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Lecture - 18 

Laminar and Turbulent flows 

Welcome back to the video course on fluid mechanics. In the last lecture, we were 

discussing about the laminar and turbulent flow. We have seen how laminar and turbulent 

flow is creating nature and we were discussing about its various kinds of behavior and 

how we can demonstrate or how we can classify between laminar and turbulent flow by 

Reynolds experiment. We have seen that with respect to the dimensionless number, 

Reynolds number. We can classify the flow either in open channel or in pipes as laminar 

or turbulent; that classification also we have seen. Then, we were discussing in detail 

about various kinds of laminar flow. We have seen in one of the first demonstrations that 

the flow between two fixed parallel plates and then we have seen the plane poiseuille 

flow. 

In today’s lecture, we will be discussing further on the flow between parallel plates but 

whenever, say, a plate is moving. The first case which we have seen last time is: 

whenever two plates are fixed like this here you can see if these are two plates then it is 

fixed then what happens a flow is in between. So, that is the plane poiseuille flow that we 

have seen. Then we have derived the expression for velocity and shear stress and 

discharge. Various flow parameters we have derived for plane poiseuille flow that means 

the flow between two parallel plates. The plates are of infinite line then all the properties 

we have seen. In today’s case, we will be discussing the laminar flow between parallel 

plates but one plate is moving. 

Here, (Refer Slide Time: 03:05) if we assume that there are two infinite plates like this 

and then in the flow is between the plate and one plate is moving with the velocity, say, 

velocity u. Then how we can derive various flow parameters like velocity, discharge and 

then the shear stress? 
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(Refer Slide Time: 03:17) 

 

You can see in this slide the flow between two parallel plates but one of the plates is at 

rest and another one moves in its plane with a velocity u. 

Here, the figure shows here is the x axis if you draw and y axis is here the distance 

between the plates is t and then u is the velocity of the upper plate. So this is the case 

typical flow has got number of application like whenever belt is moving in a fluid stream 

and then carrying some chemicals. These different applications are there with respect to 

this coquette flow or the laminar flow between parallel plates. Here the case is 

demonstrated. Now, we want to derive the velocity shear stress and the discharge.  
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We have seen that earlier plane poiseuille flow we have seen the case that the forces 

acting are the shear force and then the pressure force. If we consider just a fluid element 

of thickness dx and then various forces acting on the pressure force on both sides of the 

element and then the shear force. 

The earlier case for the plane poiseiulle flow we have seen that the expression for this 

kinds of flow when we write the for example if we consider the case here now the one 

plate is here and now the second plate is moving with a velocity u so this is u and t is the 

distance. 
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Now we will be considering here to derive an expression for the velocity for flow 

between the plates. We will be just considering a fluid element of size dx by dy and then 

here the pressure force p and the other side p plus dp by dx we will be considering and 

then the shear force on both sides. Correspondingly, with respect to the plane poiseiulle 

flow we have seen the equation we have derived dp by dx is mu d square ux by dy square. 

Correspondingly, with respect to the plane poiseiulle flow with respect to the flow 

between two fixed parallel plates only the difference is that the upper plate is moving. 

So, the basic equation is same, the basic equation is written here: dp by dx is equal to mu 

d square ux by dy square. This is the equation with respect to the coquette flow and then 

the boundary conditions are at y is equal to 0 that means on this plane at y is equal to 0. 

Due to the no slip boundary conditions, the velocity u is equal to 0 and at y is equal to t 

then we can see that the velocity u is equal to U. Those are the boundary conditions. So 

the boundary conditions at y is equal to 0, ux is equal to 0; at y is equal to t, ux is equal to 

U. As we discussed in the case of plane poiseiulle flow between two fixed parallel plates 

to derive an expression for the velocity we can integrate this expression twice so that we 

get the expression for velocity. 
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If we integrate twice with respect to y gives ux is equal to 1 by 2 mu dp by dx y square 

plus C2 y plus C1 where C2 and C1 are constants of integration then we can use this both 

boundary conditions as we have seen here the boundary condition here u is equal to 0 at t 

is equal y is equal to 0 that is one boundary condition. 

Second boundary condition is u is equal U at y is equal to t. So here to find out these two 

unknown constants C2 and C1 we can use the boundary condition. If you use the 

boundary condition with respect to the first boundary condition y is equal to 0. If we 

apply then we will get this and so we will get C1 is equal to 0 and if we apply the second 

boundary condition at y is equal to t, u is equal to U then we get C2 is equal to U by t 

minus 1 by 2 mu dp by dx into T. 

We got the constants C2 and C1 and then we can substitute back the constant C2 and C1 

into this equation number 2 so that we will get an expression for the velocity. Finally, we 

get velocity in the x direction ux is equal to y by t into U, which is the velocity of the 

moving plate plus y by 2 mu dp by dx into y minus t. This gives an expression for the 

velocity between the flows between two parallel plates; upper plate is moving with the 

velocity U. 
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This we can say as I mentioned earlier there are number of applications for this coquette 

flow so that we can utilize this analytical derived expression to find out the velocity in a 

various practical cases.  

(Refer Slide Time: 08:55) 

 

From the velocity distribution, other parameter such as shear distribution and discharge at 

any section can be found. So as we have seen earlier in the case of plane poiseuillie flow 

first we get an expression for the velocity and then from that we can derive the discharge 

passing or we can derive the other parameters like a shear stress. For example, this 

particular case in dp by dx is equal to 0 then we say that here in the earlier expression if 

dp by dx is equal to 0 means this second term goes and then we get ux is equal to y by t 

into u; so, this kind of flow we say that shear flow. 

Wherever dp by dx pressure gradient in the x direction dp by dx is equal to 0 that kind of 

flow is called the shear flow. In that case, we can get the velocity is equal to a simple 

expression y by t into u. This is called a shear flow.  
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(Refer Slide Time: 10:29) 

 

Then, the velocity is concerned; the velocity distribution for coquette flow if we say here 

you can see that this plate is fixed; lower plate is fixed and upper plate is moving with a 

velocity U and the flow is in this direction S. If you drop the velocity distribution if the 

flow between the two plates for various parameter called p, which we can define as minus 

p square by 2 mu dp by dx, where d is the distance between this two plates. For various p 

we can drop the velocity like this. You can see that when p is equal to 0 then it is linear, 

when p is equal to 1 it is going like this and p is equal to 2 it is in this direction. 

Like that for various parameters we can drop the velocity distribution. So here this p is 

equal to t, which means the distance between the upper and lower plate and this figure is 

taken from the fluid mechanics book by Munson et al, 2002. 

Like this now we can got the velocity and then as I mentioned once we get velocity we 

can get the expression for the shear stress. So, shear stress- tow is equal to mu into du by 

dy. From which we can just take a derivative of the velocity and then we can multiply by 

mu, the dynamic coefficient of viscosity that we can get the shear stress. If we want to 

find out the flow between these two parallel plates then we can integrate between 0 to t of 

this velocity going. So, the velocity into area that will give the discharge passing so that 
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we can integrate between these two to get an expression for the discharge passing through 

between these two plates. So like that various parameters can be found out. 

(Refer Slide Time: 11:51) 

 

This is called coquette flow which has got number of practical applications in various 

engineering problems. Before further discussing one of the applications we were 

discussing the one of the numerical example with respect to this coquette flow. Here, we 

consider two horizontal parallel plates which are placed 5 centimeter apart. One of the 

plate is stationary and other one moves parallel to the station plate at velocity of 50 

centimeter per second; the pressure measured at one point in a fluid contained between 

plate is 5 kilogram per centimeter square and at another point, 50 meter away in the 

direction of flow pressure is measured as 5.2 kilogram per centimeter square.  
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(Refer Slide Time: 12:47) 

 

We have to find if the coefficient dynamic viscosity is given as mu is equal to 5 poises 

we have to get an expression for the velocity distribution in the flow and what is the rate 

of flow that means how much the discharge passing and its direction? Find shear stress at 

boundaries. How does shear stress vary? 

These are the case. The problem is that here we have got to fix one fixed plate and 

another plate is moving with respect with a velocity 50 centimeter per second and the 

distance between the plates is 5 centimeter. Then the fluid is passing between these plates 

and its dynamic viscosity is 5 poises. We want to derive an expression for the velocity 

and then rate of flow and shear stress. This is the problem. As we have seen in the 

previous derivation we have derived an expression for the velocity; that expression we 

can directly utilize here. 
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(Refer Slide Time: 14:07) 

 

Here, the relation obtained for coquette flow is directly used. So, this expression ux is 

equal to y by t into u plus y by 2 mu dp by dx into y by t that we have already derived 

earlier and then for this particular problem if the pressure gradient is given between two 

points, between these plates two points; the pressures are given. With respect to this we 

can find out dp by dx. We can take the difference between the pressure and the distance is 

also given so that we get dp by dx, the pressure gradient dp by dx is equal to p2 minus p1 

by L. So, here 5.2 minus 5 by this distance is equal to 50; the unit is converted to meter. 

So that we get dp by dx is equal to 40 kilogram per meter cube with respect to this dp by 

dx. Now, it implies that the pressure gradient is adverse so the pressure is positive, dp by 

dx is positive, so pressure gradient is adverse. Now, the coefficient of viscosity mu is 

given as 5poise that we can write; that is equal to 1 by 98.1 kilogram per second kilogram 

second per meter square. So, we are converting all into the system and then finally we 

can substitute back to the equation.  
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(Refer Slide Time: 15:40) 

 

All the parameters are known here so we can get an expression for the velocity; so ux is 

equal to in the previous expression this t is 5 centimeter, so 0.05 and mu is 0.5 meter; dp 

by dx is obtained as 40 and then t is also 5 centimeter and mu is 5 by 98.1. Now, we can 

substitute back so the velocity ux is equal to y by 0.05 into 0.5 plus y by 2 into mu is 5 by 

98.1 into 40 into y minus 0.05. From this, we get an expression for the velocity as ux is 

equal to 392.4 y square minus 9.62 y. Finally, we got an expression for the velocity by 

substituting the various values. Once, we get an expression for velocity as we discussed 

the discharge passing between the plates, the fluid flow between the plates and then also 

the shear stress can be calculated. The discharge, the rate of flow per meter width is 

given. If we can integrate between 0 to t, ux dy if we integrate, t is 5 centimeter, integral 0 

to 0.05 and the velocity 392.4 y square minus 9.62y dy; this we can integrate between the 

limits of 0 to 0.05 that gives the discharge rate of flow per meter width; this is per meter 

width as 0.004325 qmax or meter cube per second. So like this once the velocity is known 

we can find out the rate of flow per meter width.  
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(Refer Slide Time: 17:10) 

 

The shear stress at the boundary if you want to find out then we can write tow0 is equal to 

mu into dux by dy at y is equal to 0. We can substitute back all various values phi by 98.1 

into 392.4 into 2y. Here, already ux is known so this we can just take a derivative delt ux 

by delt y you can take find out and then we can put here as shown to find out the shear 

stress. So, shear stress tow 0 at y is equal to 0 mu into dux by dy that is equal to 5 by 98.1 

into 392.4 into 2y minus 9.62. So, at y is equal to 0, the boundary shear stress can be 

found, that is equal to minus 0.49 kilogram per meter square. This gives the shear stress 

and then to get a relationship for the shear stress at any point in the fluid we can just take 

tow is equal to mu into dux by dy that gives the shear stress. We can get an expression by 

taking the derivative of the velocity expression that gives us mu into 784.8 into y minus 

9.62. This gives the relation for the shear stress. Like this you can find out various 

parameters. 
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Now, for this case if you plot various velocities and then now as we have seen here we 

have the moving plate with 50 centimeter per second and here the fixed plate. As we have 

seen earlier case you can see that the velocity variation if you plot here, the bottom 

velocity is 0, so you will get an expression something like this. Here, it is 0.5 meter per 

second and here it is 0. We can find out the velocity where it will be 0 by equating this 

velocity expression to 0 we will get where the position where the velocity become 0. 

Similar way if we plot this is the velocity distribution in this particular case and then if 

you brought the shear stress you can see that it will be something like; it will be varying 

at some point; it will be 0 and then here we have value on the upper plate also; it will be 

varying like this. This is the variation of shear stress. From this expression, we can find 

out the variation of the velocity and then the variation of the shear stress. Like this 

various problems with respect to the coquette flow that we have seen that means one 

plate is fixed and other plate is moving. 

Now, we will discuss one more case here. First, we discussed two plates of infinite length 

that is two plates are fixed; and then we have seen that one plate is moving; and now we 

would derive an expression whenever both plates that means two plates are placed like 

this of infinite length and then first case is both are fixed and then we have derived the 
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expression for the velocity and shear stress and the parameters; second case was first the 

upper plate is was moving like this with a velocity and then we found expression for the 

fluid velocity shear stress and then discharge and this third case we will be discussing 

wherever both plates one plate is moving, upper plate is moving with a velocity u in the 

right-hand direction and then the lower plate is moving with a velocity v in the opposite 

direction that means to the left-hand direction. So, two plates are there and then we want 

to find out an expression for the velocity and other parameters when the upper plate is 

moving to the right-hand side and lower plate is moving to the left-hand side with a 

velocity. So, here again the difference is the boundary conditions.  

(Refer Slide Time: 21:45) 

 

Now, the laminar flow is between parallel plates moving in opposite directions. Flow 

between two parallel plates, one of the plates is moving to right as here it is demonstrated 

in the figure. So, this upper plate is moving with a velocity u and lower plate is moving to 

the left-hand side with a velocity v. We want to find out expression for velocity, shear 

stress and other parameters. Here, the distance between the plate is b and as in the 

previous case we will consider fluid element of size dx dy and then we will find out the 

various forces on that fluid element and then we will use the Newton’s second law of 

motion to derive an expression. Here, now all the cases what we are considering is steady 

state; time component is not coming and then the acceleration is also not coming to 
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picture zone. Now, only the Newton’s second law that means that the effective forces 

total force on the fluid element we are equating with respect to the case. 

Here also, as in the previous case, the forces are the pressure force on to the left-hand 

side or to the both p dy on this side and other side p plus dp by dx into dx into dy and 

then we have the shear stress. So, here if it is tow dx on the bottom and the top of the 

fluid element it is tow plus d tow by dy into dy into dx. The principle is essentially same 

we are considering the problem in there very similar way. 

In that case, if we apply the Newton’s second law equation of motion for steady 

incompressible flow then we can write the expression as p into dy minus p plus dp by dx 

into dx into dy plus tow plus d tow by dy into dx minus tow dx equal to 0. The shear 

forces and then the normal forces pressure force gets equated to 0. 

We can simplify this expression to get an expression for the velocity as we did in the 

previous two cases of plane poisuielle flow and then coquette flow. If you simplify and 

then divide by dx into dy in 1, with respect to this expression we will be finally get dp by 

dx is equal to dtow by dy. As we can see that finally we are getting a simple expression 

when we are using the first principle Newton’s second law motion. Since only the forces 

are considered the case is steady, incompressible so obviously the equations will be 

coming almost the same way only with slight differences and then only changes with 

respect to the boundary conditions. 

So here again we are getting the dp by dx is equal to d tow by dy. Now, for laminar flow 

as we have seen we can use Newton’s law of viscosity tow is equal to mu into du by dy 

and then we can substitute for the shear stress expression tow mu into du by dy and then 

finally we can get the expression. 

So if we put it back to the earlier equation here dp by dx is equal to d tow by dy we get 

mu into d square u by dy square that is equal to dp by dx. So, this is the final expression 

and then as we did in the previous case here also we can integrate twice and then we can 

apply the boundary conditions and then you can find out the integration constants. 

Finally, we can get an expression for the velocity as shown in this slide. 
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(Refer Slide Time: 25:44) 

 

If you integrate twice we get mu is equal to 1 by 2 mu dp by dx into y square plus A y 

plus B, where, A and B are the constant of integration. 

 (Refer Slide Time: 26:47) 

 

Here again we have got two boundary conditions. As I mentioned here the plates are 

moving with the velocity so here on the upper plate we know the velocity u is equal to U 

on the top of the plate and bottom of the plate v is equal to minus V in the other direction. 
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So, boundary conditions are known. We can just substitute here to find out the constant 

of integration A and B. We can write at y is equal to 0, u is equal to minus V and then at 

y is equal to b, u is equal to U, now these are boundary conditions. These boundary 

conditions we can substitute back so that finally minus V is equal to 1 by 2 mu dp by dx 

into 0 for the first boundary condition plus A into 0 plus B. So we get B is equal to minus 

V and then we substitute for at B; u is equal to V so we get u is equal to 1 by 2 mu into 

dp by dx v square plus AB plus minus V and we get either constant A is equal to U by b 

plus V by v minus 1 by 2 mu dp by dx into b. Finally, the constants A and B are found. 

We can substitute back to the earlier equation and then finally we get the expression for 

the velocity for this particular case. As u is equal to U plus V into y by b minus 1 by 2 mu 

dp by dx into by minus y square minus V so this is the expression for the velocity. 

Then, as we have discussed earlier, once we will get the expression for velocity we can 

find out the flow between the plates by flow, between the plates by integrating between 0 

to b and also we can find out the shear stress by taking derivative of the velocity and then 

using Newton’s second law. So, the velocity is known and then also you can see that now 

the distance y at which u is equal to 0 obtained here. 

(Refer Slide Time: 28:17) 
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The case is that I will just draw here the variation with respect to the velocity since both 

plates are here: this is moving with velocity u in this direction, and here it is v. Then you 

can see that if we plot the velocity then the velocity variation will be something like this. 

Since here it is positive, this is the velocity variation; the other direction is like this. This 

gives the velocity variation for this particular case of whenever two plates are moving the 

opposite direction. So you can find out here at this particular point you can see that there 

is a place where velocity will be 0. You can just substitute the velocity expression which 

we got to 0 and then we can find out what we do in this distance where this velocity will 

be becoming 0. We can substitute to the expression velocity is equal to 0 and then you 

will get the point. 

(Refer Slide Time: 29:00) 

 

Then the discharge also as I mentioned you can just integrate between 0 to b integrate 0 

to b u dy mu is known and then we can just get an expression like this. So, it is integrate 

0 to b U plus V into y by b minus 1 by 2 mu dp by dx into by minus y square minus V dy. 

After integration we can get U minus V into b by 2 minus 1 by 12 mu dp by dx into b 

cube. 

Like this we can find out q, the discharge per unit width of plate and then also we can 

find out the shear stress distribution we can just use the newtons law of viscosity tow is 
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equal to mu into du by dy, u is known you can just take a derivative u with respect to y 

and then multiplied by the dynamic coefficient of viscosity we get an expression for the 

shear stress distribution. 

(Refer Slide Time: 30:10) 

 

That we have shown in this slide, tow is equal to mu into du by dy plus mu into U plus V 

by b minus 1 by 2 into dp by dx into b minus 2 y s. This can be simplified as U plus V 

into mu by b so minus dp by dx into b by 2 minus y. Similar to this is a shear stress will 

be 0 at a distance y, which is obtained by setting above equation to 0. Very similar way 

we have seen in the case of velocity shear stress also between some locations it will be 0 

we can equate the shear stress is 0 we have to find out where it will be 0. 

So, in all this three cases what we have discussed so for is the laminar flow between two 

fixed parallel plates and then second case one plate is moving and third case both plates 

are moving in the opposite direction. Essentially, we are using the Newton’s second law 

of motion and then we consider a fluid element and then this are called first principle to 

derive the expression for velocity and other parameters from the first principle. Finally, 

we are getting an analytical expression for velocity and other parameters. 
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Before closing this section we will just discuss, as I mentioned earlier, the number of 

applications for these kinds of problems in fluid mechanics. We will just discuss one of 

the practical applications as an example what will be discussing here is coquette flow. 

The coquette flow we have already seen that the lower plate is fixed and upper plate is 

moving and then how it can the application comes. We will be discussing it here.  

(Refer Slide Time: 32:10) 

 

The problem here is as shown here: A wide moving belt passes through a container of 

viscous liquid. The belt moves vertically upward with a constant velocity V0. Due to 

viscous forces, belt picks up a liquid film of thickness t. Fluid viscosity is mu and density 

is rho. Gravity force tends to make fluid drain down the belt. Assume flow is laminar, 

steady and fully developed and atmosphere produces no shear at outer surface of film. 

Find an expression for velocity profile? 

This is a practical case, wherever a bath of chemical or tank of chemical is kept in fluid 

form is kept and then we just pass a belt through that and then that belt will be carrying. 

Since the belt is the moving plate and then the bottom of the tank is the fixed plate and 

then with respect to the movement of the belt it will be carrying some liquid and then that 

is one of the applications here. We want to find out an expression for the velocity for this 

particular case; once the velocity is known as we have seen earlier we can find out the 



21 
 

shear stress distribution or we can find out how much is the carrying capacity or how 

much the belt will be carrying?  

(Refer Slide Time: 33:26) 

 

This particular case is explained here in this figure so here the application if coquette 

flow here. This as the numerical example discussed here. Now the belt is moving; this is 

the direction of the belt; here the belt is here the belt is moving with a velocity V0 and 

here this is the tank where chemical in fluid form is got and then this is bath of fluid and 

then we can see that since the belt is moving it will carry some liquid with it. We want to 

find out an expression for the velocity. As described in the problem here some of the 

assumptions are assume flow is laminar steady and fully developed. 

So these are the assumption and we are also assuming atmosphere produces no shear at 

outer surface of film. Here, this is the atmosphere which we consider; the belt is moving 

up. So we want to find out an expression for the velocity. As in the previous case here 

also we consider a fluid element of dx by dy; so this is x axis and this is the y axis. 

To get an expression for the velocity, we consider a fluid element of size dx dy; the 

control volume is considered here dx dy. As we can see, here also the forces are 

compared to the earlier case there is body force also so shear force is there and then the 

body force; the forces are shear force and the body force.  
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Now, with respect to this figure, if we use the Newton’s second law then we can write Fsy 

plus FBy that means with respect to shear force and body force that will be equal to 0. 

With respect to the previous figure, if we consider this element, F1 on both phases then F1 

and F2 are the shear forces and then FBy is the body force. We can write the expression as 

tow plus d tow by dx into dx by 2 into dy minus tow minus d tow by dx into dx by 2 into 

dy. This is with respect to the fluid element which we consider tow is the shear stress 

minus rho g dx dy is equal to 0. 

This is finally if we substitute the shear forces and body force with respect to the fluid 

element which we consider here. (Refer Slide Time: 35:58) this is the fluid element 

which we considered. Now, with respect to equating the body force and the shear force 

we get finally an expression d tow by dx is equal to rho into g, where rho is the mass, 

density g is the acceleration due to gravity and tow is the shear stress. So, this is the 

expression for this particular case which we consider here. So, d tow by dx is equal to rho 

into g and now once we integrate tow is equal to rho g x plus C1, that is, after integration 

and that we can equate to tow is mu into dv by dx for this particular case Newton’s law of 

viscosity. tow is equal to rho g x plus C1 that is equal to mu into dv by dx. So that finally 

we can write dv by dx is equal to rho gx by mu plus C1 by mu. Finally, we get an 
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expression in terms of velocity. Our aim is to find out the velocity distribution; we get dv 

by dx is equal to rho gx by mu plus C1 by mu. 

So, this is the expression. Now, as in the previous cases, here again we can integrate; 

since we got an expression for dv by dx we can integrate to get an expression for the 

velocity. Once again if we integrate then we get v is equal to rho gx square by 2 mu plus 

C1 mu into x plus C2. This will be expression for the velocity; C1v is equal to rho gx 

square by 2 mu plus C1 by mu into x plus C2. 

Again, here we can have two boundary conditions to find out C1 and C2. The constant of 

integration C1 and C2, we can find out by using the boundary condition. For the particular 

problem is concerned we have seen that here this is one of the boundary. So, here at 

whenever at x is equal to 0 that means on the place of the belt you can see that x is equal 

to 0, and then the velocity is already known, V is equal to V0; the belt is moving with a 

velocity V0, at x is equal to 0, we can write v is equal to V0. Then, it is given as per the 

assumptions we can get that at x is equal to t that means on the top of the fluid element 

which will be carrying there it will be shear stress, we can write tow is equal to 0; so that 

db by dx is equal to 0, so that first boundary condition x is equal to 0 v is equal to V0; 

from which we can get C2 is equal to V0. The second boundary condition is at x is equal 

to t tow is equal to 0; so that we can write dv by dx is equal to 0 from which we can get 

C2 is equal to minus rho g into t, where g is the acceleration due to gravity, rho is the 

mass density of the fluid. Now, C1 and C2 are obtained. 
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Finally, we can put back the C2 and C1 to the expression for the velocity. So, v is equal to 

rho g x square by 2 mu, C1 is minus rho g t, so minus rho gt into x by mu plus C1 is 0. So 

this is the expression for the velocity which can be simplified as v is equal to rho g is 

equal to gamma is equal to rho g. We can write v is equal to gamma x square by 2 mu 

minus gamma t into x by mu plus v0. So this is the expression for the velocity. 

The problem is again very similar to what we have seen in the earlier three cases. Here 

one practical application we are discussed; we will finally get an expression for the 

velocity and once we get an expression for the velocity, if you want to find out how much 

will be the carrying capacity or how much fluid will be carrying with respect to 

movement of that the belt the velocity is known so we can find out the flow rate per unit 

width.  
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That is obtained as q is equal to integral 0 to t v dx as shown here, that is, integral 0 to t 

gamma x square 2 mu minus gamma t x by mu plus V0 dx, from which we can get q is 

equal to V0 into t minus gamma t cube by 3 mu. So, this gives t is this thickness. With 

respect to this how much fluid it can be carried, we get q is equal to V0 into t minus 

gamma t cube by 3 mu. Like this we can get the expression for how much is the carrying 

capacity of the belt. Like this various problems we can solve. This is one of the 

applications of the coquette flow. There are various applications like this. Since most of 

the problems what we consider so far we are considering flow is steady laminar and then 

the incompressible fluid is considered. 

With respect to these assumptions, we are using the first principle that means Newton’s 

second law of motion and then we are using the Newton’s law of viscosity to supplement 

it and then we are getting the expression for the velocity, shear stress and other 

parameters. So, this is the way which we can solve various kinds of problems. In all this 

cases, we are able to get exact solution such in the problem is simple compared to other 

cases. We are able to get finally the exact solution for velocity and other parameters. 

This is about the first case: first part of this laminar and turbulent flow is laminar flow 

between parallel plates this we can see that here also lot of similarity can be practical 
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cases like in an open channel; whenever a flow will be considered, flow in an open 

channel then we can if we consider both sides of the channel as fixed; then you can see 

how the flow is behaving and then with respect to as I mentioned the application of 

coquette flow whenever one plate is moving various applications in mechanical 

engineering, chemical engineering etc., as we have seen. 

 (Refer Slide Time: 43:40) 

 

So, now the second part of this chapter: laminar and turbulent flow. We are discussing 

the laminar flow between pipes. Here, we are going to discuss the laminar flow in pipes 

so the pipe flow is considered. Now we consider here again steady laminar flow through 

circular tube. 

First, we will be discussing the flow as I said laminar flow and then we will be discussing 

turbulent flow in a pipe. So, first cases laminar flow in pipe. We consider steady laminar 

flow through circular tube and here again we take the help of Newton’s law of viscosity 

and second law of motion as we have seen in the previous cases. 

If we consider just like here we can see that if this is a circular tube and flow is entering 

from here and flow is leaving from the other side; for this kind of simple pipes our aim is 

always to derive an expression for the velocity variation, velocity distribution of flow 

within the pipe and then we can derive an expression for shear stress. Also, we can find 
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out how much is discharge passing through the pipe as we have seen in the earlier cases. 

If we consider a pipe this is a simple tube.  

(Refer Slide Time: 45:10) 

 

If we consider a simple tube like this and then consider a horizontal tube of radius R0 and 

concentric cylindrical fluid element of radius r and length dx forces acting on the free 

body of the fluid element we are considering. Here, this is the case we consider a flow is 

this is the pipe so and the flow is coming from this direction and going like this; the pipe 

is of radius R0 is the radius of the pipe. As in the previous case again here we consider a 

fluid element. This is the first principle as we have seen. We consider a control volume, a 

small control volume and then we see what happens in the control volume. 

Here, in the case of pipe flow also, laminar flow in a pipe, we consider a small fluid 

element of size dx length and then from the central line of the pipe we consider the radius 

to that top of this is R. We consider to a small tube inside the pipe at R. If you for this 

fluid element are considered what are the forces acting and then once the forces are 

known here it is a steady state flow. So we can equate this two fluid by using Newton’s 

second law of motion, we can equate the forces to 0 since acceleration is not considered 

in this case also. 
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So, now if we consider a fluid element cylindrical, a concentric cylindrical fluid element 

of radius r and length dx and the radius of the pipe is R0. This is the case here so the 

forces you can see for this fluid element is considered here the normal pressure force will 

be p into phi r square and on the other side it will be at distance dx will be p plus dp by 

dx into dx into phi r square; we have to consider the shear force so the shear force we can 

write with respect to this fluid element, we can write tow into shear stress multiplied by 

2phi R dx; these are the forces. 

In this particular case now you can see here we consider this pipe is horizontal pipe but 

then if the pipe is considered in an inclined position then we have to consider the 

gravitational effect also that will be considering later but at present we are considering 

the fluid pipe is horizontal and then we are deriving an expression for the velocity. So 

that is our aim.  

(Refer Slide Time: 47:36) 

 

Here, the forces are the pressure force p into phi r square on one side and p plus dp by dx 

into dx into phi r square on other side. And then the shear force is tow into 2phi rdx 

acting on surface of the fluid element opposing the motion with respect to the shear force. 

As we have already assumed the flow is steady and tube is of uniform size; total 

acceleration is equal to 0 that we can write, du by dt is equal to delt u by delt t plus u into 
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delt u by delt x is equal to 0. So the total acceleration is equal to 0. So that the Newton’s 

second law of motion we can just equate the total forces to 0. Since Newton’s second law 

states force is equal to mass into acceleration so as per our assumption acceleration is 

equal to 0.  

We can equate total forces to 0. So here with respect to the fluid element p into phi r 

square minus p plus dp by dx into dx phi r square minus tow into 2phi r dx is equal to 0, 

so the pressure force and shear force. Then, we can simplify this as tow is equal to minus 

dp by dx into r by 2. So this expression, the force is equated to 0 so that we can equate as 

tow is equal to minus dp by dx into r by 2. 

As we have seen in the previous case again we can utilize the Newton’s law of viscosity 

tow is equal to…(49:16). So, here the flow is taking place in the right-hand direction so 

we can write tow is equal to minus mu into du by dr. So, the shear stress we can equate 

tow is equal to minus mu into du by dr. Once you substitute this expression tow is equal 

to mu into du by dr we can get du by dr is equal to 1 by mu dp by dx into r by 2. So this is 

the expression for tow is substituted back du by dr is equal to 1 by mu dp by dx into r by 

2. Again, we get the velocity gradient du by dr with respect to r. As in the previous case 

again we can integrate to get an expression for the velocity and there will be the constant 

of integration can be obtained by utilizing the boundary conditions. 
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Now, on integration we get mu is equal to 1 by 4 mu dp by dx r square plus A. So, the 

boundary conditions here are at r; here one boundary condition is only one is known so 

one boundary conditions so at r is equal to R0. That means when the flow takes place you 

can see that here the fluid is going like this and passing like this. Due to no slip boundary 

condition on the boundary of the tube or the boundary of the pipe we can assume the 

velocity is zero. So, at r is equal to R0 on the boundary of the tube or the pipe we will get 

mu is equal to 0. Once we substitute back we get the integration here A is equal to 1 by 4 

mu dp by dx into R0 square. Then, finally, we can put it back this expression for A into 

here the expression for velocity so u is equal to 1 by 4 mu dp by dx into r square minus 

small r square. This is the expression for the velocity. From this we can find out where 

the maximum velocity takes place that we can get as to differentiate and equate to 0 du 

by dx is equal to 0. We can find out where the maximum velocity takes place so that is 

equal to 1 by 4 mu dp by dx into minus 2r is equal to 0 or r is equal to 0. 
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We can see at the center will be the maximum velocity so that is obvious for pipe flow 

and then the expression for maximum velocity will be in the previous case if you put 

small r is equal to 0 we get umax is equal to 1 by 4 mu dp by dx into R0 square and then 

very similar way discharge through the pipe we can get dq is equal to 2phi r dr into du. 

So, here we can integrate between 0 to R0 Q is equal to 2phi r into u into dr. So that is 0 

to R0 phi into 1 by 2mu minus dp by dx into R0 square minus r square into r dr. From 

which we will get this is equal to 1 by 8 mu minus dp by dx into phi into R0 to the power 

4 and if we substitute minus dp by dx as minus delta p by L, the pressure drop. 

Then we will get Q is equal to the discharge is equal to phi into R0 to the power 4 into 

delta p by 8 mu L, that is equal to in terms of diameter phi d to the power 4 delta p by 128 

mu L. 

This equation is called Hagen poiseuillie equation, here d is the diameter. So the 

expression what we got the velocity or the discharge is called Hagen poiseuillie equation 

for pipe flow and then as in the earlier case we can get the shear stress tow 0 is equal to 

minus delta p by L into R0 by 2 so that we will get an expression for the velocity at the 

pipe. Also, we can find out the average velocity through pipe. So the total discharge is 
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known and then if you divide by the area of power section we get the average velocity. In 

this particular case, we will get V is equal to delta p into R0 square by 8 mu L and from 

which also one of the parameter is obtained. Like velocity you can find out other 

parameter. So, the pressure drop also we can obtain from this expression for the average 

velocity as delta p is equal to 8 mu L by R0 square that is equal to 32 mu L by d square. 

From this we can get the energy loss per unit weight of fluid as delta p by gamma, 

gamma is 32 mu VL by rho g d square. Like this various parameters we can derive and 

then we will be discussing for laminar flow in pipes and then further problems will be 

discussed in the next lecture. 


