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Welcome back to the video course on fluid mechanics. The last lecture we were 

discussing about the drag and lift forces coming on the immersed bodies in fluids. So we 

have seen the expression for the drag force and lift force and various situations where the 

drag and lift acts on the bodies then how it can be calculated. Also we have seen that, 

depending upon the shape of the body, depending upon the profile of the body and then 

how we place it just like in the case airfoil, we have seen the drag changes and also lift 

forces changes. 

So also we have seen mainly, that we have the pressure drag and the friction drag with 

respect to the viscous effects of the fluid. Now before further discussing on how to find 

out the drag coefficient for laminar turbulent, with respect to the boundary layers, we will 

just see initially, we will discuss how this we can reduce the drag effects on bodies, the 

way the moving bodies or stationary bodies in fluid. So first the topic which we are going 

to discuss is reduction measures of pressure and friction drag. 
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Here we can see in this slide here, we have an aircraft and then while it is flying we can 

see that various forces acting or the drag in this direction. Then there will be a trust in this 

direction and then the weight of the aircraft and then lift. So as we have already discussed 

the drag is a mechanical force generated by a solid object moving through a fluid as in 

the case of an aircraft. The main drag effects are here, the pressure drag and friction drag. 

So what are the various possibilities depending upon whether it is blend body or it is 

streamline body? Depending upon the shape of the body and profile the drag effect will 

be different. How we can reduce this pressure and friction drag? That is what we want to 

discuss here. 

As I mentioned earlier, if you consider an airfoil as in this slide, airfoil is placed just 

within. If the free stream flow is coming like this and the airfoil is placed in the direction 

of the free stream, then we can see that the drag effect due to the pressure drag effect will 

be much lower and only friction drag will be there, but when we slightly tilt the airfoil in 

such a way that for example the angle of attack is 5% as in this figure. Then we can see 

that the drag effect, the friction drag effect. The drag effect compared to the pressure drag 

will be more. So depending upon the angle attack the second figure again, the angle of 

attack is 40 degree. 



That we can see again the flow phenomena surrounding the airfoil is changing. What we 

can observe here with respect to this slide is that, depending upon the placement of the 

location or how the profile of the body which is immersed in the fluid flow. Accordingly, 

the drag effect whether it is pressure drag or the friction drag it changes, its nature 

changes. The question here is how we can reduce the pressure and friction drag 

depending upon the shape or whether depending upon the placement of this say as in the 

case of this airfoil. 

Now the pressure drag we assumed the drag is concerned either it can be mainly it can be 

pressure drag or the friction drag. The pressure drag can be reduced. Two important steps 

which we can use it here, one is making the body as streamlined. The pressure drag effect 

can be reduced by making the body as streamlined and the second possibilities that we 

can reduce the length of the component wherever applicable.  
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So example, the wing span of an aircraft, we can see that here is the aircraft and then the 

wing span. Depending upon how you place the wing and then how it is oriented and if 

you reduce the length component then the pressure drag can be reduced. So like this 

various measures we can adopt to reduce the pressure drag. Second kind of drag is the 

friction drag we can reduce the friction drag by making the surface smooth. 



One of the step which we can adopt to reduce the friction drag is the surface is rough 

makes it more smooth and also the flow should be laminar for the greater portion of the 

body. The flow is laminar then the drag friction drag effect to be much lesser compared 

to the turbulent flow effects. Flow should be laminar for the later portion of the body. So 

these are the two measures possible with respect to the friction drag to reduce the friction 

drag. 

Now we have seen with respect to the pressure drag if you make the body streamline, 

then the pressure drag is reduced. So that we have already seen here, make the body 

streamline. We will discuss here briefly about the streamline body. A body is said to be 

streamlined if its shape is such that, a separation occurs towards the rearmost part of the 

body. 

(Refer Slide Time 06:58) 

 

We call a body as streamlined if the shape of the body is such way that the boundary 

layer separation occurs towards the rearmost part of the body. In that case, we can see 

that the wake formation is very small. It offers least possible resistance to the flow of air 

water or other fluids where the body is immersed. We can see the airfoil which we have 

already discussed earlier, airfoil or the fish. You can see that the shape of the fish is in 

such a way that it is we can say that the body is streamlined, so that the wake formation is 



very small and then the shape is such a way that when the fish moves the separation 

occurs towards the rearmost part of the body. Here we can see that whenever the airfoil is 

placed like this, we can see the flow is coming like this and then the wake formation is 

only due to the placement in such a way that the body is streamlined.  

Here the wake is very small and then the drag effect will be much less especially the 

pressure drag effect will be much smaller. Similarly, the fish in the case of a fish also we 

have shape of the fish is in such way that we can say that the wake formation is very 

small and the separation the boundary layer separation occurs towards the rearmost part 

of the body of the fish. In the same airfoil if you place it in other way as we have seen the 

airfoil is concerned, it is how you are placing it also important, how is the angle of attack 

accordingly the drag effect changes? So this is about the streamline body and then the 

next kind of body which we have seen is so called Bluff body.  
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In the case Bluff body say as in the case of a sphere or the case of a circular cylinder we 

can see that the body shape is such that separation occurs much ahead of the rearmost 

part of the body. You can see that this is the sphere here, the separation occurs much 

ahead of the rearmost part of the body. That is why it is called as a bluff body and then 

you can see the wake formation is large as in the case of a sphere or a cylinder and object 



as shown in this figure. The body is as far as with respect to the drag is concerned, we 

can say to reduce the drag effect, we consider that we should have a streamline body. So 

either the streamline body or bluff body is concerned, you can see the wake flow 

formation will be much larger and then the pressure drag effect will be much more, so if 

you consider the drag on streamline and bluff body. 

So here you can see that, if you consider circular cylinder like this is the blunt body or the 

bluff body. So you can see that the separated flow is here.Here the pressure drag in the 

case of a bluff body, the pressure drag will be much higher. So here in this figure the 

friction drag is shown as red color and the pressure drag is indicated as the yellow color.  
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We can see that in the case of bluff body like in the case of a circular cylinder the 

pressure drag will be much more and then friction drag or skin friction drag will be much 

smaller and also the total drag will be much higher compare to the streamline body. So 

the case of an airfoil which is a streamline body, we can see that the skin friction drag. 

Since here we can see that skin friction drag will be more compared to the pressure drag. 

The pressure drag here is also indicate as yellow color and the skin friction drag is shown 

as red. 



So you can see that the relative drag force will be much smaller for a streamline body as 

shown in this figure. So here the friction drag is lower than the pressure drag in the case 

of bluff body. So bluff body, the friction drag is smaller and pressure drag is more. Then 

in the case of streamline body the friction drag is higher and then the pressure drag is 

much smaller. These are the effect with respect to whether the body is a bluff body or 

whether the body is a streamline body. 

So accordingly, we can say that the drag effect is the pressure drag or the friction drag 

which one is more in the case whether it is a bluff body or it is a streamline body. So the 

drag effect is concerned, this special drag and the friction drag are the two most important 

effect, as far as the drag is concerned other than this pressure drag and the friction drag. 

There can also be some other kinds of drag. 

Depending upon say for example, if you consider this slide, the movement of a boat, here 

a boat is going through the water where also the effects are there, and then there are so 

many other kinds of drags are also possible. Except pressure and friction drag there are 

different kinds of drag. So these are first one is called induced drag and second one is 

called profile drag, and third one is called heel drag, and fourth one is called residuary 

drag, fifth one is called added wave drag. 
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If you consider the moment of a boat then we can see that many of this drag effect will be 

coming over the boat, which is moving over the water like this. But most of the time the 

pressure drag and the friction drag are the most important. The important components of 

the drag force but others are also possible like induced or profile drag or the heel drag 

like that. Let us see the definition of this induced or these various kinds of other drags. So 

now the induced drag, actually it is the drag force induced in the body due to the lift 

forces acting on it. 

We have seen when body is immersed in the fluid either in the moving fluid or depending 

upon whether the body is moving or the fluid it is moving. So with respect to the 

immersed body we have the drag and as well as lift. So this lift components also may be 

induced some kinds of drag that is called induced drag. 
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Here we can see that if you consider an airfoil like in this figure here, then we can see 

that the drag force will be in this direction and then the lift force will be the normal 

direction of flow direction. Then we can see that since the airfoil is placed with respect to 

some angle of the free stream flow then we can see that an induced drag will be coming 

here. So this is due to the lift force. 



If there is no lift force, when there is no induced drag so as in the case of an airfoil you 

can see that when the angle of attack increases the induced drag also increases. So 

actually this is this induced drag is concerns this depends upon how we are placing the 

body or how it is how its profile is there and how you say place the body with respect to 

the flow direction of the fluid. This is so called induced drag and then next one is the 

profile drag. This profile drag is developed say for example if you consider the airfoil if it 

is infinitely long then the flow it to be two dimensions, so this is coming from the profile 

of the of the body. That is why it is called profile drag. This depends on the shape or 

profile of the shape, if you consider the airfoil it depends upon the shape and how you say 

place it or the profile. So that is called profile drag and then third kind of drag here is 

called heel drag. 
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This heel drag, this is due to the change in drag sometimes says negative. This occurs due 

to the change in the hull shape of a boat below the surface. We have seen this boat 

moment here, so if the hull shape depending upon the hull shape of the boat then you can 

see that there is possibility of the say there is just change in the drag effect and its occurs 

due to the shape which shape you gives say in the case of for a boat below the surface 

how it is provided and then how it is moving. So that is called the heel drag and then the 

next kind of drag is called residuary drag. This is actually the combination of the, we 



have seen that when the boat is moving, there is also waves will be there on the water 

surface and then say how this waves with respect to moment of the boat. So this residuary 

drag is coming, it is the actually the combination of the wave making and viscous 

pressure drag or the form drag. This is the resistance caused by the creation of bow and 

stern waves; we can see that here in this figure. When this boat is moving how it behaves 

and how the waves are coming so with respect to the drag formation that drag is called 

residuary drag and also then added wave drag this is the additional drag caused by the 

oncoming waves. These are some of the other kinds of drag than the pressure drag or the 

friction drag which be consider, which are the most important kinds of drag or the fluid 

immersed in a body or the body moving through fluid. Now we have seen various kind of 

drag here, let us see how this drag effect will be there with respect to say a boat moving 

through say through the sea or a lake, what kind of say how this various kinds of drag 

effect will be coming over the boat. Here this slide show say with respect to the speed of 

the boat, the drag is also plotted here. So you can see that this figure shows the 

contribution of different drag forces. Here this line shows the total drag, you can see that 

this friction drag is which is also predominant here, this is the friction drag. 
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And then we have this residuary drag and then this heel drag is very small and then we 

have this blue color here is this color here induced drag and then added wave drag, so that 



the total drag is this line. This line is the total drag and then also you can see that this 

depends upon the speed of the boat with respect the speed of the boat is increasing you 

can see that the drag effect is also increasing as plotted here.  

The various kinds of drag here we have seen and then say with respect to the movement 

of boat how the drag variations for with respect to various components, that is what is 

explained here in this slide. Now we have seen various kinds of drag and how the drag 

can be reduced with respect to shape or with respect to the placement of the of the body 

in the fluid. Now we will analyze how we can calculate, we can find this drag coefficient 

or how to find out the drag and lift with respect to the fluid flow and then with respect to 

the body which we consider. As we have already defined the drag force say we have 

already seen the equation for drag force and lift force. 

If you analyze the say whenever we consider the a body immersed in fluid, with respect 

to the drag effect and lift effect, if you consider a dimension analysis and say we can see 

that with respect to the various parameters which have to be considered while dealing 

with a drag force are the length of the body, the dimensions, length, breath and other see 

the depth or dimensions and then rho is the density of the fluid and mu is the coefficient 

of dynamics viscosity and E is the velocity of the velocity force or with respect to the 

fluid and g is the acceleration due to gravity and then the free stream velocity u infinity. 

So these are the important parameters we have to consider while considering, while 

analyzing the drag force and the lift force. Similarly, the drag force can be considered as 

a function of this length L of the density rho. 
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And the coefficient viscosity mu and the elasticity E and access due to gravity and the 

free stream velocity. Similarly, the lift force also can be considered as s function of these 

parameters as shown here FL is equal to f2 as a function of L, rho, mu, E, g and u 

infinitive. So we can do and analysis with respect to these various parameters. Using the 

dimensional analysis we can show that especially while doing experiment if you are 

doing the dimension analysis through dimension analysis we can show that this drag 

force and then lift force say if you consider FD the drag force FD is divide by rho L square 

u infinitive square where u infinitive is the free stream velocity, so that is equal to as a 

function of say f3 here rho u infinitive L by mu u infinitive square by L g u infinitive by 

square root of E by rho. Similarly, this lift force we can write as FL divide by rho L 

square u infinitive square is equal to as a function of f4 rho u infinitive L by mu u 

infinitive square by L g u infinitive by square root of E by rho. So we can represent in the 

dimension analysis like this with respect to the drag force and then with respect to the lift 

force after writing like this, we can see that, so we can we have seen that this coefficient 

of drag and coefficient of lift we can write in terms of this. So the coefficient of drag is 

equal to the drag force FD divide by half rho u infinitive square into A where A is the area 

of the body which we considered, so whether where u infinitive is the free stream 

velocity. Similarly, coefficient of lift we can write as CL is equal to the lift force FL 

divided by half rho u infinitive square A. Now if you consider this with respect to the 



analysis here the dimension analysis which is explained here in this slide, we can write 

this coefficient of drag it can be put as a function of the Reynolds number, Froude 

number and Mach number.  
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So you can see this component here rho infinitive L by mu represent the Reynolds 

number and the second term u infinitive square L g representing the Froude number and 

this u infinitive by square root of E by rho represent the Mach number. So we can 

represent the coefficient of drag and the coefficient of lift in terms of the as a function of 

the Reynolds number, Froude number and the Mach number. Generally, when we 

consider the drag and lift effect and then when we are finding the coefficient of drag and 

coefficient of lift we can show that, this Froude number and Mach number that term or 

that effect will be much smaller, so we can neglect it and generally we can represent this 

CD coefficient of drag as a function of Reynolds number and also coefficient of lift as 

function of Reynolds number by neglecting this Froude number and Mach number which 

we considered here in this analysis. This way we can represent the coefficient of drag and 

coefficient of lift.  
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Now we will analyze the drag effect say initially with respect to the small Reynolds 

number and then we will see the laminar flow with especially with respect to a flat plate, 

we see the drag force for the coefficient of drag and its various parameters, coefficient of 

drag and other parameters for flat plate. Initially let us discuss about the drag at small 

Reynolds number, so this strokes conducted number of experiments with respect to the 

drag effect and then say especially in the case of Reynolds number is small Reynolds 

number say especially when the Reynolds number is less than 1, so this category of flow 

as been classified as creeping flow which we discussed earlier. Here you can see that the 

drag is proportional to the, so through experiments stocks shows that the drag is 

proportional to the free stream velocity u infinitive.  

If you consider as in this figure say if you consider a sphere the creeping flow so 

wherever the Reynolds number is very small so that flow which is categorized as 

creeping flow so we can see that here the free stream is coming here and then if you 

consider sphere like this the creeping flow over a sphere say the radius R and if you 

consider an angle theta like this, so here the number of experiments conducted by stocks 

and then he has shown that the deformation drag for a creeping flow wherever the 

Reynolds number is very small as we have seen here say Reynolds number less than 1, 

there stocks showed that this deformation drag FD  is equal to 3 pi mu u infinitive into d, 



where mu is the dynamic coefficient viscosity; u infinitive is the free stream velocity; and 

d is the diameter of the sphere, as shown here this is the diameter of the sphere; and u 

infinitive is the free stream velocity. So for small Reynolds number considers the 

creeping flow stokes showed that this deformation drag FD is equal to 3 pi mu u infinitive 

into d. 
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So this known as Stokes flow where this equation is applicable that kind of flow is called 

as stokes flow and as far as drag is concerned stokes shows that generally this after the 

total drag two third is the, say in the case of a creeping flow say if we consider the 

creeping flow over a sphere is shown that two third is friction drag and one third is 

generally pressure drag.  

So this is the case where the Reynolds number is small say generally less than 1, where 

stokes stored this drag effect is concerned two third will be generally the friction drag and 

one third is the pressure drag and also say if we consider this stokes flow around a sphere 

then the coefficient of drag we can show that the coefficient of drag is equal to 24 mu 

divided by rho u infinitive d, d is the diameter of sphere, so that is equal to 24 by Re. This 

is valid for Reynolds number less than .1 and when the Reynolds number is between .1 to 

1, we can show that this coefficient drag will be 24 by Re into one plus 3 by 16 into Re.  
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Where Re is the Reynolds number which we considered and again say large number of 

experiments conducted for different Reynolds number and this coefficient of drag we can 

show that it will be CD  is equal to 24 by Re into 1 plus 3 by 16 Re to the power 1 by 3 

for Reynolds number up to 100. So this we can see that the coefficient of drag is varying 

with respect to the Reynolds number as shown in this slide. So this creeping flow which 

we discussed earlier also with respect to the stokes flow, these kinds of analysis very 

important especially in civil engineering and sedimentation and silting problem is there in 

water and also the settlement of dust in the atmosphere, we can utilize this stokes flow 

and then with respect to the we can calculate the coefficient of drag and also the drag 

force coming on the particle.  

So that is the case where the Reynolds number is so small where we consider the 

creeping flow, we have seen the drag effect in the coefficient of drag and then the drag 

force. Now we will further analyze here the drag effect coefficient of drag and various 

other parameters with respect to the flow over a flat plate. We have already seen this flow 

over a flat plate case, when we consider the flow over a flat plate that can be three 

conditions first one is the boundary layer formation is that is laminar boundary layer; and 

then there is a transition states; and then there can be turbulent zone. If you consider the 



drag over a flat plate we can see that generally there is no variation pressure in the flow 

direction as we have discussed earlier so that velocity gradient is constant.  
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So in this case we can see that here we have the laminar zone and then there is transition 

zone and here with respect to boundary layer formation we have the turbulent zone. Now 

with respect to these various cases, we will determine the drag how to find out the drag 

for a laminar case and then turbulent case and also the transition case. 
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When we consider as we discussed for drag over a flat plate boundary layer is fully 

laminar. So generally it happens when the length of the plate is short or initially as we 

have seen in the previous slide initially it can be laminar and then transition and turbulent 

or say only laminar boundary layer you if the length of the plate is very small and then 

the velocity is also the free stream velocity is small and then second case is when the 

boundary layer is fully turbulent so it develops after a certain distance along the plate as 

we have seen here. So here finally here the boundary layer is totally turbulent. 

Then the third case is boundary layer in transition from laminar to turbulent, so this is the 

case where the transition zone here we can see that this is a laminar here it is turbulent so 

here is the transition zone. Here we want to find out the drag force with respect to say for 

the flow over a flat plate since this is one of the generally used to case to analyze various 

parameters, so here also to analyze the drag force the coefficient of drag we use the flow 

over a flat plate problem.  

Now first, let us consider the laminar boundary layer formation or for flow over a flat 

plate in the flow is fully laminar boundary layer and then how we can get the drag 

coefficient and then the drag force. So with respect to the flow over a flat plate for fully 

laminar boundary layer Prandtl analyze this problem by using the Prandtl’s boundary 



layer equations which we have discussed earlier, so you can see that here the this is the 

flat plate here and then flow free stream velocity is coming like this and then you have 

the boundary layer formation.  
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So this is the boundary layer thickness and here the u infinitive is the free stream 

velocity. By considering the Prandtl’s boundary layer equations from the law of 

similarity, we can write say the velocity at any location u by u infinitive is a function of 

y, x, nu and u infinitive where nu is the dynamitic viscosity here, so this is equal to F eta 

so where eta we can represent as this y is in this direction eta is equal to y by delta the 

location which we consider where the velocity is u and the location is at y.  

So now with respect to this say from the boundary layer flow analysis of unsteady motion 

Prandtl’s analysis showed that this boundary layer is proportional to square root of nu 

into t where nu is the kinematics viscosity and t is the time required for a fluid particle to 

travel a distance x with velocity u infinitive. Here you can see this figure earlier, so the 

flow is taking place like this and then we have this the fully laminar boundary layer, delta 

the boundary layer thickness is proportional to square root of nu into t where t is the time 

required for a fluid particle to travel distance x with velocity u infinitive the free stream 

velocity.  



So this we can write this is proportional square root of nu X by u infinitive or we can 

write delta is equal to X by square root of Rx where this Rx is the is the Reynolds number 

at that particular location where we considered. So now in the previous slide we have 

seen this y is represent as this eta is equal to y by delta. 
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This is equal to y into square root of u infinitive by nu into X, so with respect to this 

equation here Prandtl’s analysis shown that eta is equal to y into square root of u 

infinitive by nu into X .Here if you introduce the stream function which is defined as sie 

is equal to integral u dy so that is equal to u infinitive delta integral F eta d eta, so that is 

equal to u infinitive substitute for delta we can write u infinitive into square root of nu x 

by u infinitive into function of F eta d eta. So that we can write sie is equal to stream 

function is equal to square root of u infinitive into nu into X into f eta where F eta is 

equal to integral f eta coming from here f eta d eta.  

Now we know that the velocity can be represent as u is equal to del sie by del y, so that 

we can write u is equal to del sie by del eta into del eta by del y. This is equal to u 

infinitive f dash eta. So velocity is represented as at any location u is equal to u infinitive 

f das eta and then the velocity gradient we can write as del u by del y is equal to del u by 

del eta into del eta by del y, so this equal to u infinitive square root of u infinitive by nu x 



into f double dash eta, so second derivative. This f dash f eta, so here first derivative here 

the second derivative or double dash eta and then the shear stress on the surface of the 

flat plate from the Newton’s law we can write tow is equal to mu du by dy at y is equal to 

0, so that is equal to mu u infinitive square root of u infinitive by nu X f double dash at 

zero location.  
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So this is the shear stress on the surface of the flat plate. And then by using this Prandtl’s 

equations Blasius derived this solution by the discussed steps and then the Blasius 

solution for the boundary layer flow analysis or flat plate at eta is equal to 0, he showed 

that f double dash 0 is equal to 0.332, so that we can write say from the velocity profile 

obtained by Blasius solution, the boundary layer thickness delta is equal to 5 into X by 

square root of Rx where Rx is the Reynolds number at that particular location which we 

consider at say where u by u infinitive is equal to .992 with respect to the definition. So 

that delta is obtained as 5 into X by square root of Rx where Rx is the Reynolds number 

and also here delta star the displacement thickness is equal to 1.73 X Blasius showed that 

delta star is equal to 1.73 X divided by square root of Rx.  
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Where Rx is the Reynolds number at that particular location and the momentum thickness 

theta is equal to .664 into X by square root of Rx where Rx is the Reynolds number at that 

location. Now from the equation number 1 here is substitute in this equation number 1 we 

can show that tow0 is equal to .332 mu u infinitive square root of rho u infinitive by mu X 

so that is equal to 0.332 rho u infinitive square by square root of Rx where Rx is the local 

Reynolds number represent as represented as rho u infinitive into X by mu. So this way 

by using the Prandtl’s equations Blasius derived this expression for delta, delta star, theta 

and then also expression for tow0 the shear stress on the flat plate. 

And then now we want to see with respect to drag effect so the when we consider the 

local friction drag coefficient with respect to this figure here, local means at the particular 

location so here Cf is equal to the local friction drag coefficient Cf  is equal to friction 

drag divided by dynamic pressure drag so that we can write Cf  is equal to the friction 

drag is even a tow0 into A by this dynamic pressure drag is obtained half rho u infinitive 

square into A, this is equal to tow0 by half rho u infinitive square. So this he sort with 

respect to the previous expressions here for tow0 which is obtained here, so Blasius 

showed that Cf is equal to 0.664 by square root of Rx where Rx is the local Reynolds 

number. 
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So this Cf is the local friction drag coefficient for the laminar boundary layer formation 

over a flat plate. Now the friction drag say over one side of the plate of length l per unit 

width we can write as FDf is equal to integral 0 to L tow0 dx, so this is equal to integral 

zero to L 0.332 divided by u infinitive square root of u infinitive X by mu into rho u 

infinitive square dx.  

So this is equal to 0.664 rho u infinitive square into square root of nu L by u infinitive, 

this is the friction drag and then from this FDf the friction drag over one side of the plate, 

so the average coefficient of friction drag we can get from this expression this Cf is equal 

to FDf by half rho u infinitive square into L, so this is equal to .664 u infinitive square, 

square root of nu L by u infinitive half rho u infinitive square into L, so that is equal to 

1.328 divided by square root of RL where RL is the Reynolds number at the trailing edge 

of the drag plate. Finally, here we got the coefficient of friction drag for the plate Cf as Cf 

is equal to 1.328 divide by square root of RL. In the previous space here what we 

considered here is the local friction drag coefficient which we got as .664 divide by 

square root of Rx, so here we got as Cf is equal to 1.328 divide by square root of RL where 

RL is the Reynolds number at the end of the plate which we consider.  
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Now like this here and various parameters have been derived for the coefficient of drag 

whether it is local or at the end of the plate, so with respect to this we have seen say by 

starting from the Prandtl’s boundary layer equations the parameters like delta, delta star, 

and then momentum thickness etcetera are derived by Blasius in the earlier slides which 

we have discussed. Now we will discuss say a small example here, so the example here is 

say we have to calculate the friction drag on a flat plate so here this a flat plate problem. 

So calculate the friction drag on a flat plate of 25 centimeter wide and 60 centimeter long 

placed longitudinally in a stream of oil of relative density 0.945 and kinematic viscosity 

.8 stokes flowing with a free stream velocity of 3 meter per second and also find the 

thickness of the boundary layer and shear stress at the trailing edge. So here the problem 

is this is the free stream velocity we have free stream velocity of 3 meter per second and 

then the rate density of the fluid is .945 and length of the plate is 60 centimeter and width 

is 25 centimeter and kinematic viscosity is .8 stokes.  
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This is the section of the plate, so for this problem we have to find out the thickness of 

the boundary layer and the shear stress at the trailing edge. We have already seen for 

these kinds of problem enough for the we can first find out the at the trailing edge what 

will be the Reynolds number, so that we can see that with respect to the whether the flow 

is laminar or not and then we can use the equations which we have discussed earlier to 

get the boundary layer thickness and the shear stress.  

Here for this problem the Reynolds number at the trailing edge Rel is equal to uL by nu, 

so 3 into .6 by .8 into 10 to the power minus 4, since here .8 stokes is the kinematic 

viscosity. So this is equal to 2.25 into 10 to the power 4, so Reynolds number at the 

trailing edge of the plate is 2.25 into 10 to the power 4. So here we can see that 1 stoke is 

equal to 10 to the power minus 4 meter square per second, so here say we have when we 

discussed the initially about the boundary layer we have seen say the especially for the 

case of a for flow over a flat plate then the Reynolds number is less than 5 into 10 to the 

power 5 we are categorize the boundary layer as laminar, so here we got 2.25 into 10 to 

the power 4 as a Reynolds number. 

So you can see that the boundary layer is laminar so we can use the equations which we 

have seen earlier since that boundary layer is laminar in nature, so the Blasius solution we 



can use so delta is equal to 5 into x by square root of Rx, that is the in the boundary layer 

thickness equation E 1 by Blasius.  
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So at the trailing edge means at the end of the plate, so here at this location, so that means 

the boundary layer thickness here so we can see that L is equal to .6 so delta L is equal to 

5 into .6 divide by and Reynolds number square root of 2.25 into 10 to the power 4 which 

is Reynolds number so we get the boundary layer thickness at the trailing edges 0.02 

meter and now the second problem here is the find out the shear stress at the trailing 

edge.  

So to find out the shear stress we have already seen this equation here so this equation is 

here towL is equal to half rho u infinitive square Cf L so that is equal to half rho u 

infinitive square so here this Cf L is seen 0.664 square root of Rel, so this  is equal to rho 

is .945 into 1000 into say, free stream velocity is 3, so 3 square into .664 divided by 2 

into square root of 2.25 into 10 to the power 4, so this will give the shear stress at the 

trailing edge as 18.82 Newton per meter square. And then the drag on one side of the 

plate FD is equal to CDf into L into B into rho infinitive square by 2 and then the CDf that 

means the when we consider say here the say total drag so we have seen the drag is 

concerned the local drag coefficient is concerned local drag coefficient as well as the full 



drag coefficient as we have seen here the average coefficient of friction drag CDf 1.328 

root RL so this equation we can utilize here so that CDf is equal to 1.328 divided by square 

root of Rel so that is equal to 1.328 divide by square root of 2.25 into 10 to the power 4 so 

this is CDf is equal to 8.85 into 10 to the power minus 3. 
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And then the force due to drag we can calculate FD is equal to CDf into area L into B into 

rho u infinitive square by 2, so this is equal to 8.85 into 10 to the power minus 3 which is 

the CDf into .6 L is .6 and B is .25 here into .945 so here B is 25 centimeter so that is why 

.25 into .945 into thousand into 3 square by 2, so this gives 5.695 Newton. So total drag 

force on both sides of the plate is equal to say here this calculation is for one side both 

sides to be two times the drag force calculated. So 2 into 5.695 is equal to that gives 

11.29 Newton. So like this we can solve the drag force with respect to the laminar 

boundary layer formation in the case of a flat plate and now the next case is drag over flat 

plate where the boundary layer is turbulent.  
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So we have seen so now the laminar we have seen now if the boundary layer is fully 

turbulent then say the various equations here we consider for turbulent boundary layer. 

Now here say we have seen when we discuss the boundary layer earlier, we have seen the 

momentum integral equation, with respect to this for fully developed turbulent boundary 

layer we can see over a flat plate the momentum integral equation maybe written in 

slightly different form as d by dx of integral 0 to delta u into u infinitive minus u dy that 

is equal to tow0 by rho as in equation number 1.  

Where u infinitive is the free stream velocity and mu is the velocity at any location tow0 

is the boundary shear stress and rho is the density and then Prandtl’s experimentally 

showed that for turbulent boundary layer we can write this u by u infinitive is equal to y 

by delta to the power 1 by 7 so this is coming from the experimental observation by 

Prandtl’s, so this is u by u infinitive is equal to y by delta to the power 1 by 7 as in 

equation number 2 this is known as Blasius one seventh power law, so this is through 

experimental observations. And then also the velocity distribution turbulent flow over a 

flat plate say when the Reynolds number is less than 10 to the power 7 through 

experiments it was be shown that u by square root of tow0 by rho is equal to 8.74 into 

square root of tow0 by rho into y by nu to the power 1 by 7.  
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And also here this say with respect to the Blasius analysis and using the momentum 

integral equations same with respect to the pipe flow for turbulent flow in pipes it is 

shows that tow0 is equal to 0.034 rho v square vd by nu to the power minus on1e by 4 as 

in equation number 3 and the average velocity for with respect to pipe flow we can show 

that v is equal to .817 the maximum velocity u max, so here the maximum velocity of the 

free stream velocity so that is equal to .817 u infinitive. So by using this here we can 

show that tow0 is equal to zero .0233 rho u infinitive square u infinitive delta by nu to the 

power minus 1 by 4 as in equation number 4.  

So now if you use the previous equation, equation number 1 and then equation number 2, 

equation number 2 here and then equation number 4, we can show that delta by x is equal 

to for turbulent boundary layer delta by x is equal to .379 divide by Rx to the power 1 by 

5 as in equation number 5. So this is to find out the boundary layer at any location with 

respect to the turbulent boundary layer formation and now if you use this equation 

number 5 and 4 together, we can show that tow0 is equal to .0295 rho u infinitive square 

Rx to the power minus 1 by 5 as in equation number 6. So now for turbulent boundary 

layer local friction coefficient we can find out Cf is equal to tow0 by half rho u infinitive 

square as we have discussed earlier so this for turbulent boundary layer the local friction 



coefficient we can show that Cf is equal to .059 divided by Rx to the power 1 by 5 where 

Rx is the Reynolds number local Reynolds number as in equation number 7.  
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In the friction drag per unit with for one side of the plate is we can integrate FDf is equal 

to integral zero to L tow0 dx so this is equal to 0.0638 L rho u infinitive square RL to the 

power minus 1 by 5 and then and hence Cf is equal to FDf by half rho u infinitive square 

L. This is we can show that Cf is equal to 0.074 dived by RL to the power 1 by 5 as given 

equation number 8. So this equation number 8 through experiment shows that this 

equation number 8 is valid for Reynolds number in the range of 5 into 10 to the power 5 

and between 10 to the power 7 the Reynolds number 5 into 10 to the power 5 to 10 to the 

power 7 and when again Prandtl calculated and also shown through experiment starts 

when the Reynolds number is greater than 10 to the power 7 he showed that this the 

friction coefficient Cf is equal to 0.455 divided by log 10 RL to the power 2.58.  

So this is thoroughly seen by Prandtl’s and verified through experiment as shown in this 

equation 9. So this gives for turbulent boundary layer this gives the various equation 

friction coefficient and the coefficient say the average friction drag coefficient for the 

turbulent boundary layer. 



Next say we will be discussing further on the drag force and the drag coefficient in the 

transition case and also further with respect to various shapes and with respect to various 

body parts how the drag coefficient changes will be discussing in the next lecture.  


