

property which we are dealing is inside the control volume what happens and then on the 

surface whether with respect to surface something is going inside something is going 

outside from the system through the surfaces so what happens to that surface so that gives 

Reynolds transport theorem. The total changes with respect to time for the extensive 

property which we are considering here that means DB by Dt so B is the extensive 

property. 

So the total change with respect to time what happens to the extensive property is 

expressed as we are considering within the control volume what happens with respect to 

time as far as the fluid inside is concerned that is given by del by del t of integral with 

respect to control volume rho DB and then on the surface what happens that means what 

is something is come adding to the system or something is going out of the system, so 



that gives the integral over the control surface rho b V n had d, so this is the same as the 

above expression so Reynolds transport theorem like as described in this slide so it gives 

what happens with respect to system and then the control volume inside the system. This 

way we can easily represent same you can easily transform or we can change one system 

that means the approach is based up on the system then we can get equations or we can 

transform that into a control volume based up on this Reynolds transport theorem the 

parameters are given with respect to the control volume we can also transform to the 

system. 

Finally the Reynolds transport theorem what happens with respect to total system is for 

an extensive property what happens with respect to time is described in terms of the 

control volume, inside the control volume and then with respect to surface what is 

happening what is something is coming through or going out of the surface, so that gives 

the Reynolds transport theorem. This theorem is very useful in derivation of most of the 

fluid flow theories and fundamental principles which we will be discussing later so 

finally as we can seen in this slide. 
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So, DB system that is gives the time rate of change of an arbitrary extensive parameter of 

a system. For example, rate of change of mass momentum energy extra so this is the DB 



by Dt and that is equal to say in del by del t of integral rho bdv so that is equal to time 

rate of change of the amount of B within the control volume as the fluid passes through it 

plus the net flow rate of the parameter B across the entire control surface. This slide gives 

the Reynolds transport theorem. 

The time rate of change of an arbitrary extensive parameter of a system is equal to time 

rate of change of the amount of B within the control volume as the fluid passes through it 

plus the net flow rate of the parameter B across the entire control surface so this theorem 

is very useful many of the fundamental development of the fluid flow theories and 

principles, so with respect to the Reynolds transport theorem the integral counter part of 

material derivatives that we have seen. 
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Reynolds transport theorem with respect to the counter part of the material derivative, we 

can write as D of Dt of the particular parameter which we are dealing equal to del by del t 

of the parameter plus V dot product del of the parameter, so this include both the steady 

and unsteady effects we have seen, so this gives the Reynolds transport theorem with 

respect to the material. 
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With respect to the material derivative, you can see that here steady and unsteady 

conditions are described. Reynolds transport theorem will be using many times as far as 

the fundamental theories development and demonstration is concerned. Before going to 

the continuity equation based up on the consideration of mass, we will initially discuss 

different approaches fluid flow behavior, so how we can analyze fluid flow behavior with 

respect to different approaches. 

In fluid flow analysis, generally we can have two types of approaches: first is called 

integral approach and second one is called differential approach. Here, the fluid flow 

behavior, we are analyzing with respect to either a system or with respect to a control 

volume so with in this we can analyze either we can go for a integral approach or we can 

go for a differential approach, so what is an integral approach so in an integral approach 

what we are doing is we are trying to evaluate the quantities within a volume of fluid? 

For example, if you consider the pipe flow here between this section 1 and 2 what 

happens so what we will be discussing? We are trying to evaluate or we are trying to 

identify within the volume of fluid. 

So through this we get integrated equations expressing behavior of fluid flow for control 

volume in a flow field so that is what we are going in the integral approach. So in the 



integral approach there are basically two steps first one is we have to check the problem 

or we have to verify whether the system is appropriate for a control volume analysis, so 

depending up on the problem sometimes we can go for a control volume analysis 

sometimes it may not be possible. 

We have to see the problem in detail whether we can go for a control volume analysis or 

we have to go for other types of analysis so we have to scrutiny the problem whether the 

system as appropriate for the control volume analysis and second step in the integral 

approach is we have to examine the behavior of the control volume. So we have to see 

whether the control volume is just like a fixed control volume like shown in this ball 

inside it is a fixed control volume or we have to see just like a in an aeroplane with 

respect to when we doing the analysis the aeroplane also moving, so whether we are 

trying to analyze a moving control volume or we have to see whether just like we have 

seen deforming or an elastic control volume. So these aspects also we have to analyze or 

we have to evaluate before we choose either an integral approach or whether we have 

going for a differential approach  

The two essential steps before going for integral approach is we are to scrutiny the 

problem we have to verify the problem whether the system is appropriate for control 

volume analysis and secondly we have to see the behavior of the control volume whether 

it is fixed one or whether it is moving one or whether it is an elastic type of control 

volume. So first we have to do these two steps of analysis and then only we will be going 

for the integral approach or whether we will be going for other types of approach. 
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So integral form of quantities we can see that most of the quantities we can described in 

terms of integral form just like for example the volume flow rate it is the integral of 

velocity over an areas so if we consider the volume of the discharge passing through 

integral of velocity over an area that is the discharge for volume of flow rate and second 

for example the mass if we consider the mass it is the integral of density over volume. 

So the mass, when we are dealing with the consideration of mass we can go for integral 

form of approach and then if you consider the force, so it is the integral of stress over an 

area and kinetic energy it is the integral of v square, that means the velocity square by 2 

over each mass element in a volume. 

Like this we can analyze the problem and see whether it is this kind of quantities whether 

it is a discharge of volume flow rate or it is mass or force or kinetic energy what we are 

going to deal and then we can choose the integral approach or differential approach the 

other kinds of approach which will be discussing later so this integral approach is very 

useful in many problems where this kinds of say we can use the appropriate depending up 

on the problem. 



(Refer Slide Time: 29:41) 

 

Now, the second approach commonly used in fluid flow behavior analysis is called 

differential analysis. In the differential analysis, what we are trying to do is we are trying 

to get detailed knowledge of a flow field apply at a point or very small region so we have 

already seen that most of the time we will be going for an eulerian approach so we will be 

discussing what happens in the fluid flow what happens at a particular point or particular 

section what happens. 

So, that is our major concern this differential analysis the second kind of analysis very 

important. So what we are doing here is as far as the flow field concerned which we will 

be choosing at particular point or a very small regions trying to see the variations of the 

differential of various fluid flow properties at that particular point. In this differential 

analysis we will be deriving differential equation which expresses the behavior or fluid 

flow behavior. 

Differential equations are derived with respect to theories in differential analysis and then 

we are trying to evaluate the unknown dependent variable at any space point in fluid flow 

for all the times, that is what we are doing the differential analysis so we are trying to 

evaluate the unkown depending parameter dependent variable with respect to space for 

all the time. 



These two approaches the integral approach or differential approach, for both of the 

approaches are very commonly used in fluid flow problem so fluid mechanics problem 

we will be discussing both the integral approach and the differential approach for our 

problems for the development of fundamental theories in fluid flow and fluid mechanics 

which will be discussing later. Initially, we will be discussing the integral approach for 

the consideration of mass or the derivation of the continuity equation. 
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Now, we discuss the conservation of mass, the continuity equation with respect to the 

integral form of approach. We have seen that just like in fluid mechanics also the 

fundamental theories are based up on the consideration of mass, consideration of 

momentum and consideration of energy, so most of the basic principles of basic theories 

are developed based up on conservation of mass momentum and consideration of energy. 

First, we will be discussing here is conservation of mass and the continuity equation is 

derived based up on the conservation of mass. First we will see the continuity equation 

with respect to the integral approach which we have seen earlier so as I mentioned earlier 

here say the mass has the integral of density over volume. so we can see that here we can 

easily use when we scrutinize the problem we can see that we can easily use the integral 



approach so but any way as for as conservation of mass is or the continuity equation is 

concerned we will be discussing also in terms of the differential approach. 

First we will see the integral approach. Amount of mass in system is according to the 

conservation of mass, amount of mass in a system is constant or the time rate of change 

of mass is equal to 0 that is the basic principles of the conservation of mass. Conservation 

of mass is the amount of mass in a system is constant or the time rate of change of system 

mass is equal to 0 or we can describe with respect to the total derivative DM with in the 

system by Dt is equal to 0, where t is the time M is the mass D indicates the total 

derivative. 

As far as the system is concerned, if the fluid inside this ball or inside in a container here 

we can see the fluid inside this container so with respect to the conservation of mass we 

are saying that the amount of mass inside the system inside this the gas inside this ball or 

inside this container it is constant, so that is the basic principle, so that we can say that if 

there is any change of gas inside this ball or with respect to this container here we can say 

the time rate of change of mass is equal to 0, so that is the conservation of mass or the 

continuity equations says so that we can write this mass of the system is concerned with 

respect to whether the air inside or water inside in a container. 

The mass can be defined with in the system we can defied as we can integrate with 

respect to the density and then the volume so the mass of the system can be written as 

integral of rho dv so now have seen the Reynolds transport theorem earlier So within the 

system what happens we have to describing here if we consider the pipe flow which we 

have seen. 

Within the system we will be describing in terms of the control volume what happens and 

then with respect to the control surface or the boundaries say whether something is 

entering to this system or something is dealing from the system so that gives the 

Reynolds transport theorem so here as far as conservation of mass is concerned say if we 

apply the Reynolds transport theorem we can write D by Dt the total derivative of the 

system with respect to the mass rho dV is equal to del t with in the control volume which 

we are considering here of rho dV plus with respect to the control surface or the series 



that means exceed time inlet of the system plus the control integral of the control surface 

of rho with V n hat dA. 

Here, this V indicates the velocity and this v indicates the volume. Now, here to derive 

the basic equation of the continuity based up on the conservation of mass we are using 

the Reynolds transport theorem, so D by Dt of integrals with respect to system rho dV 

can be written as del by del t of the control volume rho dv plus with respect to control 

surface integral of rho V n hat dA, so this gives the Reynolds transport theorem as far as 

the mass which we are considering here. 
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Now, as we can see in this slide the control volume it can here, this is the system which 

we are considering and the control volume is inside what is there and then what changes 

taking place with respect to whether with in the control surface that is what we are 

describing so control volume expression for conservation of mass called the continuity 

equation. 
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Now from the Reynolds transport theorem and since according to the conservation of 

mass we can write DM by Dt is equal to 0 so now if you use the Reynolds transport 

theorem here we can write del by del t of integral of control volume rho dV plus integral 

over the control surface rho V n hat dA is equal to 0. So, that means, to conserve the mass 

the time rate of change of mass of the contents of the control volume plus net rate of mass 

flow through the control surface must be equal to 0 so that gives the Reynolds transport 

theorem with respect to the conservation of mass. Time rate of change of the mass of the 

contents of control volume plus net rate of mass flow through the control surface must be 

equal to 0. 

From this we can write the mass flow rate is equal to rho into Q so that we can express as 

if V is the velocity and A is the area cross section so this s equal to rho into A into V, 

where rho is the density of the fluid, so the integral expression from the integral approach 

we have seen the continuity equation can be described by the Reynolds transport theorem 

as given this equation del by del t of integral of control volume of rho dV plus integral 

over the control surface rho Vn dA. So this gives the integral form of the conservation of 

mass for the continuity equation and finally it is steady state condition you can say that 

mass change can be written as rho into AV where V is the velocity here. 
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Finally, the continuity equation integral form if the system is at steady state or if there is 

no change with respect to the density that means there is del rho by del t that means no 

change of density with respect to time this can be written as 0. 

In most of the fluid flow which will be discussing will not be any change as far as rho 

density concerned, so we generally dealing with incompressible fluid flow so that del rho 

by del t is equal to 0 so finally if the density is constant we can write A1 V1 is equal to A2 

V2 for the system which we are considered and the system if it is non uniform or it is not 

uniform then we can write rho1 integral over area A1 V1 d A is equal to rho2 integral A2 

V2 d A or the non uniform flow we can write rho1 V1 bar A1 is equal to rho2 V2 bar A2 so 

this gives the integral form of the continuity equation. 

As we have seen here we can the general expression if you deal with compressible flow 

also and in the case of incompressible flow you can write the equation since here del rho 

by del t is equal to 0 that we can write the integral form of the continuity equation as rho 

V1 bar A1 is equal to rho2 V2 bar A2 so here what it says is with respect to this is the 

system is just like in a pipe system which we are dealing so the fluid entering with 

respect to system that should be equal to the fluid leaving from the system so that we 

have to use this equation here. 
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The continuity equation as we have seen here the mass is concerned and we have also 

seen that there can be or deforming a control volume so in that case the with respect to 

the continuity equation of the conservation of the mass we can write DM system Dt is 

equal to del by del t of control volume rho dv plus all the control surface rho w instead of 

V here we are using rho w n hat dA is equal to 0. 

For the case of the moving or deforming the control volume this w is the relative velocity 

so the system itself in the control volume is moving or deforming with respect to that we 

have to consider changes taking place with respect to the relative velocity. So, for moving 

or deforming control volume we can write the continuity equation as DM by Dt is equal 

to del by delt of integral of rho dV plus all the integral over the control surface rho w, 

where w is the relative velocity n hat dA where n hat dv is the unit vector so this gives the 

continuity equation in the integral form. 
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For example, if you consider a pipe with branch like in this slide so here we can express 

the continuity equation like here. At the section 1 if V1 is the velocity and area of cross 

section is A1 and the density here is rho1 and at section here at three if the velocity is V3 

and area of cross section is A3 and density is rho3 and then here this location the density 

is rho2 and A2 is the area cross section V2 is the velocity. 

Here, we can see as far as system is concerned there are 2 inflow at 1 and 3 and then 

there is an outflow at 2 so finally you can write rho1 A1 V1 plus rho3 A3 V3 is equal to 

rho2 A2 V2 so if the density say we can write this equation as A1 V1 plus A3 V3 is equal to 

A2 V2 so this way we can write with respect to the integral form of the continuity 

equation based up on the conservation of mass we can derive the continuity equation for 

various system. Now before discussing the differential approach for continuity equation 

we will see the example problems as for as the continuity equation is concerned. 
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Now, simple example initially which we are discussing here is say example 1 is as shown 

in figure, water flows steadily from a fire hose. So, there is a pipe through which a fire 

hose is connected there is a constant supply to the fire hose here and from which we are 

talking through a pipe system connected with the fire hose we are taking water through 

this for various purpose so if the nozzle exit velocity must be at least 10 meter per 

second. Here, the exit velocity is 10 meter per second we want to determine the minimum 

pumping capacity for which here is the flow, so here this is the direction of the flow we 

want to determine the minimum pumping capacity for this simple system so here this is 

the fire hose and this is through which the flow type displace and if we consider the 

control volume now the control volume here you can see that this is the control volume 

with respect to the fire hose which we are considering. 

So, here the exit velocity is given as 10 meter per second and here the diameter of the 

pipe the hose is given as 20 millimeter so V1 to find minimum pumping capacity such 

that the system is supplying a minimum of 10 meter per second with respect to the 

continuity equation which we have seen earlier. 
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Here you have a control volume and then control system that means the control volume 

you can see here in this figure so this gives the control volume is here and then with 

respect to the inlet this is the control surface what is going inside and what is going 

outside one inlet and exit for the system is concerned, so the continuity equation which 

we have seen earlier we can write with respect to integral form which we are discussed so 

as del by del t of integral over the control volume rho dv plus integral over the control 

surface through V n hat dA is equal to 0 according to the continuity equation, so here the 

time rate we are not considering. 

So this term goes as 0, since a flow is considered as study, so that we can write the final 

system as integral over the control surface rho Vn dA that means with respect to the 

system is concerned with respect to what is going inside to this control volume inside the 

fire hose there should be going out through the exit so what is entering go through the 

exit. 

If you consider the second part here, the continuity equation is integral c over the control 

surface rho Vn dA that can be written as m2 dash minus m1 dash that means what is 

entering that is equal to m1. Finally, we can write rho2 Q2 is equal to rho1 Q1 that means 

through the system what changes that should be through the exit from the system. 



So rho2 Q2 is equal to rho1 Q1 so here if you assume that since here we are considering 

water so rho density so that we can write Q1 is equal to Q2 that is equal to V2 into A2 so 

here before the fire force which we are consider the radius is the diameter of the hose is 

given and the velocity is givenso that we can write finally the discharge that means the 

minimum pumping capacity should be Q1 is equal to Q2 is equal to V2 A2 that is equal to 

the velocity is 10 meter per second 10 multiplied by the area cross section of the pipe that 

is phi by 4 d square so d is 0.02 or 20 millimeter. 

Finally, this is the a pumping capacity for the fire hose system which we have seen in this 

particular figure so here Q is equal to 0.00314 meter cube per second so this is the simple 

problem where we can use this integral form of the continuity equation. We will also 

discuss another simple example which is related to the conservation of mass based up on 

the continuity equation. 
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So a problem here is a centrifuged pump has got a discharge capacity of 50 liters per 

second as shown in figure it has an axial inlet diameter of 9 centimeter and then impeller 

of 20 centimeter diameter so it can be assume the 10 percent of outlet area is occupied by 

blades so we have to determine the axial velocity in the inlet pipe and the radio 

component of velocity like the outer impeller. 



So, this is the problem here. There is a flow takes place to the centrifuged pump in this 

direction and here the inlet is given as 9 centimeter and here you can see that there will be 

outlet area blades will be there with respect to the centrifuged pump so this way once it 

enters here and then it should go through this direction and this direction. 

Here, the diameter is given as 20 millimeter and here also 20 millimeter and here this 

impeller total diameter is given as 20 centimeter, so we want to find the axial velocity 

entering through the inlet pipe also the radio component of the velocity at the outlet of the 

impeller, so this is the problem which we are discussing here. Here the discharge for the 

problem is given as 50 meters per second. 
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So, the discharge can be written as Q is equal to 0.05 meter cube per second Q is equal to 

that is discharge is equal to 50 liter per second or it can be written as 0.05 meter cube per 

second at inlet. So, the inlet is here. At inlet we can write, the discharge is equal to area 

of cross section multiplied by the axial velocity so that what is entering that should go 

through impeller. 

We can write Q is equal to Aa into Va is equal to Vr into Ar, Aa is the area cross section of 

the inlet and Va is the axial velocity and Vr is the radio velocity and Ar is the area which 

we will be considering, so the axial velocity can be obtained as the discharge Q is known, 



so that is given as 0.05 meter cube per second. At inlet the area of cross section can be 

written as phi by 4, the diameter is phi by 4 into 0.09 square, so that gives the inlet area 

cross section and then axial velocity Va is equal to Q divided by Aa so this is equal to 

0.05 divided by this Aa that is 0.00636 so that gives the axial velocity as 7.86 meter per 

second. To find the radial velocity we can calculate the effective area with respect to the 

10 percent of the outlet area keeper by blades. We can find the effective area by taking 

the diameter of the impellers is equal to phi into 0.025, since 20 centimeter is given here 

and then 0.025 is this depth. 

So phi into 0.2 into 0.025, so this is actually see 0.025 and this is 25 millimeter so phi 

into 0.2 into 0.025 into 90% is the effective area since the 10% is occupied by the blades 

into 0.9 so this gives the Ar so from that we can get the radial velocity is equal to Q by Ar 

so that is equal to 3.5367 meter per second. Like this we can use this integral approach of 

the continuity equation of the consideration of mass to show various examples. 

(Refer Slide Time: 53:45) 

 

This is the conservation of mass of the continuity equation which is one of the basic 

equations which is used in all the fluid flow analysis, so this is the integral form. Now we 

will be discussing about the differential form later. Before going to the differential form 

of the continuity equation here you can we will see in this slide the linear motion and 



deformation before going to the differential on the continuity equation will see with 

respect to the fluid moment how the linear motion and deformation takes place. 

Here, we can see that a container here delta y is the size, delta x is the direction and 

velocity in the x direction u, velocity in y direction is v, so with respect to this say here 

from one section to another, the velocity change is u plus del u plus del x into delta x and 

velocity change in the from one section to another, the y direction is v plus del v by del y 

into delta y. So the volumetric dilation rate means with respect to the volume inside the 

system dilation, that means the change or the rate of change of volume per unit volume 

can be expressed by this equation. 

Since we are dealing with the velocity in x y and z direction, del v is equal to del u by del 

x plus del v by del y plus del w by del z, where u v w are the velocity components in xyz 

direction. So, the total the rate of change of volume per unit volume is expressed as del u 

by del x plus del v by del y plus del w by del z. 
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Now, we can see the volumetric dilation rate is 0 for an incompressible fluid, so when we 

are dealing with incompressible fluid volumetric dilation rate is 0, so we can write the 

variation of velocity in direction of velocity is del u by del x, del v by del y and del w by 

del z, since we are dealing the velocity components in xyz direction. 



So del u by del x gives the velocity x direction, its radiation, next del v by del y gives the 

velocity change in the direction of y, del w by del z gives the velocity change in the 

direction of z for w. So, variation of velocity in direction of velocity simply cause linear 

deformation for fluid element or shape does not change for the linear variation, so cross 

derivative such as del u by del y only cause the angular deformations, but otherwise the 

linear motion is concerned, the variation is the velocity in direction of velocity simply 

cause the linear deformation. So, shape does not change, now the next lecture we will be 

discussing the deformation and then we will be discussing the [56:40] and then further we 

will be going to the differential approach of the continuity equation or the conservation of 

mass. 


