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Navier-stocks equations and applications  

Welcome back to the video course on fluid mechanics. In the last lecture we are 

discussing about the exact solutions for the navier-stocks equations. The navier-stocks 

equations, we have derived earlier for the viscous flow and we have seen it is second 

order non-linear equations only for simplified cases only we can derive the exact 

solutions. 

We have seen few cases like plane poiseuillie flow couette flow; also we have seen a 

simple transient type case where an exact solution can be derived for the navier-stocks 

equations. In this lecture, further, we will discuss few more naviers the exact solutions 

which are possible for the navier-stocks equations, these problems are again some of the 

simplified cases first we will see the case of pie flow the steady state flow in pipes this 

case is called hagen-poiseuille flow. 
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Let us consider the flow through a straight pipe of constant circular section. We can see 

here is a pipe section this is long pipe and the radius is r capital r for the circular section. 

As we have already seen we have seen in the navier-stocks equations two forms one is 

the cartesian coordinate forms and second one is the cylindrical coordinate forms pipe is 

consigned, we are dealing generally we are dealing with the radius length of the pipe and 

the angles with which we consider. 

The cylindrical coordinate system will be better for this type problem, for the Hagen-

poiseuille flow problem here r is the radius of the pipe theta is the angle which we 

consider. The particular location the length of the pipe which we consider here 

corresponding to the Cartesian coordinate x y and z, we consider t theta and z and 

corresponding to the velocity components u v w in x y z direction. We consider vr 

velocity theta and vz correspondingly with respect to this figure we can write x is equal to 

r cos theta and y is equal to r sine theta and z is equal to z. 

We can write now this u is equal to vr cos theta v is equal to vr sine theta and w is equal 

to vz this is the problem structure which we are trying to apply the navier-stocks 

equations, try to get an exact solution for this kinds of problem the flow through pipes 

which is steady state flow that is hagen-poiseuille flow. 
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For this particular problem, since the pressure variation pressure is a function of z only 

that means with respect to the length of the pipe only, the pressure is varying that we can 

write del p by del r and del p by del theta they both are 0 that we can write del p by del r 

is equal to del p by del theta is equal to 0 pressure is the function.  

Let us consider the axial component of the navier-stocks equations in the cylindrical 

coordinates. We have seen earlier the navier-stocks equations cylindrical coordinate; we 

can write r theta and z component here we consider the axial component of the navier-

stocks equations in the cylindrical coordinate system. 

As we have seen earlier, this equation the axial component can be written as den vz by 

del t plus  vr into del vz by del r plus v theta by r into del vz by del theta plus vz into del vz 

by del z is equal to fz minus 1 by rho del p by del z plus new the kinematics viscosity into 

del square vz del r square plus 1 by r into del vz by del r plus 1 by r square plus del square 

vz by del theta square plus del square vz by del z square. 

Where fz is this the body force component for the problem considered as in the previous 

figure. We consider horizontal pipe where we do not have to consider the body force for 

this particular problem and we consider the flow to be steady state that this the del vz by 

del t term but time dependent term vanishes or this 0 and as the velocity vz the z direction 

is varying with respect to the radial direction vz is a function of vz r and p is a function of 

pz and partial derivative can be replaced by ordinary derivatives. 

This equation the time component is gone; we can just simplify this equation with respect 

to the various assumptions used. We can write as dp by dA is equal to mu into del square 

vz by del r square plus 1 by r into dv by dry. The final equation become dp by dA is equal 

to mu into del square vz by del r square plus 1 by r into dv by dry. For this pipe flow 

problem, we can see that pipe is consigned all boundary that means, due to no slip 

condition at r is equal to capital r we can write vz is equal to 0. 

That means on the pipe boundary the velocity is 0. The vz is equal to 0 at r is equal to r 

that is one boundary condition we can see that for pipe flow, as describe here we can see 

that the velocity variation is parabolic and maximum will be at the center of the pipe. At 



this location at r is equal to 0, we can write dvz by dr is equal to 0 since maximum 

velocity at the center line at r is equal to 0, we can write at the derivative of the velocity 

with respect to r dvz by dr is equal to 0. For this particular problem we have simplified 

the navier-stocks equations we have derive the boundary conditions now for the 

simplified problem, we will be trying to find out and exact solution with respect to the 

various conditions here. 

Our aim is to find out the velocity in order to find this velocity. With respect to this 

earlier equation which derived here, we will integrate equation number two. let us assume 

dvz by dr is equal to s, so that we can write equation number two in terms of this s, as ds 

by dr plus 1 by r into s is equal to 1 by mu dp by dz equation number three. From the 

mathematical test books we can assume indication factor if i is equal to equal to e to the 

power integral 1 by r dry  this is equal to e to the power log e r that is equal to r. 
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We assume and integration factor if as i is equal to r. We will multiply both sides of 

equation number three by this integration factor, we will use the integrating by parts rules 

on the left hand side of this equation finally multiplying by the integrating factor if given 

i is equal to r using the integration by parts, we can write this equation number three as r 



into s is equal to integral 1 by mu dp by dz r dr plus c1 where c1 is a constant of 

integration. 

This again we can write as rs is equal to 1 by mu dp by dz r square by 2 plus c1 finally 

this equation three is stands from v as this equation here. Also we can write r after 

substituting for this s here, we can write r into dvz by dr is equal to 1 by mu dp by dz r 

square by 2 plus c1 as in equation number four. We have the boundary conditions that we 

can find out the constant of integration here same at the central line my velocity is 

maximum that dvz by dr is equal to 0 at r is equal to 0. 
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That in this from this equation number four, we will get c1 is equal to 0 then integrating 

this equation again and substituting s, as we have already seen and we get vz is equal to 1 

but mu dp by dz into r square by 4 plus c2 as in equation number 5, again here the c2 we 

can find out by using the boundary condition at r is equal to r we have the velocity is 0 

that we will get c2 is equal to minus 1 by mu dp by dz into r square by 4. 

This r is a capital; r is a radius of the pipe. Finally we get here this constant of inherent c2 

as c2 is equal to minus 1 by mu dp by dz r square by 4 r, after substituting finally we get 

the velocity distribution vz is equal to 1 by 4 mu dp by dz into s square small r square 



minus capital r square this expression equation six gives the velocity distribution at 

various location small r is the distance from the central line  

At various locations we can substitute and get the velocity distribution as vz is equal to 1 

by 4 mu dp by dz into r square minus capital r square where r is the radius of the pipe. 

We can drive the velocity distribution as for as the pipe flow is consigned now once we 

get this we can derive the various other parameters like discharge and other parameters. 

This equation for v velocity distribution we can write v is equal to minus 1 by 4 mu dp by 

dz into r square minus r square equation six a, the maximum velocity at the center and 

this is given, we here we can substitute r is equal to 0 that gives umax is equal to minus 1 

by 4 mu dp by dx into r square as in equation number seven. 
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If you use equation number six and seven, here we assume the logical direction coming 

back in the in this direction of u is equal to we can write the velocity variation u is in 

terms of the maximum velocity, u is equal to u max into 1 minus r by r power square as 

in equation number eight. This equation eight is the most commonly used equation for 

the velocity for laminar flow through pipe; here our assumption is that flow is steady 

state laminar and same the pipe is parallel horizontal direction. 



All these assumptions we applied and only that, we could use the navier-stocks you 

simplified from the navier-stocks equation to derive on exact solution. Once we get the 

velocity distribution we can find out the discharge, the discharge through an elementary 

ring of dr thickness at radial distance r is dq is equal to u into 2 pie r dr, we can write dq 

is equal to with respect to after we substitute for u dq is equal to umax into 1 minus r by r 

whole square 2 pie r dr. 

Total discharge we can integrate integral dq that is equal to integral 0 to r umax 1 minus r 

by r whole square into 2 pie r dr that is equal to pie by 2 into umax r square and average 

velocity once we get the discharge average velocity, we can find out by just dividing by 

the area of procession. 
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Average velocity is u bar is equal to q by a, from this expression we can write q q by a is 

equal to pie by 2 umax r square by pie r square that is equal to umax by 2 that is equal to 

minus 1 by 8 mu dp by dx into r square this will be the average velocity and the pressure 

difference between the two sections. We have found the velocity distribution we got an 

expression for velocity we derived an expression for the discharge if you want to find out 

the pressure difference between two points two sections we can just use that equation. 



P1 minus p2 since our earlier velocity equation is with respect to the pressure that we can 

write p1 minus p2 is equal to 8 mu u bar by r square into x2 minus x1 that is the distance 

from one section two. Another section that is equal to 8 mu u l by r square you well the 

distance between sections one to two, we can write p1 minus p2 is equal to 8 mu up by r 

square. We can write in terms of diameter as this is equal to 32 mu u bar l by d square. 

What we did here is the navier-stocks equation ,we simplified for the given conditions 

with respect to boundary condition we derive an exact solution for the velocity and from 

the velocity we can determine various other parameters like pressure variations from one 

section to another we can find out the discharge like this. We can utilize the navier-stocks 

equation for the simplified case we can derive an exact solution for the problem this way 

two more other problems we will discuss here. This case is the hagen-poiseuille flow 

where we derived the expression for the velocity variation, we have seen the pipe flow, 

we will check some more and try to derive the exact solution for two more other 

problems another typical problem which is generally used mechanical engineering is flow 

between concentric rotating cylinders. 
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This is very common problem in mechanical engineering our problem is that there are 

two or thirty cylinders and the fluid is between this two rotating cylinder our aim is to 



derive an expression for the velocity variation for the rotating cylinder we start with 

navier-stocks equation we will apply all the simplifications. We want to derive an 

analytical solution here, the problem is we consider a flow of fluid contained between the 

two concentric cylinders as shown in figure here this is the first cylinder of radius r1 and 

here this is the second cylinder of radius r2 and the flow is between this two cylinders and 

both the cylinders are rotating like this with first one with radio the angular velocity of 

omega 1 and second 1 with an angular velocity of omega 2. 

Angular speed of the cylinders are omega 1 and omega 2 and radius are r1 and radius are 

r1 and r2 as in figure this kinds of problem after sufficient time is a once we start the 

machine it maybe transient the nature of the flow problem maybe transient nature but 

after me time the problem become flow become steady state that we can assume the case 

of steady state here for this typical the flow of rotating cylinders constant rotating 

cylinders now in the spacing r2 minus r1 is small  strictly speaking and the Reynolds 

number re is equal to rho into omega 2 minus omega 1 into r tow minus r1 square divided 

by mu if it is less than or equal to 1 and you can see that the 1 d flow. 
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The flow is we can consider as one dimensional flow in angular direction that is typical 

problem we can consider the flow as 1 d flow angular direction  



If you assume here if Reynolds number is less than equal to 1 as at high Reynolds 

number flow become unsteady and three dimensional turbulent, we are considering this 

case only for Reynolds number less than or equal to 1 since when we consider the 

Reynolds higher Reynolds number the flow is generally unsteady, we have to consider 

three dimensional and turbulent flow depending upon the case. 

Here we consider the Reynolds number as less than or equal to 1 and here let the velocity 

vector u correspondingly in x y z direction will be w be the components of velocity in r 

theta and z directions here the velocity component in r theta and z direction, we are 

writing as u v and w the cylinders are assuming to be long having no flow no through 

flow and end effect here for this typical problem before using the navier-stocks equations 

and simplifying and get trying to get an exact location we assume that there are now end 

effect the, we are having no through flow and we can write in this typical case w is equal 

to 0 and all derivative  w is equal to 0 where w is the velocity component in the z 

direction for this typical problem now due to the rotational symmetry here in the previous 

slide you can see that there is symmetric with respect to the rotation 
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Due to the rotational symmetry we can write del u by del theta is equal to 0  in internal 

flow problems with constant area cross section pressure can at best decrease in the flow 



direction for this kinds of problem however the flow path in the annulus is a closed curve 

and we require pressure at point to be unique irrespective of times the closed curve has 

been traversed these are the assumptions which we used for this problem this tells that 

pressure must constant in the annular gap we are using certain assumptions like del u by 

del theta is equal to 0, we assume that flow path in the annulus is a closed curve we also 

assume that pressure must be constant in the annular gap. 

For this conditions now we simplify the navier-stocks equation, as we have already seen 

the curve flow is we are assuming the flow is to be steady state various assumption, we 

have seen if you utilize all these assumption then we can write the navier-stocks 

equations cylindrical coordinate with the mentioned the simplification in the r direction. 

We can write rho v square by r is equal to dp by dr in theta direction, we can write the 

second derivative of the velocity d square v by dr square plus 1 by r v r minus v by r 

square is equal to 0 this two substitute store the second derivative and this is the first 

derivative. 
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Vary plus 1 by r vr minus v by r square is equal to 0 the flow is subjected to no slip 

boundary condition that we can write at r is equal to r1 v is equal to omega 1 r1 and at r is 

equal to r2 v writ V is equal to omega 2, these are the boundary conditions for this 



problem and the navier-stocks equation r simplified in this four. We have already seen as 

in the previous case here we have this equation theta direction we have got a second 

derivative the velocity. 

We can integrate to solve is this equation you there be 2 constant c1 and c2 finally we can 

get a solution vr is equal to 1 by r into c1 into r square by 2 plus c2 this is the expression 

for the velocity variation for this typical problem here the problem is like this, we have 

already seen this r is the difference between this r2 to r1 that is what we have small r is 

between the difference between r2 to r1 this the solution. 

Finally, the solution becomes vr is equal to 1 by r c1 into r square by 2 plus c2 and c1 we 

can obtain two boundary conditions and use this to get the constant c1 and c2, c1 is equal 

to 2 into omega 2 r2 square minus omega 1 r1 square divided by r2 square minus r1 square 

and c2 is equal to minus omega 2 minus omega 1 r1 square r2 square divided by r2 square 

minus r1 square like this, we can derive the expression drive an expression for the 

velocity variation for the flow between the to constant a cylinders. 

Here what we did is we applied various simplifications for the problem and we got a 

simplified form of the navier-stocks equations we integrated the equations that we can get 

a solution. Finally we got a solution for the velocity variation that can be used find out 

various other parameters, these kinds of problem there is application for to a viscometers 

here how we apply this solution to viscometer application to viscometer which measures 

the viscosity of liquid. 
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Here the next slide shows how a schematic sketch of viscometer, this is schematic sketch 

of the viscometer here now it is a typical arrangement of a stationary inner cylinder that 

we can assume omega 1 is equal to 0 the ambient velocity omega 1 is equal to 0 and 

rotating outer cylinder hence the velocity profile, with respect to our earlier equation 

which we derived here the velocity profile we can write v is equal to omega 2 r 2 square 

divided by r 2 square minus r 1 square into small r minus r 1 square by r, we can get the 

wall shear stress on the inner cylinder can be derived as by using newton’s second law 

Newton law viscosity, here we have got v we can use the newton’s law viscosity to get 

the wall shear stress on the inner cylinder. 

Toe w is equal to mu into r d by dr of v by r  that is equal to mu dv by dr at r is equal to r 

1 we get an expression for the wall shear stress on the inner cylinder as 2 mu omega 2 r 2 

square divided by r 2 square minus r 1 square. 
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Once we get the velocity we can find out various parameters like shear stress on the wall 

and other parameters, what we derive for the concentric cylinder problem, the velocity 

expression mu directly utilized for the viscometer which we have already seen here for 

the torque can be measured by a torsion wire. 
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Here the problem is the viscometer problem, we have it is this cylinder is suspended with 

respect to a wire here, this torque can be measured by a torsion wire whose stiffness is 

knowing the geometry of the apparatus the viscosity, can be determined from the formula 

K theta is equal to 4 pie r 1 square r 2 square divided by r 2 square minus r 1 square into 

mu omega 2 into l Where theta is the angular deflection and k is the torsional stiffness of 

the wire like this, we can find out the other parameters for these kinds of problem. 

Here we applied the concentric the equations derived for the flow between the concentric 

cylinders; we work expression for the velocity and the shear stress and other parameters 

for these kinds of problem. This is a typical problem which we started with the navier-

stocks equation simplified the equations we derive the expression for velocity and other 

parameters. Finally, before closing this exact solution for navier-stocks equation we will 

consider one more example. The example problem is the statements like this a liquid flow 

down a wide inclined plate at an angle theta with horizontall. 
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The depth of the liquid normal to the plate is h asses steady flow under the influence of 

gravity and parallel to the plate the effect of viscosity of air at the free surface is 

negligible. We have to find out the velocity profile in terms of the viscosity mu mass 



density rho the h and theta and also we have to find out the shear stress at the boundary 

and the average velocity of the flow this is the problem is defined in this figure. 
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Here we have what an inclined plate and the flow is taking place above the plate the 

thickness of the flow is h and the angular inclined of the plate is theta, here comparing to 

the earlier problem like plane poiseuille flow or the other kinds of the just flow plate, 

here the plate inclined, we have to consider the body force. This typical the problem is we 

have to consider the body force this kinds of problem here our aim is to use the navier-

stocks equations then we simplify the navier-stocks equation, we want to get an exact 

solution for this kind of problem. 

The solution as the plate is wide the z direction need not to be considered, we can see that 

we consider wide plate this z direction need not be consider and here we assume the flow 

to be steady del by del t 10 is equal to 0 and flow is steady the terms in 10 become 0, we 

assume that the flow is parallel to the plate that is x axis. 
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We can write del u by del x is equal to 0, that up is equal to 0 this is the third assumption 

also the pressure gradient dp by dx is equal to 0. As the flow takes place at a constant 

depth h these are the assumptions for the problem once the problem statement is known, 

we are trying to see that what are the assumptions we can forward such that we can 

simplify the equations with respect to the various assumptions here for this typical 

problem. We assuming the flows to be steady flow is parallel to plate the pressure 

gradient is del p by del x is equal to 0. 

These are the assumptions essential assumptions for this problem that we can simplify 

our equation but here, compare to the earlier problem which we discussed here the body 

force cannot be neglected, as I mentioned the plate is inclined for the inclined plate you 

can see that there will be always the body force effect z is the vertical direction the 

potential per unit mass due to the body force we can write as go. 

With respect to this figure, we can write the potential per unit mass due to body force is 

go finally the components of the body force in x and y direction we can write as in the 

body force in x direction this minus del gz by del x  

That can be written as minus del g the access into gravity del z by del x is equal to g sine 

theta and y is equal to minus del gz by del y that is equal to minus g cos theta. 
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Now we use all these assumptions and finally we can get the navier-stocks equations in 

the following form: the navier-stocks equations become: g sine theta plus new d square us 

by dy square where mu is the kinematics viscosity, equation number one and second 

equation is minus g cos theta minus 1 by rho dp by dy is equal to 0, equation number two 

here due to our assumptions all other assumptions like this steady state and flow is 

parallel to the plate and the flow with is larger, we can consider the z direction need not 

to be consider. 

Due to all this assumptions, all other times we can neglect and finally we have simplified 

the navier-stocks equation in the form of equation number one and two. Our aim for this 

problem is to find out the velocity distribution ux here you can see that equation is d 

square ux by in terms of d square ux by dy square, as we did in the previous case we 

would see what are the boundary conditions, we would work for integration such that we 

will get the expression for the pressure hand velocity 

For steady uniform flow parallel to the plate at a constant depth h we already seen del by 

del t is equal to 0 del u by del x is equal to 0 and uy is equal to 0 and dp by dx is equal to 

0 del p by del x is equal to 0. 
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From equation number two, this equation number two become dp by dy is equal to minus 

rho g cos theta this equation number two, we can integrate such that we get p is equal to 

minus rho gy cos theta plus c the constant of integration, we get an expression for the 

pressure in terms of the that y p is equal to minus rho the rho is the density of the fluid 

minus rho g into y into cos theta plus c here we to find out this c we will use the 

boundary condition. 

At y is equal to h p is equal to 0 because the pressure is atmosphere, that we can write c is 

equal to rho g h cos theta, now if you sub apply this c here in this equation, we get p is 

equal to rho g cos theta into h minus y. This is the expression for this flow problem. We 

got an expression for the pressure as p is equal to rho g cos theta into h minus y the 

standard procedure of integration used we applied the boundary condition to get the 

expression for p. This expression three is the pressure distribution for the flow our aim is 

to get the velocity distribution also from equation one, we can integrate twice with 

respect to y that gives first integration gives dux by dy is equal to minus g sine theta by 

new into y plus c1 equation number four. 
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Once again in the derivative we get ux is equal to minus g by new into sine theta into y 

square 2 plus c1 y plus c2 finally we got equation number five, here we have got constant 

of integration c1 and c2 we can utilize the boundary conditions the boundary conditions 

are at y is equal to 0 ux is equal to 0 which gives c2 is equal to 0 and that y is equal to h 

dux by dy is equal to 0 that which gives c1 is equal to gh sine theta by new. 

Finally we can get an expression for velocity as ux is equal to minus g by new sine theta 

into y square by 2 plus gh by new sine theta into y after substituting the boundary 

condition, we got c1 and c2 the integration constant, we work finally the expression for 

the velocity s ux is equal to minus g by new sine theta y square by 2 plus gh by new sine 

theta into y now this can be simplified as ux is equal to g sine theta by 2 new into 2 hy 

minus y square or we can write ux is equal to rho g sine theta by 2 mu 2 hy minus y 

square. This is the final expression for the velocity for this particular problem, we got the 

velocity variation as rho g sine theta by 2 mu into 2 hy minus y square, once we get the 

velocity we can use Newton’s law viscosity to get the shear stress shear stress at the 

boundary we can write tau 0 is equal to mu into dux by dy at y is equal to 0. 
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That gives mu into g sine theta by mu into h minus y at y is equal to 0, that gives rho g h 

sine theta. Finally, we got the expression for the shear stress at the boundary tau 0 is 

equal to rho gh sine theta tau 0 this is the formula for the tau 0 is rho gh sine theta this is 

the formula for the shear stress at the boundary. 
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This is a very important relation used in your problem like sediment transport in open 

channel. Using this expression, we can see how settlement of the sediment takes place 

sediment transport in open channel we can use this expression if you want to find out the 

average velocity of flow for this particular problem v is equal to q by h where q is the 

flow per unit width flow per unit width q is equal to integral 0 to h ux dy. 

That is equal to integral 0 to h rho g sine theta by 2 mu 2 hy minus y square dy by from 

this expression we will get q is equal to rho gh q sine theta by 3 mu and the average 

velocity v capital v is equal to rho gh square sine theta by 3 mu these are the various 

expressions. Finally, by using various assumptions, we simplified the navier-stocks 

equation, we got the simplified the navier-stocks equation then we integrated to get 

expression for the velocity. We found the other parameters like a shear stress discharge 

per unit width by the various constant of integrations we are found by using the boundary 

conditions. 

Like this various problems can be attempted wherever possible, wherever we can 

simplify in the navier-stocks equations and the problem is simple that we can try for an 

analytical solutions by putting forward various assumptions using the boundary condition 

like this few more exact solutions are available for the navier-stocks equations. But we 

will not discuss further since we have already seen few typical cases. Before further 

going to the applications navier-stocks equations we will discuss different formulations 

for navier-stocks equations. 

We have seen the most commonly used formulation of the navier-stocks equations which 

we have derive earlier in two-dimensional and we ascended the equations two, three 

dimensions. In literature if you go through various research papers and various literatures 

on navier-stocks equations we can see few more other kinds of formulations for the 

navier-stocks equations these different formulations have been derived by using various 

actions and we can see that commonly three typical formulations are used in literature. 

First one is the primitive variable formulations or it is velocity pressure formulations. 



(Refer Slide Time: 38:14) 

 

That is what we have discussed and we have derived earlier here the formulation is in 

terms of velocity and pressure the equations the navier-stocks equations are in terms of 

the velocity and pressure. These primitive variables are used like velocity and pressure 

that is why the formulations are called primitive variable formulations. Second kind of 

generally used the formulation is called velocity vorticity formulations.  

Here the formulation for the navier-stocks equations in terms of velocity and the vortices 

that commonly used navier-stocks equations in terms of vorticity and stream functions it 

is called vorticity stream function. Formulation here the vorticity e is defined as del cross 

u bar where u bar is the velocity vector like this three typical formulations, the common 

three formulations are used in literature. We will see the various equations used for all 

this three formulations and the first one is the velocity pressure formulations the already 

we have derive the equations the equations. For example if you consider in two-

dimensional case the equations are the continuity equations even the del ux by del y plus 

del v by del y is equal to 0. 
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Then we have two moment equations, which we have all to derive here the equations are: 

rho into del u by del t plus u into del u by del x plus v into del u by del y is equal to minus 

del p by del x plus rho gx plus mu into del square u by del x square plus del square u by 

del y square and third equation is rho into del u by del t plus u into del v by del x plus v 

into del v by del y is equal to minus del p by del y plus rho gy plus mu into del square v 

by del x square plus del square v by del y square. 

These three equations including the continuity equations and two boundary equations are 

the equations using the velocity pressure formulations for the navier-stocks equations and 

this equation are called primitive formulations and most commonly used navier-stocks 

equations for most of the fluid flow problem. The second one the velocity vorticity 

formulations here, we transform as we have already derive the primitive very formulation 

that we can transform in terms of another important variable for vorticity. Finally we get 

the equations in terms of velocity and vorticity, if you consider three-dimensional 

formulations then, if the velocity vectors are u v and w and the vorticity vectors are psi 

eta and psi as written here. 
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Then the equations I am not going to the derivations of this equations the derivation of 

equation we can see various fundamental books, where the navier-stocks equations are 

derive and other research papers finally the equations are generally express like this.  

This first one is the vorticity transport equation del omega by del t here omega bar is the 

vorticity vector del omega bar by del t plus u bar dot del omega bar is equal to omega bar 

dot del u bar plus 1 by re del square omega bar, here re is the Reynolds number omega 

bar is the vorticity vector and u bar is the velocity vector. 

This is one equation using the velocity vorticity formulation and second equation we use 

del square u bar is equal to minus del cross omega bar, as given in this equation b there 

are two equations in the vector, you are formed as given in equations a and b. This 

equation, for example if you consider two dimension problems  that we can this equations 

we can write as for two dimensions omega is the vorticity  del omega by del t plus u into 

del omega by del x plus v into del omega by del y that is equal to 1 by r e del square 

omega as in this equation this corresponding to this equation, here in two dimensions we 

can write del square u is equal to minus del omega by del y and same del square v is 

equal to minus del omega by del x as in the equation and where omega is equal to del v 

by del x minus del u by del y. 



This equations use the velocity vorticity formulation for the navier-stocks equations in 

three dimensions and two dimensions, here we have some advantages like, the pressure is 

no directly coming the expression the equations are in terms of velocity and the vorticity. 

Wherever the vorticity time is important then if you use this equation, this form of the 

navier-stocks equations it will be much easier here generally for this formulation velocity 

vorticity formulations the boundary conditions will be in terms of the velocity. 

Once we solve the vorticity transport and the poiseuille equation, corresponding to this 

equation b, if you solve this equation we get velocity distribution and the vorticity 

distribution throughout the domain. Once we get the velocity and vorticity then we can 

find out other parameters like pressure, we can find out from the obtained values of the 

velocity and vorticity problems. The velocity vorticity formulation is also used in many 

problems wherever we can express, we can use the parameter vorticity and further these 

equations are much easier to solve compare to the primitive variables formulation which 

we have seen earlier. 

That is why, wherever possible we proper to use the velocity vorticity formulation of the 

navier-stocks equations. In the third formulation is vorticity stream function formulation 

depending upon the problem, wherever we can write we can express the stream function 

for the typical problem where we can express the stream function then we use this 

formulation vorticity stream function formulation. 
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If we consider, for example two-dimensional problem here we have two equations, the 

first equation is written like this same del square omega is equal to re into del omega by 

del t  plus del by del x  plus del psi by del y into omega minus del by del y del psi del x 

into omega. This is first equation. Second equation is del square psi plus omega is equal 

to del psi by del t, here we have a two expressions, first one is equation a del square 

omega is equal to r e into del omega by del t plus del by del x del psi by del y of omega 

minus del by del y of del psi by del x omega and second equation is e 1 as del square psi 

plus omega is equal to del psi by del t. 

Here the boundary condition are in terms of psi, psi is equal to psi v on gamma of the 

boundary, normal derivative del psi by del n is equal to del psi by del n at d these are the 

boundary conditions and the equations a and b which is in terms of the Reynolds number 

re and the omega and the sie. 

We can solve these two equations, we get the distribution of the stream function and the 

what is it omega, depending upon the problem this formulation also, we can get a 

solution and finally once we get the omega and the psi that means, the vorticity and the 

string function then, we can get other parameters like velocity and the pressure. 

Typically, same depending upon the problem, we can solve the problem it very much 



easier to use the primitive very formulations. Some other case the velocity vorticity 

formulation will be easier and me other case depending upon the problem, we can utilize 

the vorticity stream function formation. Depending on the problem we have to choose the 

formulation then navier-stocks formulation, we have to try to solve the problem once the 

variables whether the primitive variable formation, directly we get the pressure velocity 

but in the velocity what it is formulation we get in terms of the velocity and vorticity. 

Then we may have to find out the pressure, the third formulation we get the in terms of 

vorticity in stream function after getting the vorticity stream function, we may have to 

find out the velocity and the pressure distribution for the problem consider. Depending 

upon the problem, we can choose the particular formulation try to solve the problem, we 

have seen the navier-stocks equations derivation the various analytical solutions for the 

simplified cases and also we have seen three kinds of formulations for the navier-stocks 

equations. As we have already discuss the navier-stocks equations for the real fluid 

problem is very difficult to get the exact solution we may have to go for the numerical 

solutions. 


