
1 
 

Fluid Mechanics 

Prof. T. I. Eldho 

Department of Civil Engineering 

Indian Institute of Technology, Bombay 

Lecture - 21 
Laminar and Turbulent Flows 

Welcome back to the video course on fluid mechanics. In the last lecture we were 

discussing about the turbulence models. We have derived the basic equations for 

turbulence; we have seen the Reynold’s equations; then we have seen that the 

complexities for solving the turbulence problems. Since, we have got four equations in 

three dimensions, three momentum equations and one continuity equations. But we have 

generally ten unknowns, so it is very difficult to get a mathematic solution for these 

turbulence problems. So, we have seen by considering this various methodologies for 

solution for a turbulent flow problem.  

(Refer Slide Time: 02:15) 

 

So we have discussed about five models for the turbulent flow simulations. First one is 

zero equation models, which we have seen in last time. Second one is one equation model 

and third one is two equation models. 
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Fourth one is stress equation models and fifth one is large eddy simulation models. Now 

out of these five models which are generally used, which is available in literature, as the 

turbulence problems are very complex always better to go for a complete solution or 

either larger simulation or completing equation models, but even the solution of this is 

very complex large computer capacities required and then now in recent times we have 

got number of computer fluid dynamic packages which we take care of these kinds of 

models. 

In this course, to understand the fundamental theories or the principles of turbulence we 

will be discussing one of the models, the first model zero equation models, since these 

zero equation models are derived based upon some of the experimental observations and 

then some of the empirical theories. It is a mix of some of the experimental observations 

and some of the empirical equations. 

So in this field, the zero equation models, two names are very important who have 

developed this theory: one is Prandtl’s, the other one is Karman. The zero equation model 

briefly will be discussed here for the turbulence flow simulation and that will give rate of 

picture of how difficult are these problems and then how we can approach with a 
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simplified theory. So out of this, first one which we are discussing here is the Prandtl’s 

mixing length theory. 

(Refer Slide Time: 04:11) 

 

So this Prandtl’s mixing length theory is based on the concept of mixing length using the 

analogy of mean free path of kinetic theory of gases. So kinetic theory of gases has been 

well developed in the beginning of 20th century. Then, Prandtl’s used this kinetic theory 

of gases, to analyze the turbulent flow for simplified cases, like a flow over a parallel 

plate and then flow through pipes, so that some aspect of the turbulence or the theories 

behind turbulence can be understood, so he started with the kinetic theory of gases. What 

he did is, he defined a length called mixing length which is the average distance 

perpendicular to flow a small fluid mass will travel before its momentum is changed by 

new environment. 
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Here this is explained in this figure. First one is the case of laminar flow velocity 

distribution profile is given and second case is for turbulent flow. As for PPrandtl by 

using the kinetic theory of gases, what he found is he defined a length called mixing 

length and then this length is actually the average distance perpendicular to flow, a small 

fluid mass, say if we consider lump of fluid or a small fluid mass it would travel, the 

average distance which travel perpendicular to flow before its momentum is changed 

from one environment to another environment or a new environment. This is clear from 

this figure, so if we consider a small mass here, this 1 and then it is jumping to other 

location 2 so that the momentum is changed in this process. This length Prandtl defined 

as mixing length and then he proposed the mixing length hypothesis which is known as 

the one of the fundamental development in the area of turbulence. 

So then he defined the shear stress due to turbulence as tow is equal to eta into delta u by 

delta y where u is the velocity in x direction and then where eta is equal to AT by A 

subscript T by y where AT is the ratio of mixing coefficient. 

He also used this Boussinesq approximation which is given by eta is equal to AT by y 

where y is the vertical distance. At the ratio of mixing coefficient, so by using this further 

as shown in this with respect to this figure y is in this direction and x is this direction, 
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velocity for the turbulence is plotted and then he derive the shear stress as the tow is 

equal to minus rho ux dash uy dash bar. 

So this is the definition of the shear stress and by using the Boussinesq’s hypothesis 

considering a parallel flow Prandtl’s showed that this ux bar can be written as a function 

of the ux y and he considered uz is equal to 0 and uz bar is equal to 0 and uy bar is equal to 

0. 

(Refer Slide Time: 07:23) 

 

What he considered here is we can see it is a parallel flow, so in the parallel flow case for 

example, if we consider plate like this and then he considered parallel flow, such that for 

this particular case the velocity variation, if this is x direction and here this is y direction 

so that x variation is with respect to ux and y only and other components like the z 

component and the y component are 0. 

So this is how he defined a problem, if this is a parallel plate and over a flat plate and he 

considered the parallel flow. 
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Such that ux is the velocity in x direction, is the function of y and uz the velocity z 

direction and y direction are zero. So he considered such a problem and then he tried to 

explain the turbulence happening with respect to this particular problem and so that 

further theory can be extended for other problem. 

So for this parallel flow along x direction for which the longitudinal velocity is ux this 

depends on lateral location of y only. As we have already seen here this ux depends on 

only on y, so that the flow is other components are 0. So this is the parallel flow which 

Prandtl’s considered to explain the turbulence. 

So that, this rho u dash x u dash z mean or it rho u dash ux dash uz dash bar and minus rho 

uy dash uz dash bar is equal to 0, for this particular parallel flow case. So that he derived 

tow is equal to the shear stress is equal to minus rho ux dash uy dash bar that it is equal to 

eta delta ux bar by delta y by using the Boussinesq’s hypothesis. So finally Prandtl’s got 

the shear stress is equal to minus rho ux dash uy dash bar is equal to eta del t ux bar by 

delta y as given in equation number 5 and then Prandtl suggested a method to calculate 

this tow from which we can find out this eta. 
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So that is the way he approached the problem and finally Prandtl introduced the concept 

of mixing length which is called mixing length hypothesis for the fluid which travels 

laterally before losing its momentum and acquiring a new momentum in the new layer. 

So by Prandtl’s hypothesis the mixture or mixing length the absolute value of the 

fluctuating component of velocity along x axis given by ux dash bar is equal to l into the 

mixing length multiplied by the derivative of ux with respect to y mixing length 

multiplied by ux bar by dy. 

So this l is equal to lm that is that transverse distance where the lump of fluid mass is 

jumping or traveling, that distance is called a the mixing length or the mixture length.  In 

all these problems, our final aim is to find out an expression for the velocity. 

So he used this theory with the Boussinesq’s approximation and then finally, the 

fluctuating component is shown in this figure here if it is uy dash bar is he showed that uy 

dash bar is proportional to ux dash. 
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So that we can write uy dash bar is equal to a constant multiplied by ux dash. This 

constant, this ux dash, as we have already seen, ux dash bar can be written as mixing 

length multiplied by d ux bar by dy. 

So finally, we can write this uy dash bar is equal to a constant multiplied by l into d ux bar 

by dy as given in equation number 7 and for the particular case of the parallel flow as we 

have explained here for this particular case, Prandtl finally showed that this ux dash uz 

dash bar is equal to uy dash uz dash bar is equal to 0.Such that the apparent shear stress 

tow is equal to minus rho ux dash uy dash bar is equal to eta into delta ux bar by delta y 

and from the kinetic theory of gases from which he has started this, he has derived this 

theory, eta is equal to rho l ux dash bar and finally, we can write by using this here, we 

can write by using 10 in 9, we can write the shear stress tow is equal to rho l squared into 

dx bar by dy whole squared, so where l is mixing length. 

This finally we can write, this is equal to taking the sign into consideration we can write 

tow is equal to rho l squared d ux bar the modulus of d ux bar by dy into d ux bar dy. So 

the sign is taken care as shown in equation number 12.  

This is finally what Prandtl did, he uses the Boussinesq’s approximation and then he used 

the kinetic theory of gases such that, the shear stress is say approximated or shear stress is 



9 
 

described in terms of the mixing length square multiplied by the density and then squared 

of the gradient of the velocity in y direction of d ux bar by dy whole squared. That is 

finally he got this expression. Now using this equation number 12, this equation is the 

result of the Prandtl’s mixing length theory. 

As we have already discussed equation 12 is the resultant of Prandtl’s mixing length 

theory. Now this mixing length theory, as you can see in equation number 12 here you 

can see, here this includes the fact that the apparent shear stress due to turbulence will 

change sign with the velocity gradient. 

(Refer Slide Time: 13:59) 

 

So that is obvious from equation number 12 and by Prandtl mixing length hypothesis the 

apparent shear stress can be calculated for the known mixing length l as tow is equal to 

tow0 into 1 minus y by r0 that is equal to rho l squared du bar by dy whole squared. 

So if we consider with respect to the parallel flow, even if we consider the pipe flow as 

shown in this slide here, you can see that this r0 is the radius of the pipe and then y is the 

we are taking from the bottom of the pipe and the velocity can be brought up like this. 

So if we consider this in comparison with the pipe flow and the parallel flow which 

Prandtl considered, here, we can write tow is equal to tow0  that means the shear stress of 
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the boundary tow is equal to tow0  into 1 minus y by r0.So that is equal to tow is equal to 

tow0 into 1 minus y by r0, that is equal to rho l squared du bar by dy squared, so this is in 

comparison with the pipe flow as explained here . 

(Refer Slide Time: 15:08) 

 

So finally by using this in comparison with the pipe flow we can write this mixing length 

l is equal to squared root of tow0  by rho divided by du bar by dy into squared root of 1 

minus y by r0. 

So this is obtained from this previous equation, so we can write the mixing length l is 

equal to tow0 by rho by du bar by dy into 1 minus y by r0. So this is obvious from this 

figure. 

So now, from this once we determine the shear stress or the boundary shear stress we can 

get the velocity variation we can calculate and then other parameters can be calculated. 

This we will be explaining further, the next few slides how this mixing length hypothesis 

can be further used to calculate the velocity distribution and various other parameters. 

So before going to the further applications of the mixing length hypothesis proposed by 

Prandtl’s this from Karman also who was working with Prandtl’s, he further modified 

this mixing length hypothesis and then this shear stress calculation as shown in here. 
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What Karman here is, he approximated this through various experiments and then 

through various observations Karman showed that this the apparent shear stress due to 

turbulence in a parallel flow can be written as tow is equal to rho into kappa squared dux 

bar by dy whole to the power 4 divided by d squared ux bar by dy squared whole squared. 

So this is the equation derived by Karman and he put forward a constant called kappa, 

which is for this particular parallel flow which he derived. 

(Refer Slide Time: 17:06) 

 

But finally, here shown this kappa is which has got value of 0.4, so he derived this kappa 

within terms of the shear stress in terms of this kappa and this kappa is called Karman’s 

constant having a value of generally 0.4. 

Now in comparison, by using the mixing length theory also with further experiments and 

observations Karman showed that the shear stress can be expressed as rho into kappa 

squared d ux bar dy to the power 4 divided by d squared ux bar by dy squared whole 

squared as shown in equation number 13 and now if we compare this equation number 13 

and then if we compare equation number 12. So this is equation number 12 here this is 

which is derived by Prandtl that is equation number 12 and then the equation derived 

through experiments and observations derived by [] Karman equation number 13, here 

this is equation number 13. 
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Finally what [] Karman did is, he derived an expression for the mixture length or mixing 

length which is, we can write as ly which is the mixture length or mixing length is equal 

to kappa into d ux bar dy divided by d squared ux bar by dy square as shown in equation 

number 14 in this slide. So finally, the Prandtl’s mixing length was used by [] Karman 

and with [] observations, finally he derived an expression for the mixing length. 

In most of the problems, once we know the mixing length and then we can calculate other 

parameters. So that is importance of this Karman’s approach or Karman’s hypothesis 

here. Finally, he derived an expression for the mixing length or mixture length as given in 

equation number 14. 

So this is now both Karman’s theories as well as Prandtl’s mixing length theory we can 

use together such that once the mixing length is determined we can go for the calculation 

of the velocity or shear stress another parameters, give some parameters already available 

with respect to some measurement. 

So that is the application of this mixing length hypothesis and Karman’s approach. Now 

in the next few slides, we will be discussing about the applications of this. 

But before proceeding to further applications with the Karman’s approach which we have 

seen here, we can observe here Karman assumed the turbulent flow patterns are similar in 

the neighborhood of any two points in the flow and then differ only in the length and time 

scales. So this is an important observation put forward by Karman. He assumed that 

turbulent flow patterns are similar in the neighborhood of any two points in the flow and 

they differ only in their length and time scales. 

So this is obvious from this figure here.  



13 
 

(Refer Slide Time: 05:17) 

 

In this slide you can see as for the Karman’s approach and then he also suggested that say 

Karman’s model for the mixing length which we have already seen in the previous 

equation, it is a point function we can observe that it is a point function and depends only 

on the velocity distribution in the vicinity of a particular point. So this is one of the 

important observations which we can get from the Karman’s approach. 

So that means this mixing length is a point function and it depends mainly on the velocity 

distribution in the vicinity of the particular point which we consider in the turbulence 

flow regime. So that is one of the important observations which we can see from the 

Karman’s model for mixing length. 

So now further in the next few slides, we will discuss how this mixing length theory and 

Karman’s approach can be utilized to solve various problems. First, we will see the flow 

over flat plate or parallel flow case further and then we will be discussing about the pipe 

flow. 

So it is written here as the application of the mixing length theory, so, the velocity 

distribution in turbulent flows. As mentioned, our main purpose here is to find out the 

velocity distribution in the turbulence flow regime. As we have seen earlier in some of 

the cases for turbulence flow, total shear stress we can see that the most of the cases even 
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the turbulence is generated especially when we consider flow over a flat plate there is 

even though most of the flow regime is turbulence but there can be a small layer called 

laminaus sub layer. 

So when we consider the shear stress at any particular level then we have to consider that 

we can split the shear stress into the shear stress due to the turbulence and the shear stress 

due to the affect of the laminar nature or laminar sub layer. 

So total shear stress can be written as tow is equal to tow turbulence plus tow laminar as 

in here in this equation number 1 further, so tow laminar is the shear stress due to 

dynamic viscosity of the fluid, as we can see as the flow takes place and here the tow 

turbulent is the additional apparent shear stress due to the turbulence. 

(Refer Slide Time: 22:48) 

 

Total shear stress is the affect of the shear stress due to dynamic viscosity of the fluid and 

then the additional apparent shear stress and due to the turbulence. So now this tow 

laminar as we have seen, we can use Newton’s law of viscosity and write tow laminar is 

equal to mu into dux bar by dy as written in equation number 2 and tow turbulence as we 

have seen the mixing length theory, we can write tow turbulence is equal to rho l squared 

into dux bar by dy modulus into dux bar by dy as shown in equation number 3. 
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So the total shear stress is the affect of this equation number 3 and equation number 2, 

tow laminar and tow turbulent. Once we know the magnitude of the total shear stress and 

the mixing length, as I mentioned here we are trying to use the mixing length which we 

have discussed already. 

So by knowing the magnitude of the total shear stress and mixing length it is possible to 

solve this equation number 1 that means the shear stress. It is possible to solve equation 

number 1 for ux that means our aim is to find out the velocity for ux and thus to get a 

relation for the velocity distribution in the turbulent flow. 

(Refer Slide Time: 24:04) 

 

So this way we are proceeding to solve the turbulent flow. So if we know the magnitude 

of the total shear stress and then the mixing length, what we can do is we can store for the 

velocity ux and then we can get a relation for the velocity distribution in the turbulent 

flow. We have already seen in the Prandtl’s mixing length hypothesis. So, Prandtl’s 

assumed that the mixing length l is linearly proportional to the distance y from the 

boundary with a factor called kappa to determine from the experiment. 

Finally, he put forward by using this linear theory, linear proportionality by putting l is 

equal to kappa into y, where kappa is the Karman’s constant, which we have already 

seen. The mixture length l is equal to kappa into y as in equation number 4. So Karman in 
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the Karman’s approach which we have already seen earlier and shown by Karman, [] 

Karman l is equal to mixture length and it is also equal to kappa into d ux bar by dy 

divided by d squared ux bar divided by dy squared. As shown in this equation number 5, 

y using this for flow along a solid boundary as we can see in this slide, when we consider 

the flow along a solid boundary we can see that there are three regions- one is the laminar 

sub layer as I mentioned initially there is a small sub layer which is called laminar sub 

layer; and then we will be having a transition; and then we will be having a turbulent 

flow. 

So we can see that in the laminar sub layer the viscous shear predominates. So that we 

can see that the velocity is proportional to this distance y there is some what a linear 

variation. So this is this area where it is laminar flow say due to or the laminar sub layer 

and then there is a transition zone from laminar to turbulent and the turbulent flow. We 

can see that this transition zone is called buffer zone where viscous stress and Reynold’s 

stress are same. 

(Refer Slide Time: 26:20) 

 

So this is the transition of buffer zone and then the turbulent zone. We can see that the 

Reynold’s stress have larger and then here you can see that the velocity is proportional to 

the natural logarithmic of the distance y as shown here. These are the variations with 
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respect to the laminar sub layer the buffer zone or the turbulent zone. So this is if this we 

can show experimentally also. 

So now when we discuss the velocity variation within the turbulent flow we have to 

consider this is shown separately, the laminar sub layer or the turbulence shown 

separately and then for this laminar sub layer the region near the boundary, we can write 

by using the Newton’s law of viscosity we can write tow is equal to mu into d ux bar by 

dy and away from the boundary as far as shear stress is concerned we can use the 

Prandtl’s hypothesis in combination with this Karman’s approach by given by tow is 

equal to rho l squared d ux bar by dy into d ux bar by dy as shown in equation number 7 

and then transition zone is concerned it is what is happening is the transition takes place 

from laminar to turbulent it is known as buffer zone. So two velocity distribution near 

boundary governed by equation 6 and equation away from the boundary governed by 

equation number 7. 

So this is a combination, the buffer zone it is a combination between equation number 6 

and equation number 7, since transition takes place from laminar sub layer to the 

turbulent region so the two velocity distribution should be connected suitably, so that, 

one gets a continuous velocity distribution from the boundary within the flow. 

So due to the complexity, the problem is very complex that we cannot just clearly 

identify how this transition is taking place. Generally, what we do in the laminar sub 

layer region we will know the variation, say it is generally u is proportional to the 

distance y and then the turbulent zone u is proportional natural logarithmic of y. 

As we have already seen and then in-between what we do is, the two velocity distribution 

can be connected suitably so that we get a continuous velocity distribution from the 

boundary within the flow. So this is the procedure which is generally adopted. And now 

the shear velocity we can define as, u star is equal to square root of tow turbulent by rho. 

So this we have already discussed earlier. So we can define a term called shear velocity 

which is equal to square root of tow turbulent divided by rho or this is a shear stress term 

divided by rho is square root equation number 8. 
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This is, the shear velocity also called as friction velocity sometimes. So this is actually 

the characteristics of turbulent fluctuating motion. So the shear velocity or the friction 

velocity it is actually the characteristics of the turbulent fluctuating motion. We can 

define as u star is equal to square root of tow turbulent divided by rho and then the shear 

velocity on the boundary we can say y is equal to 0.That we can write u star rho is equal 

to square root of tow0 by rho as shown in equation number 9, where tow0 is the shear 

stress at the valve or boundary. Here, we introduce a term where velocity or friction 

velocity is actually, it is a characteristic of the turbulent fluctuating motion. 

So this way, these various parameters are now defined and then if you know either the 

mixing length or the shear stress or some of the parameter then we can determine the 

velocity. 

So it is just like now this zero equation model of them Prandtl’s mixing length is directly 

not give a complete solution but, it is we can use it in combination with some of the 

measured values or with some of the other observations. So that is generally this theory 

we have already discussed the Prandtl’s mixing length hypothesis. So what are the 

advantages or what are the disadvantages? The next two slides we are discussing, what 

are the advantages. So this Prandtl’s hypothesis has been put forward at the beginning of 

the twentieth century. 

So you can see that, at that time the turbulence phenomena, what is happening in 

turbulent how the velocity variations and all these things were totally unknown the 

understanding of this turbulence flow was very little for the scientist and engineers. So at 

that time when Prandtl’s proposed this theory, it was actually one of the important 

observation as far as this turbulent flow which has put forward or which has boosted the 

development of various fly mechanics like aero development, of aero planes and other 

kinds of machines. That is, one of the important theories as far as turbulent flow is 

concerned. 

So some of the advantages of this mixing length hypothesis theory you can see the merits 

in this theory is simple and can be used with some degree of accuracy. We can easily 

explain, we can easily understand this mixing length hypothesis, it is not so complex like 
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as we have seen the Reynold’s equations or the complete turbulence theory is concerned 

mixing length theory is simple and even though it is not totally correct completely 

accurate the accuracy is less, but still we can use this mixing length hypothesis with some 

degree of accuracy. So that minimum of the problems can be solved or you can easily 

understand how the system is working to certain degree of accuracy. So if appropriate the 

choice of mixing length l is made. 

(Refer Slide Time: 32:34) 

 

We can get a good solution, this is depends upon how effectively we can calculate the 

mixing length or we can find out the mixing length. As we have already seen we have 

derived a term for the shear stress in terms of mixing length and the velocity gradient. So 

if the mixing length can be correctly obtained through various means then we can 

calculate other parameters accurately. So this depends upon the mixing length. 

So one of the important advantages is that the theory is simple and can be easily used 

with some degree of accuracy for various turbulent flow problems and then if delta is the 

thickness of turbulence region in y direction, then some appropriate value for mixing 

length is available in literature through various measurements. For example, if l by delta 

is equal to 0 point l by delta is equal to 0.07 for plane mixing layer l is equal to 0.09 for 
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plane jet in stagnant environment like that say if delta is the thickness of the turbulence 

region in y direction. 

Then we can say from various observations we can write the mixing length l divided by 

delta some values are available in literature. These are some of the important advantages 

of the Prandtl’s mixing length hypothesis.  

(Refer Slide Time: 34:05) 

 

Some of the disadvantages, as I mentioned is say this Prandtl’s mixing length theory is 

based upon some of the experimental observations and some of the empirical relationship 

and some of the theories at that time. 

Some of the disadvantages of the mixing length hypothesis do not be considered 

diffusion or convection of turbulence. As we have seen the turbulence in the nature of 

turbulence, this diffusion and convection are very important process in turbulence, 

actually mixing length hypothesis which we have seen here proposed by a Prandtl’s, it 

does not consider the diffusion of convective turbulence, so this is actually one of the 

major disadvantage or demerit of the mixing length hypothesis and also mixing length 

hypothesis, takes that effective viscosity does not exist where velocity gradient is 0. 
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 This is also one of the disadvantages as written here in this slide even though mixing 

length hypothesis is widely used even now. Due to the limitations of this mixing length 

hypothesis, some sophisticated analysis will be taken over the mixing length hypothesis. 

Nowadays, with very complex CFD computers full dynamics packages are available to 

critically analyze most of the problems. 

So generally this mixing length hypothesis is used for preliminary analysis for various 

problems but otherwise since we have got very good computational software or 

computational dynamics packages where all these various equations, momentum 

equations or Reynold’s equations are taken help. 

So we can get better solution still we use this mixing length hypothesis for preliminary 

analysis and understanding of the turbulence process. These are the some of the 

advantages and disadvantages of the mixing length hypothesis put forward by Prandtl. 

So now in the next few slides and we will be trying to use this Prandtl’s hypothesis as 

well as various other theories to derive some equations for the variation of the velocities 

by considering first flow or a flat plate or a parallel flow and then we will be considering 

the turbulent flow through pipes. 

So, first case is velocity distribution for a parallel flow within smooth boundaries. As we 

have seen in the region away from the wall we can write by using the Prandtl’s 

hypothesis, we can write tow is equal to tow turbulent is equal to rho l squared d ux bar 

by dy whole squared equation number 10 and then by using Karman’s approach mixing 

length is equal to kappa into y. 
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So if you put forward this here, that we can write tow is equal to rho kappa squared y 

squared d ux bar dy whole squared as shown in equation number 11.Here, we are 

considering the parallel flow with smooth boundaries. So Prandtl’s introduced one 

additional relation for shear stress in that it remains constant, so that is tow is equal to 

tow0. So that we can write in this equation number11 here, we can write here, 11 can be 

written as equation number 12; tow0  is equal to rho kappa squared y squared d ux bar by 

dy whole squared as in equation number12. 

So now as we have seen here, we have defined shear term called shear velocity, so which 

is tow0  is equal to rho u star o squared where o is the density u star o is the shear velocity 

so tow0  is equal to rho u star o squared. Now, if you substitute for this rho star o squared 

here in equation number 12. 
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So that you can write u star o squared is equal to kappa squared into y squared into d ux 

bar by dy whole squared, so that is equation number 13. Finally by using this here, we 

can write d ux bar by dy is equal to u star o by kappa into y as in equation number 14. 

So now, here our aim is to get an expression for the velocity variation. So we are using 

the Prandtl as well as Karman’s approach and then d ux bar by dy is equal to, we got a 

relation the variation of the velocity with respect to y and d ux bar by dy is equal to u star 

o by kappa y as in equation number 14. 

Now, we can solve this equation number 14 to get a solution for the velocity, so as I 

mentioned our aim is to get an expression for the velocity. We can write ux is equal to u 

star o by kappa into log e y plus C. By showing equation number 14 here, we get ux is 

equal to u star o by which is the shear velocity, where kappa into log e natural log y plus 

C where C is the constant with respect to integration. Now, this equation number 15 

indicates that the velocity varies logarithmically. 

So that, we have already seen the turbulence region the velocity varies logarithmically, 

now the constant integration we can determined from the condition that the turbulent 

velocity distribution must fit in the laminar sub layer in the vicinities of the boundary. 
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So we have already seen earlier that there we have here you can see in this figure there is 

a laminar sub layer and then the turbulent. (Refer Slide Time: 42:07) So with respect to 

this here there is constant of integration we can determine from the condition that the 

turbulent velocity distribution must fit in the laminar sub layer in the vicinities of the 

boundary. 

Now if you assume that the shear stress remains constant and it is equal to tow0 on the 

boundary and assume further that d ux bar by dy is equal to say the derivative of the 

velocity with respect to y direction we can approximate as ux by y so that we can 

writetow0 is equal to mu into ux by y but we have already seen this tow 0 is equal to rho 

into u star o squared. We can write ux by u star rho is equal to u star o into y by v where u 

is the kinematic viscosity. So this is valid for the near to the boundary so equation 

number 16 ux by u star o is equal to u star o into y by v. 

So hence, we can write equation number 16 gives the velocity distribution in the vicinity 

of the boundary, so that this is linear, so this we can say it is on the laminar sub layer. 

So in equation number 15 velocity is not 0 at y is equal to 0, if not this C is equal to 0. So 

here equation number 15 is here, so you can see that in equation number 15 and this 

velocity is not 0 at y is, actually the velocity should be 0 due to no slip condition y is 

equal to 0. This is possible only unless C is equal to 0 you can see equation number 15 

here and then we can see that velocity is not 0 at y is equal to unless C is equal to 0. 

So this we explain all these we are discussing here is explained with respect to flow over 

flat plate. Here the free stream velocity is coming and here is the flat plate and then once 

the turbulence is generated you can see there is a laminar sub layer and then the 

turbulence is taking place. How the transition and then laminar and turbulent transition 

and then that laminar sub layer are explained in this figure: 
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So now we want to as I mentioned our aim is to finally determine as an expression for the 

velocity. So the constant of integration C is determined from the condition that the 

turbulent velocity distribution must join the laminar velocity distribution in the 

immediate vicinity of boundary where laminar and turbulent shear stress is of the same 

order of magnitude. 

So here you can see, this is the laminar sub layer and then turbulence so to determine this 

C the velocity distribution must join the laminar velocity distribution there is immediate 

vicinity of the boundary where laminar and turbulent shear stress are of the same order of 

magnitude. So that we can write this y is equal to we can put y is equal to y dash where ux 

is say small value or ux is tending to 0 in equation number 15 here, here is 15. 
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So then we can write C is equal to the constant C is equal to minus u star o by kappa log e 

y dash as in equation number 17. Here now equation, by using this C we can write 

equation number 15 as ux is equal to u star o by kappa log e y minus log e y dash as in 

equation number 18. 

So now from equation number 16 one can write that such a velocity distribution exists up 

to a distance delta dash that is proportional to v by u star o and this delta dash may be 

taken as representing the thickness of the laminar sub layer. 

So this is the laminar sub layer you can see that a small sub layer called laminar sub 

layer. Actually it may be taken as representing thickness of the laminar sub layer. The 

distance y dash and delta dash may be expected to be independent, so that y dash is 

tending to delta dash so that is also approximately equal to v by u star o as in equation 

number 19. 
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And y dash we can represent as a constant multiplied beta into v by u star so as in 

equation number 20, where beta is a numerical constant. So if we substitute this here in 

equation number 18, our previous equation number 18 we can write the velocity variation 

ux is equal to u star o by kappa into log e y minus log e beta into v by u star o. So now 

from this, by simplifying we can write, we can get an expression ux is equal to u star o by 

kappa into log e u star o into y by v minus log e beta so that is equation number 21. 

So as we can see this u star o into y by v is a Reynold’s number based on the friction 

velocity or the shear velocity u star at distance y. So this term is actually Reynold’s 

number based on the friction velocity so for smooth boundaries at high Reynold’s 

number, we can see that this is already in this region ux is equal to u star rho by is equal to 

u star o into y by v as given in equation number 16 for laminar sub layer earlier. 

So that finally for the turbulent region we can write ux by u star o is equal to 1 by kappa 

log e natural log e u star o into y by v minus log e beta as explained in equation number 

23. 
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So this equation number 23 as shown here, this equation number 23 is known as 

dimensionless logarithmic universal velocity distribution law for smooth boundaries. 

So when we consider smooth boundary, this equation is called dimensionless logarithmic 

universal velocity distribution law. These constants kappa and beta are empirical we can 

determine through experiments, already say you can see kappa is almost equal to 0.4 

which is a universal constant kappa is equal to 0.4 and beta also we can determine, beta 

depends on the roughness at the boundaries for the particular case we consider. 

So for low Reynold’s number we can show that instead of this linear variation we can 

show that power law is valid which is expressed as ux by u star o is equal to C into y into 

u star o by v to the power n where C and n are constants as shown in equation number 24. 
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So this is for a low Reynolds number low. So this you can see this.  

(Refer Slide Time: 47:06) 

 

This slide shows how the velocity distribution takes place so if this is the valve and then 

the schematic representation turbulent shown and laminar sub layer and how the shear 

stress is varying is shown in this figure which is taken from the [] book. 
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So now for Rough boundaries we have seen how the variation taking place for smooth 

boundaries, if we consider rough boundary we can see that the boundary, the roughness 

of the boundary also attack the flow. So that this laminar sub layer thickness which we 

have seen earlier where rough boundaries, we can write y dash is equal to alpha into 

epsilon where, this epsilon is the roughness coefficient roughness factor and alpha is a 

constant. So that now by using our earlier equation number 18 we can write ux by u star o 

is equal to 1 by kappa log e y by epsilon minus log e alpha equation number 26. 

So this equation number 26 represents universal velocity distribution law for rough 

surfaces. 

(Refer Slide Time: 49:01) 

 

So we have already seen a universal velocity distribution for smooth surfaces, so now 

equation number 26 use universal velocity distribution law for rough surfaces. So this 

equation number 23 and 26 yield another law called universal velocity defect law which 

is true for smooth and rough boundaries. 

So if we consider ux is equal to u max at y is equal to h then we can write u max divided 

by u star o is equal to one by kappa log e u star o into h by v minus log e beta as in 

equation number 27. If we consider the velocity is maximum at y is equal to x so that u 

max by u star o is equal to 1 by kappa into log e h by epsilon minus log e alpha. 
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As in equation number 28, if we subtract this equation 23 and 26, from equation 27 and 

28, we will get u max minus ux divided by u star o is equal to 1 by kappa log e h by y, 

this is called universal velocity defect law which is valid for both smooth and rough 

boundaries. Finally, through this we got a general expression which can use for smooth 

boundaries as well as rough boundaries. 

So that equation is u max minus ux divided by u star o is equal to 1 by kappa log e x by y 

this equation is called universal velocity defect law which is applicable for smooth as 

well as rough boundaries. 

So this is the general expression before going to the pipe flow, we will discuss a small 

example. Here the example problem is say in a meteorological station the wind velocity 

was measured at 2.3 meters and 6 meter above the ground, the values obtained being 2 

meters per second and 2.3 meter per second respectively. 

We have to compute the shear velocity u star o assuming Karman constant kappa as 0.4 

and then what is the probable laminar sub layer thickness for the problem, next part of the 

question is, what is the velocity at 9 meter above the ground? 

Assuming that, the boundary is smooth and take kinematic viscosity v is equal to 0.145 

stokes so for this particular problem is concerned say this is the meteorological station, 

where the wind velocity is measured. We know that from the ground level the velocity is 

measured at 2.3 meter and 3 meter and 6 meter above the ground and we know the 

velocity values 2 meters per second, 2.3 meter per second respectively. 
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So now we know the kinematic viscosity and then we know the Karmans constant kappa 

and assuming the boundary is smooth, we have to determine the velocity at 9 meter above 

the ground and then, we have to determine the probable laminar sub layer thickness and 

the shear velocity. So the problem we can just explain like this in this figure.  

(Refer Slide Time: 52:00) 
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So if the meteorological station here, you can see that if this is the ground level, here we 

have 3 meter then 6 meter and 9 meter. Here, the velocity is given as 2 meter per second 

here 2.3 meter per second. So we have to determine the velocity and this 9 meter 

location. 

So to solve this problem, we will use this equation, the velocity distribution for smooth 

boundary. We have given this in the equation ux is equal to u star o by kappa into log e y 

minus log y dash in equation number 1 in this slide. 

So now we will take the ground level as origin, so here at y is equal to 3 meter which is 

given ux is equal to 2 meter per second at y is equal to 6 meter ux is equal to 2.3 meter per 

second. 

So we will substitute this value to this equation number 1, so 2 is equal to u star o divided 

by k into log e 3 minus log e y dash. 
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And 2.3 are equal to u star o divided by k log e 6 minus log e y dash equation 2 and 3. 

Now we can solve this equation 2 and 3, we get the shear velocity u star o as 0.173 and 

then the shear stress we can see from this slide, tow0 is equal to rho u star rho squared the 

equation number 4.The laminar sub layer thickness say actually Reichardt’s as measured, 
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for this kind of problem the laminar sub layer thickness, he found that generally it will be 

between this say the u star o by into y by mu is between 0 to5.m So here y is the laminar 

sub layer thickness. Now we will see that the Reichardt’s observation, and then we will 

also Calculate the laminar sub layer thickness from our earlier equation, in this equation 

number 1. 

Let us take y is equal to delta star the thickness of laminar sub layer thickness in the 

Reichardt’s observation here, so that delta star in equation 5 mu by u star o. By solving 

this expression we will get the delta star as 4.19 into 10 to the power minus 4 meter. So 

now we can from the equation 2 here, this equation 2 since u star we have already found 

kappa is known. 
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So now for this real problem we can also find out the laminar sub layer thickness. If we 

solve that equation we will get y dash is equal to 0.029 meter. You can see that what 

Reichardt’s say this lot of difference is there, but here we got y dash or the laminar sub 

layer thickness as 0.029 meter. So now to calculate the velocity, since now the constants 

are unknown parameters here u star o is already determined. 



35 
 

(Refer Slide Time: 54:11) 

 

We can find out the velocity at 9 meter. We will use this equation here, the earlier 

equation here, and equation number 1. From that if we substitute, we will get ux is equal 

to 0.173 by 0.4 into log e 9 minus log e 0.029, so that, you will get the velocity as 2.48 

meter per second. 

So this is a small example, so similar way different kinds of problem especially for 

turbulent flow are related to flat plate or similar kinds of problem can be solved. Next, we 

will be discussing the turbulent flow through pipes, initially, through smooth pipe and 

then rough pipes. 

 


