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Navier-Stocks Equations and Applications 

Welcome back to the video course on fluid mechanics. In the last lecture, we were 

discussing about the navier-stocks equations and its exact solutions. So, we have seen 

various cases wherever exact solutions are possible. But as we can see, only few cases 

wherever lot of simplifications are possible, the problem is so simple, domain is so 

simple, and number of assumptions, say, parallel flow like that we can put for, then only 

we can get exact solutions. However, most of the field problems wherever we try to solve 

real field problem, then we can see that these kind of assumptions if you put, then the 

problem becomes so simplified. Then, we will not get the results what we expect. 

Generally, these kinds of analytical solutions we discussed, say, most of the field 

problems, we cannot directly apply. 

So, we have to solve the navier-stocks equations with the continuity equations in its full 

form. Then, we have to get various parameters like velocity pressure, vorticity, or other 

kinds of parameters. So, to do this, we do not have any short cut, we have to solve the 

navier-stocks equations, say, approximate methods or numerical methods. With the 

advent of the various computer technologies and various advanced numerical 

methodologies, we are able to solve these navier-stocks equations and then try to get 

solutions for various field problems. Today, we will discuss various numerical solutions 

for the navier-stocks equations. Then, we discuss various methodologies, numerical 

methods that are used briefly and then we will see how the applications of navier-stocks 

equations with respect to the numerical method. 

Here, we have the navier-stocks equations of the numerical solutions. So, only few 

analytical solutions and approximates solutions are available here. We have to go for 

appropriate solutions. As I mentioned, high speed digital computers have helped a lot in 



this kind of development. Hence, I called this as ‘computational fluid dynamics. Here, 

what we are generally doing is that the partial differential equations, which we say, the 

navier-stocks equations, which we are seen in three dimensions or two dimensions or 

partially refresh equations. 
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By using the numerical methods, we are trying to replace this partial refresh equation by 

a set of algebraic equations. So, once this transformation is done, then we can apply the 

boundary conditions into the system of equations. Then, we can get the numerical 

solutions. As we are trying to solve the complete navier-stocks equations this way, that 

means, by using the numerical methods, then these numerical solutions we can apply for 

the most of the field problems. 
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Here, it is the computational method solution by approximate methods. So, we are 

providing an approximate method; it may not be hundred percent right. So, various 

numerical methods are used. For example, when we consider the flow fast cylinder like 

this, you can see that there we cannot approximate these kinds of problems. We have to 

solve the durial navier-stocks equations and then we have to obtain the various 

parameters like velocity. Then, we can represent it visually like animated or we can 

represent in terms of graphical or other tabular forms. 

So, wider classes of mathematical formulations are possible. We have already seen the 

navier-stocks equations, three different forms such as primitive variables, velocity-

vorticity formulations, and vorticity-stream function formulations. Depending upon the 

type of the problem which we are trying to solve, we can formulate the problem 

mathematically. Then, we can solve using the numerical solutions. So, this branch of 

fluid mechanics is called computational fluid dynamics. The navier-stocks equations are 

solved using these numerical methods and then, we try to solve the real field problem. 

Commonly, in literature, a number of numerical methods are available. But, generally, 

you can see that we use four numerical methods such as finite difference method, finite 

volume method, finite element method, and boundary element method. 
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So, these are the commonly used numerical methods. Each method has its own 

advantages and its own disadvantages, say various difficulties. Depending upon what 

kind of problem we are trying to solve, we can use any of these: finite difference method 

or finite element method or finite volume method or boundary element method. Then, we 

can try to approximate the navier-stocks equations and then try to solve. 

So, the selection of methodology depends upon various factors such as the type of 

problem which we have to solve, the familiarity of the user say using this methodology, 

and then the availability of the kind of computers which is required for the typical like 

boundary element method, we have to solve it large set of equations. So that kinds of 

methodology may need slightly advanced computer.  

Like that, depending upon the user and depending upon the problem, we can choose any 

of these methodologies. For example, if you want to simulate what happens, say, here, 

you can see that, we want to see this is a cube, we want to see the flow behavior or flow 

surrounding a cube. So what we are trying to do is, we will choose one of these 

methodologies and then we can discretize this domain. For example, here, this is the 

domain, so we can discretize the domain and then, we can set approximate the navier-

stocks equations. As we have already seen the partial friendly equations, we will be 



transformed to all the finite set of equations and then we will be applying the boundary 

condition. 

Say, for example, if the boundary condition can be say in this figure, what is entering 

from here? Say, if you know the velocity at this location and here, we will be having no 

slip conditions and then, here vorty of the conditions. So, based upon the boundary 

conditions, we will be solving the problem. Now, say, we will be briefly discussing all 

these numerical methods like analytical methods, finite volume method, finite element 

method, boundary method very briefly. Since I want to discuss here is, only, say, what 

the methodology is and which way we are trying to solve the problem. 

But, otherwise, each of the methodology, say, to describe or to explain to all the level, it 

will be very difficult. So, here, we will be discussing briefly. First one is the finite 

difference method. In finite difference method, the continuous variation of the function is 

represented by set of values at points on a grid of intersecting lines. So, what we are 

doing in finite difference method? Let us consider the flow in square gravity like this. As 

we have seen this is a typical problem in two d, what we are saying in finite difference 

method? What we do? If this is the boundary, here is gamma one, gamma two, gamma 

three, and gamma four. This is the domain. 

(Refer Slide Time: 08:08) 

 



What we do in finite difference method is, we will be representing this domain with 

respect to a grid points. So, here, we can say, just discretize the domain to grids, that is 

square or rectangular grids like this. Then, we will be representing the domain with 

respect to grid points. So, these are the grid points here. Then, say, this is x direction and 

this is y direction. We can represent each grid point and then what we are doing? So, the 

convious various of the function, the function can be the velocity or whatever the 

function we are trying to approximate, we will representing the functions by a set of 

values at points on a grid box intersecting lines. 

So, you can see a grid of intersecting lines here. Then, the gradient of the function, say, 

here, if phi is the function which we try to approximate here. Then, you will be having 

the gradient like del phi by del x or del phi by del y. So, the gradient of the function is 

represented by the difference between, say, the differences in the values of neighboring 

points. So, you can see that, say, between this point and this point, we will be trying to 

represent between the neighboring points. That is the way we represent in the finite 

difference method. Between these two points, we take or between these two points, we 

represent the del phi by del y. 
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Like this, we represent the gradient of function represented by difference in the values at 

neighboring points and finally, finite difference equation is found. So, finally, after 

representing, say, after writing the equations, say, each grid point, we can write the 

equations. Finally, we are representing the partial differential equation, say in this case, 

the navier-stocks equations and continuity equations, with representing in terms of 

difference equation. So, we form the difference equation. At the grid points, this equation 

is used to form a set of simultaneous equations. 

So, we have various grid points as explained here. So, this equation is used form a set of 

simultaneous equation. Finally, it gives value of the function at a point in terms of the 

values at nearby points. So, once we form the difference equation and then, we will know 

the boundary conditions or at least few grid points will know the values, with respect to 

the non–values, we will be trying to find out the unknown values at point in terms of the 

values at the nearby points 

So, this is the procedure used in finite difference method. Here, we obtain the value of a 

function at a point in terms of values at nearby points. If there is any specific case at the 

edges of the grid, value of the function is fixed, or a special form of a finite difference 

equation can be used to get gradient of the function So, depending upon the problem, say, 

at some places, we have to say, what we have discussed here is only the basic or the 

fundamental, which way the finite difference method is working. So, there are number of 

variations of finite difference that are available in literature. Also, the variation with 

respect to space, with respect to time, there are number of methodologies for the finite 

difference method available. 
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Essentially, what we are doing here is, as we are already discussed that between two grid 

points, we see the difference, say the gradient. Then, we try to approximate the gravany 

equations, say, navier-stocks equations. Then, write the difference equations and then all 

the independent equations with respect to the non-values or the boundary conditions. So, 

this is the finite difference method. Another important methodology used in computer 

fluid dynamics is the ‘finite volume method’. 

Here, in finite volume method, you can see that a large number of CFD codes are written 

now-a-days, since it has got number of advantages. So, these finite volume methods are 

particularly applicable to irregular and unstructured grids. We have seen that finite 

difference method, generally says we use square or rectangular type grid. 
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So, wherever irregular shape or unstructured grids comes, it will be more difficult to deal. 

Hence, finite volume method has advantages over finite difference method to deal with 

the irregular unstructured grid. If you consider the finite volume method for a generic 

conservation equation like this, same del of rho u j phi by del x j del by is equal to del by 

del x j gamma del phi by del x j plus q phi. Here, phi is the function, u is the velocity 

vector, rho is the density, and q is show sourcing. So, let us consider a typical equation 

like this. By using the finite volume method, here, we consider the unit cells like this. So, 

it can be regular cell structure like this; rectangular or square or we can have any shape of 

the cell. Then, in the finite volume method, the domain is discretise and then, set of nodes 

and grid cells. So, you can see that, the nodes can be on the intersection or it can be at the 

middle. 

Here, you will assume that the grid nodes are located at the grid cell centers. So, this is 

not the only option; other way is also possible. Then, compare to the finite difference 

method, the starting point for finite volume method is an integral form of the 

conservation equation. The conservation equation, which we will write in the integral 

formula, in this integral, with respect to s is rho of phi v dot n ds, n is equal to integral s 

gamma gradient phi dot n ds plus integral omega q phi d omega. 
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So, we write the equation like this, which we have already considered. We are integrating 

with respect to the cell, which we consider. Here, we will assume that the density, 

velocity components, and source or sink term are known and the unknown is phi. Then, 

we can obtain the solution. The net flux through the faces of the control volume, via 

convection and via diffusion, if it is required, we can write integral s f ds is equal to 

sigma k integral s k f ds. So, we can integrate throughout the various cells. 
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These surface integrals are calculated in terms of nodal values of f. So, this is the brief 

procedure as far as finite volume method is concerned. Here, compare to the finite 

difference method, as we have discussed earlier, say, if we consider the navier-stocks 

equations and any kind of irregular domain, we can use the finite volume method. Here, 

basically, we discretize the domain into sales and then we consider the grid point either at 

the center or at the intersection of the grid. Then, we approximate the equation as we 

have already discussed and then we integrate with respect to the cell to get a solution. So, 

this is very briefly, if you say, finite volume method was like this. So, we can 

approximate navier-stocks equation, using the finite volume method and then we can try 

to solve for various problems. This is the finite volume method and then another 

important methodology used is called ‘finite element method’. 

Here, the region of interest is divided in a much more flexible way. The nodes at which 

value of the function is found have to lie on a flexible mesh. The boundary conditions are 

handled in a more convenient manner. There are a number of approaches in finite 

element method. 
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Some of the commonly used methodologies are: direct approach, variational principle, or 

weighted residual method, which can be used to approximate the governing differential 



equations. For example, if you consider the problem, which we considered earlier like the 

square gravity problem, using the navier-stocks equations. If you want to show, say, let 

us consider gravity like this. If u is equal to one, v is equal to zero; here u, v is equal to 

zero; u, v is equal to zero; u, v equal to zero. This is the problem and then what we do 

here? Compare to the finite difference method, this is much more flexible in finite 

element method. 

So, what we can do? We can discretize the domain, say, instead of rectangle source, we 

can use triangular elements like this also. So, the advantage here is, methodologies are 

much more flexible when compared to the different kinds of elements, like we say, we 

can have triangles or we can have rectangle or square or we can have same quadrilateral 

like this. 
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Here, this is called an element and say, we define here the nodes. So, these are called 

nodes and here, various shapes of elements are possible. The advantage here when 

compared to any other numerical methods is, here we can have the different shapes of 

elements. So, we can easily deal with any kind of irregular domain and then say, we can 

fit the domain with an accurate mesh compared to the grids, which we are using in finite 



difference method. Then, say, after the meshing is over, the view the same, defining an 

interpolation function. 

That is, the variation like the velocity or the parameters, which we consider in a best 

stock equation either the velocity or pressure, then we will be approximating these 

functions or the parameters, velocities, and pressure with respect to interpolation 

function. Then, we will be trying to approximate the function with respect to the 

interpolation function. Then, we will be putting back to the relevant equation and we will 

try to orthonolize it. Say for example, one of the methodologies, the caliarchy finite 

method; we try to orthonolize with respect to the interpolation function or the shape 

function. Then, we force the error to zero. 

Since we are approximating with respect to interpolation function, solution will not be 

exact. So, we are trying to force the residue produced to zero, so that the error is 

vanished. Then we get an approximate solution. So, as discussed in finite element 

method, there are number of methodologies, like direct approach. For example, when we 

try to solve a network of pipes, there we can directly use the dashis this back equation to 

get relation between various pipe elements. So, that kind of problem, we can solve using 

the direct approach. Another important methodology is called variation principle. So, 

variation principle generally, say, we have to derive a variation function for the relevant 

equation, which we consider and then we are trying to approximate. 

So, this variation principle, generally, we use for structure mechanics problem. Then, 

another important methodology is the latter issue method. So, they are same. We are 

approximating with respect to interpolation function. While approximating, due to error, 

the residue will be made and that residue will be forced to zero. So, that is what we 

generally see in the method of weighted resolve approach, say, one of the commonly used 

methodologies in the problem. Like this, different methodologies are there in finite 

element method. For example, here, if you consider, say, in this domain, there is a 

cylinder and if you want to see that, how the moment of a sphere inside the cylinder is. 
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So, what we can do is, we can discretize the domain using three dimensional like this. 

Then, we can solve the navier-stocks equations three dimensional, so that, same we can 

initially transform the partial differential equation, navier-stocks equations into all the 

finite set of equations. Now, we can apply the boundary conditions and we can solve the 

system equations to get the unknowns. So, this is the essential principle, behind the finite 

element method. So, this finite element is also very much useful, say, due to its number 

of advantages when compared to the finite differential methods. Finite element method is 

also very commonly used to solve various fluid flow problems, by using the navier-stocks 

equations. Lastly, another methodology that has been recently developed, recently in the 

sense, say, in the 1970s, the development of methodology has been started and it is called 

boundary element method. 

Here, in boundary element method, the partial differential equations, that is, partial 

differential equations means navier-stocks equations, describing the domain is 

transformed into an integral equation relating only to the boundary values. 
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Here, the boundary element method is based on the Green’s integral theorem. So, if you 

go to the advanced mathematical test, we can see that green’s theorem like green’s pass 

theorem, green’s second integral theorem are there. Here, these green’s theorems are used 

to transform the equation, which is on the domain to the boundary. So, here, we will 

discretize the boundary instead of the domain. Then, if you want to find out the 

parameters, once we can discretize the domain and we will get the equation in terms of 

the boundary integral. Then, we can say, for example, we can find out the unknown 

means beyond the boundary and then, we can find out the unknowns on the domain. 

So, here, say for example, in boundary element method, if it is the domain, which we are 

dealing, we will be discretizing like this, using various nodes and elements. So, this is 

called node and this is called element. Once we find, say, for this particular problem, if 

the velocity here is known and some other partial is the velocities are not known, then we 

can find out first one, the boundary. Then, various internal points we can define 

separately, after the boundary internal equations are written. Now, we can solve for the 

unknowns inside the domain. Hence, these are internal nodes. 
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The advantage here is, since we are trying to solve initially on the boundary, the 

computational dimensions of the problem will be produced by one. So, due to this, a three 

dimensional problem, we can solve in two dimensions and two dimension problem 

computationally, we can solve in one dimension. So, this is one of the advantages of this 

methodology, but it has got its own limitations also. This is because, here, we have to 

solve the partial differential equation and then, we have to look for a fundamental 

solution in the boundary element method. 

To derive a fundamental solution, it is very difficult for the complicated equations like 

navier-stocks equations, but now, recently, there are some other methodologies like dual 

reciprocity boundary method that has been developed. So, we can still approximate the 

cavern equation with respect to some other methodologies like dual reciprocity method. 

This is the essential of the boundary element method. So, here, same as I mentioned, say, 

if you want to solve flow three or dam when we discretizing like this, then we can see the 

element one, two, three like that, the elements and nodes we will put. Then, you try to 

solve. So, as for as the fluid flow problems are concerned, BEM is ideally suited to the 

solution of many two and three- dimensional problems especially potential flow problem. 
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If you solve the fluid navier-stocks equations, these methodologies have some 

limitations, but the advanced techniques like dual reciprocity method can be used. 

Otherwise, the methodology, BEM is much more used to solve potential flow problem. 

So, in comparison, while using finite difference method, finite volume or finite element 

method or boundary element method, we generally model same like this. If you are 

considering flow through dam like this, then this finite difference discretization is shown 

here, corresponding finite element discretization is shown here, and boundary element 

discretization is shown here. As I mentioned, depending upon the problem, depending 

upon the familiarity of the user with the methodology, we can choose the methodology 

and then we can try to solve  

So, using any of these numerical methods, there are three steps. First one is the 

preprocessing, 
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Here, preprocessing means, first, we will be discretizing the domain by putting the grids 

or mesh like this. Then, we will be putting the boundary conditions and then various 

parameters, which are generally available for the problem considered. The second step is 

the processing, which means the computer com which we will be writing for the 

methodology. Then, we have to run the code to generate the solution for the particular 

problem. The third step is the post–processing, which means once the results are 

generated, we will be getting in the numbers. That numbers, we have to put it in the 

graphical forms or the tabular form, so that the other people can understand, which way 

the solution has been generated and how the results are generated. So, essentially, we 

have three steps: one is preprocessing; second one is processing; and third one is post–

processing. So, that is about the numerical methods to solve the navier-stocks equations 

for various problems by using different methodologies. Before closing this chapter, we 

will be discussing two more same typical problems, where we can approximate the 

navier-stocks equations and then try to get analytical solution. 

First one is the creeping flows. Actually, the second one also, which we are discussing is 

the random creeping flow. This is also we can classify as creeping flow, as a sub-section 

of this creeping flow. Here, the creeping flow is the flow, which is extremely slow 

motion of the fluid in a prescribed geometry. So, here, generally, by Reynolds number, it 



will be very low. So, it should be generally less than one. Here, you can see that this is 

the flow into domain, say, the lava flow from a volcano.  
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So, you can see that to be the viscosity so high and then the motion will be slow. Also, 

you can see that we can classify these kinds of flow as creeping flow. So, here, the spatial 

acceleration terms in navier-stocks equations, we can neglect, since the Reynolds number 

is very low, that is, less than one. So, if you neglect the spatial acceleration terms, then 

we get a simplified form of the navier-stocks equations. 
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Generally, for the creeping flow, we can represent the equation as del p is equal to mew 

del square u, where p is the pressure, mew is the co-efficient dynamics viscosity, and u is 

the velocity. Here, when the inertial forces are neglected, generally the solutions are valid 

for approximately, for Reynolds number less than one and navier-stocks equations 

reduced to this form. Then, this form of the navier-stocks equations and the continuity 

equations, we will be using for the solution of these kinds of creeping flow problems. So, 

as we are discussing the flow is in slow motion, arbitrary high viscosity or depending 

upon various other conditions or situations, the velocity is very low, that is, in slow 

motion. Here, if you use the stream function in terms of head or the velocity, the 

equations will be simpler, if the function, psi is introduced. 

So, we can represent u is equal to del psi by del y and v is equal to del psi by del x, and so 

on. Then, we can rewrite the cavern equations starting from the navier-stocks equations 

and then, after rewriting, we can try to solve the problems, like, what we discussed in the 

case of creeping flows. So, a number of problems can be solved in this category of 

creeping flows. A variety of practical problems like motion of particulate matter in 

liquids and gasses, say, just like if you consider the reservoir, the sediments will be trying 

to settling, since the water is stored. 
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So, the settlement of sediments means, we can consider as a very slow motion. Then, try 

to get a solution for these kinds of problems or the settlement of dust particles in the 

atmosphere or the simulation of mist in the atmosphere or bubbles and drops in chemical 

reactors or flow of molten method. So, all these problems comes under the category of 

the creeping flows. Also, as I mentioned, this groundwater flow and lubrication problems 

also we can classify as a section of the creeping flow; we can approximate as a creeping 

flow. So, these are some of the applications of the creeping flows. 

Here, we will consider two cases: one is the stocks flow and second one is the 

groundwater flow. So, first case is stocks flow, here, say, by using this creep flow theory, 

stocks try to solve by starting from a navier-stocks equations, then approximated the 

navier-stocks equations in the simplified form, and then we got a solution by end of the 

nineteen century itself. Here, stokes flow deals with the uniform motion of a sphere 

through a large expanse of viscous fluid is at small Reynolds number. 
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So, stokes flow deals with say, as I mentioned, these can be used in the case of sediment 

settlement reserve or while dealing with dust particle in atmosphere, we can use this 

theory, that is, stokes flow theory. This solution has have been derived by stokes by the 

end of the nineteen century. The flow is at low Reynolds number. Here, we can consider 

this as a single particle, say, as a sphere here and this shows the stream lines. Velocity 

vectors are also indicated. So, stokes consider the motion of the sphere through a large 

expanse of the viscous fluid at small Reynolds number. While deriving the solution, we 

put forward a number of assumptions, so that the problem will be simpler and then we get 

solution for the problem. 
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Here, the assumptions used are: the inertia forces on the fluid particles are small and may 

be neglected in comparison to the viscous force. Then, the second assumption is walls of 

the vessel containing the fluid element is not near, so that the effect of the walls are not 

there, when we derive the equations. Also, some of the assumptions like no slip between 

the fluid and boundary of the sphere and also that the sphere which we considered is 

rigid. To derive a solution, we used only a single sphere. So, these are some of the 

assumptions used to derive this solution called ‘stokes solution’. So, here, if you consider 

the force resisting the motion of the sphere, that is, the drag on the sphere, the stokes 

obtained the drag force Fd is equal to 3 pie mew into V into d. Here, we should note that 

Reynolds number that stokes assumed is less than 0.1. 
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Here, V is the velocity of the sphere relative to the undisturbed fluid; mew is the dynamic 

viscosity of the fluid; and d is the diameter of the sphere. So, we derived that the drag 

force is equal to 3 pie mew into V into d. 
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For the fall of relatively small bodies through the fluids of relatively high viscosity like 

the dust particle mist droplets in the atmosphere and settlement of silt in reservoir, and so 



on, we can consider the same. For example, if you consider for a small solid particle 

falling through the fluid, it will accelerate until the net downward force on it is zero. So, 

if you consider, say, as I mentioned, either dust particle or the settlement particle in the 

reservoir, it will be keep on falling and the net downward force on it is zero. Then, we 

can use this drag force derived by each stokes and when the submerged weight of the 

particle is equal to drag force FD, it will reach to the steady state of its motion. 
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So, for the stokes drag force equation like this, submerged weight is equal to resisting 

force. Here, if we consider the single sphere of diameter d, we can write pie d cube by six 

into gammas minus gamma is equal to 3 pie mew V into d, where gammas is the specific 

weight of the solid and gamma is the specific weight of the fluid, from which we can get 

the terminal velocity. That means, when the submerged weight of the particle is equal to 

drag force, it will reach a steady state of its motion and that velocity is the terminal 

velocity.  

So stoke over the terminal velocity as V is equal to d square by 18 mew into gammas 

minus gamma. This solution is called ‘stokes solution’ or ‘stokes flow’. This has got 

application in number of fields as I mentioned, like say, reservoir sedimentation or dust 

particle analysis and in number of applications, we can use this stokes flow. So, this has 



been derived by stokes in nineteenth century. Here also, we can see that he approximated 

the navier-stocks equations and simplified the equations, such that very low Reynolds 

number problem, we can apply as derived by the stokes. Finally, an expression for drag 

can be written as D is equal to CD into pie R square into one by two rho V square, where 

R is the radius of the sphere which we considered.  
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So, from this expression, co-efficient of drag has been derived by stokes as CD is equal to 

24 by Re, where Re is the Reynolds number. Reynolds number (Re) is equal to Vd by v; 

where V is the velocity, d is the diameter, v is the kinematical viscosity, and d is the 

diameter of the sphere. Like this, we can get the co-efficient of drag and then, later Oseen 

solved this again approximation. He obtained the improvement of stokes’s solution by 

considering some of the inertial terms in the navier-stocks equations. Then, he got the co-

efficient of drag as 24 by Re into 1 plus 3 by 16 Re. 

So, oseen’s try to improve stokes flow or stokes equations. Here, as we have seen that 

this problem has got number of applications, but it is a simplified form of the navier-

stocks equations. Then, stokes derive the equations. Depending upon the problem, we can 

say, for the particular case, which we consider, we can use this stokes flow. It can be used 

whenever the Reynolds number is very low and then to determine the terminal velocity 



for the fluid particle, which we consider. So, the second problem which we want to 

discuss here is, the flow through porous media. The porous medium consists of pores 

between some particulate phase in the control volume.  
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So, this is another important section of the fluid mechanics called groundwater flow and 

contaminant transport problem. Here, say, if you have got a domain like this and then 

there are number of particles like this. Then, we can consider the navier-stocks equations 

for these kinds of flow problems. Here also, you can see that the velocity will be so low, 

so that we can approximate, if the flow is coming like this and going through this. Then, 

you can see that the flow is taking through these pores only and then on the particles like 

this sand particles, then the velocity will be much lower through this force or of the 

medium. Here, we can use the navier-stocks equations and approximate creeping flow 

and then we can use the equation. 

Here, we can approximate it. So, generally, say the basic equation for porous media flow 

is the Darcy’s law. So, here, what we are trying to do is said, whatever the theory for the 

laminar flow through pipe, we can try to apply for this kinds of problem. So, you can see 

that whenever we consider medium like this, here, between the sand gradient, you can see 

that there is the flow that is taking place like this. So, the flow will be going like this 



through the different pores. What we do here? We try to approximate this problem as a 

pie flow that means, between the solids we consider same pipe flow, then we compare 

with the Darcy’s and we try to obtain the Darcy’s law from this theory. 
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So, Darcy’s has done this experiment through the porous medium. He has derived and he 

has shown that the velocity of flow is proportional to hydraulic gradient. Here, the 

Darcy’s law is the basis for the study of this porous medium flow. So, it has got number 

of applications, like flow of groundwater, flow of gasses, and polymers through porous 

structures, and so on. A number of applications are there. So, here, first, we are trying to 

correlate with respect to the laminar equation, which we derived for pipe, with respect to 

this typical porous media flow. 
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So, the Darcy’s law as I mentioned, it states that velocity of flow through the porous 

media is directly proportional to the hydraulic gradient of the media. Mathematically, we 

can write V is proportional to i, where i is the hydraulic gradient or we can write V is 

equal to K into i, where K is known as co-efficient of permeability. Here, if you consider 

the porous media, which we are discussing as a simple case of pie flow equation, which 

we are derived for laminar case. We have already seen earlier p1 minus p2 is equal to 32 

mew Ul by D square, where mew is the co-efficient dynamics viscosity, U is the average 

velocity through the pipe, l is the length of the pipe, d is the diameter, p1 is the pressure at 

section one, and p2 is the pressure at section two. 

We can write this as p1 minus p2 is equal to k into mew into Ul by D square. If you 

assume what is happening, it is between the solid grains or the sand grains, if you 

consider the flow taking place the porous media flow as a pipe flow. So, we can consider 

the relation of flow through porous media with characteristic length as grain diameter of 

the porous media. Here, we consider the characteristic length (l) as the grain diameter of 

the porous media. 
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Considering the porous material in a tube of area ‘A’ and let the flow takes place under 

the piezometer head difference, hf is equal to h1 minus h2 and the velocity U is equal to 

flow (Q) divided by area (A). Then, we can put in this relationship as the actual flow 

area. Here, we are trying to correlate with respect to the pipe flow equation and the 

porous media flow. However, the porous media flow that is concerned, you can see that, 

since here you can see various number of porous, say sand grains are there between the 

pores and the flow is taking only between the pores. So, the actual area will be reduced 

and we can write the actual flow area as A into e. 

Here, A is the cross-section area and e is the porosity of the media. e is the porosity, 

which is the ratio volume of pores to the total volume. So, e is defined as the porosity of 

the media. So, the actual area is A into e; hence actual mean velocity is equal to Q by A 

into e and that is equal to U by e, since Q by A is U. 
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Whatever we consider the mean velocity that is used, that we have to divide it by e, the 

porosity. So the actual mean velocity is equal to U by e. Now, we can rewrite the 

equation, which we have written here as p1 minus p2 is equal to k into mew into U into l 

by e into Ds square. Here, Ds is defined as the grain diameter of the porous media or we 

can divide by gamma and write it as hf, which is equal to p1 minus p2 by gamma. So, hf is 

equal to k mew into U l by gamma e Ds square. 

Finally, from this expression, we can write the velocity U is equal to hf by l, which is the 

head lose, into gamma into e into Ds square by k into mew or from this, we can write as 

hf by l is the hydraulic gradient, that means, the head loss. With respect to the head loss, 

U is equal to hf by l into gamma into e into Ds square by k mew or we can write U is 

equal to k dash into i, where i is the hydraulic gradient and i is equal to hf by l. So, this 

expression mew is equal to k dash i, which is known as Darcy’s law. Here, k dash is 

equal to gamma into Ds square by k into mew as for this expression. So, this is called the 

co-efficient of permeability. 

Here, what we did is, we try to approximate. So, you tried to use the equation, which we 

derived for the pipe flow and then between the sand grains, we tried to get the actual 

velocity and then we tried to obtain the velocity. That is the Darcy’s Law. That is what is 



proved by Darcy through the experiment. So, you can see that this darcy’s law is 

applicable upto Reynolds number, generally equal to one, where Reynolds number is here 

is defined as U Ds by new, where Ds is the grain diameter and new is the dynamitic co-

efficient viscosity  

As we have seen here, this groundwater flow is an approximation of creeping flow theory 

which we are seen. Here also, the governing equations we can start from the navier-

stocks equations and then put forward the various assumptions. Then, we can simplify the 

equations and then we can try to get solution. Through the simplification of the navier-

stocks equations, say for example, if you consider steady state porous media flow in the 

homogenous isotropic porous media, the governing equation is Laplace equation. We can 

write from the navier-stocks equations 
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We can derive this form of the equation, del square h is equal to zero, which is the 

Laplace equation. Here, h is the head of the water table height for the problem 

considered. Like this, we can also start from the navier-stocks equations and then try to 

get solution. So, as I mentioned, this porous media flow is also very complex type of flow 

problem. So, here also, we can use the navier-stocks equations. As this slide show, say, 



for example, here this slide shows the flow through the fiber web structure, which can be 

considered as the porous media flow. 
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Here, the velocity field is also marked and then we can see that here also, path lines are 

also marked. So, the porous media flow, as we can see here is so complex, but still we 

can use the navier-stocks equations and then approximate. Then, we can try to get 

solution for simplified cases like flow through steady state flow through homogenous 

isotropic media  

So, we can try to get solutions. Hence, the flow through porous media also has got 

number of applications like we have already seen in the aquifer studies, contaminant 

transport studies, filter design, gas coolant system design, geologic flow simulation, 

groundwater remediation studies, oil exploration studies, and so on. 
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A number of applications are there for porous media flow. So, this is actually, I say, 

related to the groundwater flow, where ______ some groundwater flow can be discussed 

in detail. However, the aim of this discussion is stoke of the navier-stocks equations and 

also we can get this simplified equation for the porous media flow. Then for simple cases 

like same the steady state flow through homogenous isotropic media, we can try to get 

solution. So, like this, various kinds of flow problems can be attempted and can be 

solved, using the navier-stocks equations. 

So, to summarize this chapter, here, we have seen the navier-stocks equations, derivation, 

exact solution, and numerical solutions. To summarize, most of the flow problems which 

we considered in practical cases or real life is viscous flow. So, we have to consider the 

viscosity nature; it can be newtroni or non-neutrony, depending upon the problem. So, for 

neutronian problem or these viscous flow problems, we have derived the navier-stocks 

equations. So, this navier-stocks equations is a general form of the viscous fluid flow 

equations. We can solve most of the problems with respect to the navier-stocks equations 

including the turbarian flow problems or even the compressible fluid flow by 

appropriately modifying the governing equations. 
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So, these equations are applicable to most of the fluid flow problems, but due to the 

nonlinear and second ordinates of the equations only, few analytical solutions are 

available. But, most of the real field or live problems, we cannot use the analytical 

solutions. So, to use the navier-stocks equations, we have to go for numerical methods 

and numerical solutions as we discussed. So, these numerical methods or numerical 

solutions of the navier-stocks equations, we generally call as ‘Computer Fluid Dynamics 

(CFD). We can solve most of the problems by using the navier-stocks equations. So, this 

is the end of this navier-stocks equations chapter. In the next section, we will be 

discussing about the boundary layer flow and its governing equations and various 

solutions.  


