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Dynamics of Fluid Flow  

Welcome back to the video course on fluid mechanics. We were discussing about the 

dynamics of fluid flow; we have seen the derivation of the Euler’s equation and how to 

derive the Bernoulli’s equation that also we have seen in the last lecture. 

Today, we will further see the applications of Bernoulli’s equation and then many other 

practical cases where this equation can be utilized effectively that we will discuss today. 

(Refer Slide Time: 01:51) 

 

For Bernoulli’s equation as you can see in this slide, the Bernoulli’s equation can also be 

derived from conservation of energy. We have seen the energy per unit weight plus the 

pressure energy plus unit weight plus kinetic energy per unit weight plus potential energy 

per unit weight is equal to total energy per unit weight of the system. We have already 

seen that the total energy in the system does not change as per the conservation of energy; 
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we can say that total head does not change so that this way also we can derive the 

Bernoulli’s equation. Also, we have seen this between two points if you take total head at 

1 is equal to total head at 2 if you consider in a pipe flow. 

(Refer Slide Time: 02:32) 

 

We can utilize this principle in many forms including, considering the total energy of the 

system including the work done per unit weight or the energy supplied per unit weight as 

we can see in this slide.  

(Refer Slide Time: 02:55) 
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So, this Bernoulli’s equation is applicable to many problems, but if the flow is irrotational 

we can stay along a streamline, but if the flow is irrotational we can also use this across 

the streamline; some of the restrictions we will discuss later. First, we will see some of 

the important applications of the Bernoulli’s equation. Let us consider a streamline 

around a blend body in this slide. 

(Refer Slide Time: 03:16) 

 

Here, you can see that the flow is coming in this direction and with the blend body effect; 

there will be a stagnation point like this. We can find out this in case 1. The application of 

Bernoulli’s equation: case 1 - stagnation pressure. We can isolate a point in the field 

where velocity is 0 that is so called stagnation point. Here, in this particular case, in this 

figure, this point 2 will be the stagnation point and by considering the flow here at this 

location, at section 1 and section 2. Between these two sections if you apply the 

Bernoulli’s equation along a streamline from 1 to 2, if you consider the datum like this 

horizontal so that flow is horizontal, so z1 is equal to z2. So applying the Bernoulli’s 

equation along the streamline between section 1 and 2, we can write P1 by rho g plus u1 

square by 2g plus z1 is equal to P2 by rho g plus u2 square by 2g plus z2, here P1 is the 

pressure at section 1 , P2 is the pressure at section 2, u1 is the velocity at section 1 , u2 is 

the velocity at section 2, rho is the density of the liquid and g is the acceleration due to 

gravity. We can see that we are considering the stagnation point; due to this stagnation 
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point the velocity at that point will be 0 so that this equation we can write P1 by rho, if 

you multiply both sides by g then P1 by rho plus u1 square by 2 is equal to P2 by rho. 

Since z1 is equal to z2 this is canceled and u2 since we are considering stagnation point we 

can write u2 is equal to 0. So that P1 by rho plus u1 square by 2 is equal to P2 by rho. 

From this we can write P2 is equal to P1 plus 1/2 rho u1 square. By considering the point 1 

we can find out the pressure at the stagnation point so that is called stagnation pressure. 

Now, we have applied the Bernoulli’s equation between two points: one is stagnation 

point and the other one is the particular section 1 so that we could find the stagnation 

pressure. This is one of the basic application of the Bernoulli‘s equation in fluid 

mechanics and there are number of other applications. Based upon this stagnation 

pressure let us consider a pitot tube. Pitot tube is generally used to measure the mean 

flow velocity especially in closed conduit such as pipes. 

(Refer Slide Time: 05:42) 

 

Here you can see in the slide a pipe is there; the flow direction is this and then we want to 

find the pressure at the central line. If you want to find the pressure at this particular 

central line velocity what we can do is we can immerse the pitot tube like this at this 

particular point 2 where we want to find the velocity. We should have another point also 

where we can introduce a piezometric tube like this. So this is the piezometric tube here 

at section 1 and at section 2 we introduce a the pitot tube so you can see the fluids level 
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that there will be a difference since it is mainly due to the velocity effect at the centre 

line. The head at the piezometric level will be h1 from central line and on the pitot it will 

be h2 from the central line. Now, if you apply the Bernoulli’s equation between section 

this section 1 1 and section 2 2 we can write this P2. You can see that at section 1 1 the 

pressure is P1 so P1 plus 1/2 rho u1 square will be the total head at the section 1; at section 

2 2 it will be P2 is equal to P1 plus 1/2 rho u1 square so that P2 can be written as rho g h2 

from which we can get the velocity at the centre line for the pipe loss, that is, u is equal to 

square root of 2 g h2 minus h1. This is the way while introducing a piezometer and then a 

pitot tube we can find the mean velocity of flow like in a pipe as shown in this figure. 

We have found the central line velocity by considering two points, 1 1 and 2 2 and at 

point 1 we introduced a piezometer and point 2 we introduced a pitot tube and then we 

are trying to find central line velocity. We can get the Bernoulli’s equation between 

section 1 and 2 as this figure and finally u is equal to square root of 2 g h2 minus h1, 

where h2 minus h1 is the head level between the piezometer this section 1 and the pitot 

tube introduced at section 2. 

(Refer Slide Time: 08:32) 

 

In earlier case what we discussed should have one piezometer and a pitot tube. But 

instead of this arrangement, we have another type of arrangement to find out the mean 

velocity of fluid, pitot static tube in this figure. You can see that a pitot static tube is 
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introduced with respect to the pipe where the velocity is found. In this mechanism, it 

combines tubes and connector to a manometer, manometer is shown here and the central 

line velocity where we are trying to measure velocity this manometer tube in introduced 

at this location. There is an opening with respect to this tube at section 1 1 and you can 

see that when manometer is connected, the fluid level difference will be like this at a, b as 

shown in this slide. 

So, the pressure at the central line P2 is static. We can write P2 is equal to P1 plus 1/2 rho 

u1 square with respect to this section 1 1 as we have seen earlier. If you consider the 

manometer here this Pa is equal to the pressure, Pa is equal to P2 plus rho g x. This is fluid 

level, rho g is the unit weight of the specific weight of the liquid and X is the height 

difference between this level as shown this line and this line is X. 

Pa is equal to P2 plus rho g and Pb is equal to the pressure at section B. At particular 

location b, Pb is equal to P1 plus P1 with respect to the fluid pressure at this section 1 P1 

plus rho g X minus h. This difference rho g into X minus h plus the density of the 

manometer liquid into g into, this is h, so rho g into h. 

With respect to the conditions Pa is equal to Pb, we can equate this both equations. So that 

P2 plus rho g X is equal to P1 plus rho g into X minus h plus rho manometer liquid 

density into g h. If you use this relationship as in the previous equation you can write P1 

plus rho h g into manometer minus rho is equal to P1 plus rho u1 square by 2. 

We can find P2 with respect to this equation and then we can substitute that here so that 

will give u1, the velocity. For the central line velocity square root of 2 g h rho, the density 

of manometer liquid minus density of the pipe divided by rho. So u1 is equal to square 

root of 2 g h into rho m minus rho divided by rho. Like this a pitot static tube is used to 

measure the mean velocity of flow in a pipe instead of as we have seen in the previous 

case here we have to use piezometer as well as a pitot tube but here the mechanism is 

pitot static tube and we can find the velocity as shown here. 
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The third case which we will be discussing is application of Bernoulli’s equation for 

venturimeter. We can see that this venturimeter is used to find the discharge in a pipe and 

this is the pipe which we want to find the discharge and for this venturimeter arrangement 

there will be a converging section as you can see here; there will be a diverging section 

like this. At this particular point you can see a minimum cross sectional area and then we 

will be using here a manometer like this and it will be connected between this particular 

section, that is, before the divergence starts this particular section 1 and then particular 

section 2 as shown in this figure and then with the manometer liquid you can see the a 

fluid levels at a height difference of h. With respect to this convergence section and 

divergence section we want to find the discharge and then that is the pressure difference 

which we measure between the discharges obtained from the pressure difference 

measurement between section 1 and 2. 
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If you apply the Bernoulli’s equation along a streamline from point 1 to 2 in the previous 

figure from point 1 to point 2 then we can write P1 by rho g plus u1 square by 2 g plus z1 

is equal to P2 by rho g plus u2 square by 2 g plus z2, where P1 and P2 are the pressure at 

section 1 and 2 and u1 and u2 111110 are the velocities at section 1 and 2 and z1 and z2 

are the high difference with respect to the datum here, this is z1 and z2. From the 

continuity equation, you can write Q is equal to u1 A1 is equal to A2 u2 with respect to the 

velocity and area of cross section we can write Q the discharge is same. So Q is equal to 

A1 u1 is equal to A2 u2 from which we can write u2 is equal to u1 A1 by A2. We substitute 

for u2 in this equation so that we can write P1 minus P2 by rho g plus z1 minus z2 is equal 

to u1 square by 2 g into A1 by A2 whole square minus 1, from which we can find the 

velocity, central line velocity that means at this location we can find the velocity by using 

the venturimeter. So once the velocity is known we can just multiply by Q is equal to A1 

u1 that will be discharged through the pipe. This is another mechanism which we 

generally use to either find the velocity or you need to find the discharge depending upon 

the case in a pipe flow. This is another application called venturimeter. 

As far as these kind of hydraulic equipments are concerned, venturimeter is concerned we 

can see that theoretical discharge is Q hydraulic discharge is equal to u1 A1 but actual 
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discharge you can see that there will be a reduction with respect to this measurement. So 

the actual discharge will not be equal to theoretical discharge. 

(Refer Slide Time: 15:20) 

 

The actual discharge is obtained by actual discharge, Qactual. We have to multiply by a 

coefficient of discharge Cd, so that Qactual is equal to Cd by in Cd into Q theoretical. So 

that we can write Qactual discharge is equal to Cd into u1 into A1. We can write with respect 

to the previous equation which we derived for u1. The Qactual is equal to the coefficient of 

discharge multiplied by A1 into A2, so A1 is the cross sectional section at 1 and A2 is the 

cross section at the converging point, A2 multiplied by square root of 2 g into P1 minus P2 

by rho g plus z1 minus z2 by A1 square minus A2 square. This is the actual discharge. 

With respect to this kind of measurement there is a difference between the actual 

discharge and theoretical discharge. We have to multiply by the coefficient of discharge. 

So, Qactual is equal to Qtheoretical into coefficient of discharge. 

Now, we can say in terms of the manometer readings we can write P1 plus rho g z1 is 

equal to P2 plus density of manometer is equal t into g h plus rho g z2 minus h. This we 

can write as P1 minus P2 by rho g plus z1 minus z2 is equal to h into rho manometer by 

rho minus 1. Actual discharge can be written as Cd into A1 into A2 square root of 2 g h 

rho manometer by rho, the density of the fluid in the pipe minus 1 divided by A1 square 

minus A2 square. 
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Like this by using venturimeter we can measure the velocity or the discharge in a pipe 

flow. Now the application as far as venturimeter is concerned we will see further 

applications of Bernoulli’s equation. We have seen for the venturimeter; we have also 

seen another mechanism for flow measurement, the discharge of velocity like the various 

flow measurement equipments are shown here orifice as shown in this figure.  

(Refer Slide Time: 17:30) 

 

Then nozzles and venturimeter which we have already discussed are some of the 

equipments used for flow measurements which we utilize the Bernoulli’s equations and 

continuity equation together. So that we can find the flow of velocity over the discharge 

at particular sections of a pipe line especially the mechanism is used for pipe line. This is 

one of the applications of the Bernoulli’s equation 
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We will go to further applications of the Bernoulli’s equation. Fourth one is the flow 

through orifice. You can see that this orifice is a mechanism. If there is a tank like this 

and if there is a small hole like this and so water will be coming from the tank as in the 

case of a jet, so this is called an orifice. There are different forms of orifice. This is one of 

the simple most forms of the orifice; we can utilize to find the time to empty a tank or to 

particular discharge measurement can be utilized. Here for the flow through orifice, you 

can see that whenever the fluid is coming out of the orifice or this is small hole which is 

called orifice, then all the streamlines are converging to the opening at the orifice. Then 

you can see that there is a location where the streamlines are converging and the area of 

cross section of the jet is minimum. This section is so called Vena contracta, where 

streamlines contract after orifice to minimum and then become parallel like this. You can 

see that now the streamlines become parallel. At this particular location so called vena 

contracta there will be a velocity and pressure; the velocity and pressure will be uniform 

across the this particular location of the vena contracta, so this is so called orifice. As we 

can see that this is also the orifice, as I mentioned, you can utilize for the velocity or the 

discharge measurement. 

The same principle is utilized there also. Now, we are considering the vena contracta and 

between the tank which we are considering here, if we consider the surface of the tank at 



�
�
this particular location point 1 and then if you consider the orifice location of the 

particular vena contracta which we are considering at section 2, we are considering two 

positions namely, position 1 and position 2. Between position 1 and 1we can see that jet 

is flowing freely to the atmosphere; the pressure at this location will be 0 and at this is an 

open surface. At location 1, the pressure will be 0. So, p1 is equal to 0; p2 is equal to 0 

and this is the open surface of the tank. There the velocity u1 is equal to 0 and then we 

can see that datum head z1. If you consider this centre of the orifice as the datum then z1 

is equal to h and z2 is equal to 0. If we can apply the Bernoulli’s equation between section 

1 and 2, between the section position points 1 and 2, we can see that we will get h is 

equal to u2 square by 2 g or we can write u2 is equal to square root of 2 g h. So the 

velocity at this location u2 at location 2 will be u2 that is equal to square root of 2 g h. 

Now, as we have seen earlier as far as coefficient of discharge, again the actual velocity 

will be defined from the theoretical velocity. We have to multiply by a factor called 

coefficient of velocity for these kinds of problems. Due to the friction, the actual velocity 

will be different. So when the fluid is coming out of the orifice there will be friction with 

respect to the atmosphere and the then due to the friction effect the actual velocity will be 

slightly different. We have to multiply by a coefficient so called velocity. So, the actual 

velocity is equal to coefficient of velocity into the theoretical velocity. 

This coefficient of velocity for these kinds of problem varies from 0.7 to 0.9 depending 

upon the various conditions like orifice locations or orifice diameter and other conditions. 

So, the actual velocities obtained as the coefficient of velocity multiplied by the 

theoretical velocity is flow through orifice. 
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Finally, for the orifice you can see that if you consider the vena contracta here then with 

respect to the vena contracta the actual area of the jet is the area of vena contracta. So, the 

jet which we are considering out of the orifice the actual area of cross section of the jet is 

the area of the vena contracta. So Aactual is equal to we have to multiply by a coefficient of 

contraction into A into area of cross section of the orifice. So, actual area is equal to 

coefficient of contraction multiplied by the cross sectional area of the orifice. Finally, 

now if you want to find the actual discharge Qactual is equal to area of cross section into u. 

So, Qactual is equal to Aactual that means Aactual is C into Aorifice into u theoretical. Finally, 

Qactual is equal to coefficient of discharge into area of cross section of the orifice into the 

theoretical velocity. This gives the actual discharge from the orifice. This has got many 

practical applications as I mentioned. Even flow measurement orifice can be used so 

many other applications are there in fluid mechanics for this flow through orifice. We are 

now using the three coefficients: one is the coefficient of contraction to find the actual 

area; second one is the coefficient of velocity to find the actual velocity and the actual 

discharge; finally, we are getting Cd is equal to C into Cv that means coefficient of 

discharge is equal to coefficient of contraction multiplied by coefficient of velocity so 

that is Cd, finally, we get the actual discharge. This is another application of the 

Bernoulli’s equation. 
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Now, just find the time for emptying a tank. As I mentioned with this Bernoulli’s 

equation again can be utilized. If you want to find how much time is taken for a liquid in 

a tank to come from level h1 to h2. If you want to find Bernoulli’s equation can be utilized 

here and then say if h is the level difference between h1 minus h2 we can write the 

discharge Q is equal to A into the velocity, since the level is going down we are using 

minus here. So this is equal to minus A into del h by del t. 

With respect to time this head is changing; so Q is equal to minus A into del h by del t. 

This we want to find here, the time for emptying the tank from h1 to h2. From this 

equation we can write delta t is equal to minus A into, we will write the discharge 

equation which we have seen earlier, delta t is equal to minus A divided by Cd into A 0 

into root two g into delta h by root h. 

Now, we can integrate this expression with respect to the levels h1 to h2. So, t is equal to 

minus A into Cd into A0 into root 2 g into integral h1 to h2 del h by square root of h. If we 

integrate this expression we will get finally the time for emptying a tank h1 to h2 will be 

equal to minus 2 A divided by Cd into A0 root 2 g into square root of h2 minus square root 

of h1. Here again we have to use the Bernoulli’s equation for emptying a tank from one 

level to another level. So like this various applications are there. 
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Earlier, we have seen just an orifice which is directly emptying the liquid to or water to 

the atmosphere. If we are considering a submerged orifice as shown in this figure you can 

see there is an orifice here at location 2 and then through this orifice the liquid is passing 

from tank 1 to tank 2, very adjacent tanks. Finally after some time this become a 

submerged orifice. To find the discharge passing through submerged orifice and the 

velocity of flow through the submerged orifice we can apply the Bernoulli’s equation 

from this point 1 to this point 2 at the centre of the orifice. We can write from Bernoulli’s 

equation p1 by rho g plus u1 square by 2 g plus z1 is equal to p2 by rho g plus u2 square by 

2 g plus z2. We can see that since due to that atmosphere pressure, p1 rho g will be equal 

to 0 and here the velocity will be 0. So u1 square by 2 g also is 0 and here z1 is equal to h1 

if you take the datum as the centre line of the orifice. 

So h1 is z1 and then p2 by rho g, you can write as rho g h2 by rho g plus u2 square, the 

velocity is u2 so u2 square by 2 g since the datum is taken z2 is equal to 0. Finally, we can 

get this velocity of flow u2 is equal to square root of 2 g into h1 minus h2. h1 minus h2 is 

actually the level difference between this level and this level, so this gives the h1 minus 

h2. The velocities are found and then we can find the discharge of Q is equal to, we can 

use the continuity equation, Q is equal to A- area of cross section area of the orifice into 

velocity and finally the actual discharge is equal to we have to multiply by the coefficient 
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of discharge area of cross section of the orifice into the velocity which we are calculating 

here. So this is the case of a submerged orifice. 

(Refer Slide Time: 28:52) 

 

Now, we will see another case so called confined flows, if you consider which is a 

confined with respect to this tank as shown here. The flow is coming in this direction and 

then flow is going through the other nozzle at location 2. If you want to find for this 

confined flow the discharge or any other parameter or velocity of flow at section 2 again 

we can use the Bernoulli’s equation as shown between the section 1 here and section 2. 

When we apply the Bernoulli’s equation, we can write p1 plus 1/2 rho V1 square plus 

gamma z1 is equal to p2 plus 1/2 rho V2 square plus gamma z2. You can see this is open to 

atmosphere. So, p1 is equal p2 is equal to 0 and z1 is equal to h and z2 we are taking it as 

the datum; so z2 is equal to 0. Finally, we get 1/2 V1 square plus g h is equal to 1/2 V2 

square and then we can find the velocity. From that we can get the discharge. This is as 

far as if you consider a confined flow as shown in this figure. Now, there are many other 

applications for Bernoulli’s equation. Some of the open air flow types again we will 

discuss here. 
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Next one is sluice gate. If you want to find the discharge passing through sluice gate so 

here you can see this figure here. In this figure, you know that the sluice gate is generally 

in a reservoir or different chemical plants or water supply. You just use this gate to pass 

particular amount of discharge and if you want to find how much discharge pass through 

this particular opening again we can use the Bernoulli’s equation and continuity equation 

for a sluice gate. 

So sluice gate is here and the liquid level is at this level and the flow is coming in this 

direction. After the gate again as we have seen again a vena contracta will be formed that 

means we know cross sectional area streamlines will be parallel and then we will be 

applying the Bernoulli’s equation between the section 1 and section 2 of this area of cross 

section here between section 1 and 2. Applying the Bernoulli’s equation and continuity 

equation, if you apply the continuity equation between section 1 and 2, we can write Q is 

equal to A1V1 is equal to, b is the width of this opening or with respect to this equation. 

So, b into V1 z1 that is equal to A2 V2 that is b V2 z2, where b is the thickness or the width 

which we are considering. 

Now we can apply the Bernoulli’s equation between point 1 and point 2. So that we can 

write p1 plus 1/2 rho V1 square plus gamma z1 is equal to p2 plus 1/2 rho V2 square plus 

gamma z2, here p1 and p2 is atmospheric pressure. So, p1 and p2 have to be considered. 
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From this equation, we can find out the velocity, for example, here V2. Then, we can get 

an expression for the discharge passing through the gate, that is, Q is equal to z2d into 

square root of 2 g into z1 minus z2 divided by 1 minus z2 by z1 whole square, this is z1. 

The bottom of the sluice gate is considered as the datum and this is z1 here and z2 is depth 

of at this particular location section 2 and z1 is the depth at section 1. 
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This way here also p1 equal to p2 equal to 0 and then by using the Bernoulli’s equation 

and continuity equation we can find the discharge passing through this sluice gate. This is 

one of the applications as far as open channel flow is concerned and then another 

application is application for the Bernoulli’s equation for weir or notch. So, here we can 

see that weir is here so we want to find how much is the discharge passing over the weir 

um or a notch. 

This is rectangular sharp crested weir. If you want to find, we can say here again this 

particular figure you would be considering this location a streamline like this. Then, 

between section 1 and 2, we will be considering, this is 2 and this is 1, we will be 

considering the Bernoulli’s equation. If you consider this particular point p1 is equal to 

this height, depth of flow with respect to this point 1 p1 is equal to gamma h and then here 

it is atmospheric pressure so we can neglect the pressure. 
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So p2 is equal to 0. If you consider between section 1 and 2, if you apply the Bernoulli’s 

equation we can show that Q is equal to C1 into h b root 2 g h or this is equal to C1 into b 

into square root of 2 g into h to the power 3 by 2, where C1 is a constant as far as this 

weir or notch is constant. Like this we can apply this Bernoulli’s equation combination 

with the continuity equation to large varieties of problem in practical cases. 
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Again, here if you consider a general equation for the weir or notch the general equation 

you can see is the sharp crested weir and then you consider a small strip of elemental 

strip through a notch. You can see that this velocity u is equal to square root of 2 g h and 

discharge through the strip delta Q is equal to area of cross section into velocity V into 

delta h into square root of 2 g h with respect to this figure here. 

Then, we can just integrate between 0 to H; H is the depth of flow with respect to crest of 

the weir as shown in this figure. So, this is the depth of flow. We can integrate from 0 to 

H, so that Qtheoretical the theoretical discharge is square root of 2 g integral 0 to h b H to the 

power 1/2 d h and then we can integrate, the theoretical discharge is equal to b root 2 g 

integral 0 to 2 H square root of h d H that is equal to 2 by 3 b root 2 g H to the power 3 

by 2 and the actual discharge as we have seen here again. We have to use a coefficient of 

discharge. So Qactual is equal to Cd into 3 by 2 b root 2 g, H to the power 3 by 2. So this is 
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another application of the Bernoulli’s equation in combination with the continuity 

equation. 
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Similarly, if you consider a V notch as shown in this figure, again, this V notch is just a 

triangular weir, here this b width at this particular location can be found at depth h from 

the surface of the water in the total depth is H; so b is equal to two times H minus H into 

tan theta by 2 is the angle of the V notch. Then, Qtheoretical is equal to 2 into root 2 g tan 

theta by 2 integral 0 to H minus h into square root of h d H. 

Finally, the equation is this is equal to 8 by 15 root 2 g tan theta by 2 H to the power 5 by 

2. In a triangular weir or V notch the discharge will be varying with respect to H to the 

power the total depth of floor H to the power 5 by 2. Actual discharge is equal to the 

coefficient of discharge multiplied by the theoretical discharge as shown in this slide. 

Like this by using the Bernoulli’s equation and the continuity equation we can solve 

many practical problems in hydraulics or in the closed quantity flow like the pipe flow 

and also open channel as we have seen in the notches, weirs or the sluice gate problem. 

We can solve different kinds of problems using the simplified form of the Bernoulli’s 

equation and the continuity equation you can see all this problem is very simple 

approach. Bernoulli’s equation is a simple equation so that we can easily without many 
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complexities can easily approximate what kind of flow is coming and then we can apply 

the Bernoulli’s equation between two sections between two points on a streamline. We 

can find either the discharge or the velocity or the pressure between the two sections. 

These are the most important applications of the Bernoulli’s equation. So, before going 

further with the derivation of other fundamentals momentum equation we will just see 

some aspect of the total energy with respect to hydraulic grade line and the energy line.  
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We have already seen with respect to the Bernoulli’s equation total head is equal to the 

pressure head plus velocity head plus datum head. This total energy will be there of 

course, there will be losses also of the internal force, internal energy will also be there. 

That also we have to consider and that is the total energy. While finding this energy at 

various section of a pipe line or a open channel flow depending upon the case which we 

are doing in the problem, we can represent two lines called energy line and hydraulic 

grade line. So energy line and hydraulic grade line are actually the graphical forms of the 

Bernoulli’s equation. The basic principle as we have seen is some of the various energies 

of fluid remains constant as the fluid moves from one section to another. The energy is 

conserved when we consider a pipe flow like this. If you consider this as a pipe, between 

one section and another section, we can see that the various energies remain constant as 

the fluid moves from one section to another section. Now, the equation which we derived 
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Bernoulli’s equation is derived for steady, inviscid, incompressible flow, total energy 

remains constant along a streamline. This is the basic equation. The energy line concept 

and hydraulic grade line concept is also based upon the conservation of energy that 

means the total energy remains constant along a streamline. If you consider the 

Bernoulli’s equation the pressure head p by gamma plus the velocity head v square by 2 g 

plus z the datum head is equal to constant on a streamline. So that we can write this is 

equal to H. Thus, pressure head plus velocity head plus datum head is equal to total head 

H as shown in this slide here. 

(Refer Slide Time: 40:46) 

 

Now if you consider this figure taken from the Munson et al Fundamentals of Fluid 

Mechanics it is slightly modified. You can see if you consider a pipe flow like this and 

now if you take the piezometer level at this location and at section 1 1 and at location 2 2, 

you can see that piezometer indicates the pressure head and datum head. With respect to 

piezometer we can write p by gamma plus z, that is the piezometric head. So this as the 

static pressure does not measure the velocity head. This gives the piezometric head at 

section 1 1 and here at section 2 2, p2 by gamma plus z2 that is the piezometric head. So 

the hydraulic gradient line is actually the locus of series of piezometric taps at different 

locations. If you consider this as a pipe at different locations if you just find the 

piezometric head, that is actually the velocity head plus the datum head. 
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If you just draw the locus of a series of piezometric taps, you have a long pipe line as you 

can see here which we are considering; with respect to this is the datum. So, with 

reference to this pipe line we can have a series of piezometer and then we can plot the 

piezometric heads. You can if you just put the locus of this piezometric head that gives 

the hydraulic grade line. So, this is the fluid flow, this is the pipe flow, this is the datum 

which we are considering, this is z3, if you can measure to the centre line this is z2, this is 

z1 to the centre line. So, when we plot the locus of the piezometric heads that is the 

hydraulic grade line does not include the velocity head. Here we are not considering the 

velocity head at various locations which we have seen. So that gives the hydraulic grade 

line. Hydraulic grade line is the locus of a series of piezometric taps. For example, now 

we consider a pipe flow like this and we have three sections: section 1 1, section 2 2 and 

section 3 3 as shown in this figure.  
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If you can introduce a piezometer at the center line as we have seen earlier. With respect 

to the piezometer we can see that it will be considering the velocity head also. So, for 

these three sections if you find the piezometric levels you can see that this is varying like 

this. With respect to this, if you just plot the locus where the pitot tubes levels, here this is 

the level, this is the level, and this is the level. So this line gives the energy lines. So now 

energy lines include the datum head, the pressure head and the velocity head. If you 

consider a pipe line at various locations and if you introduce the pitot tubes and if you 

just get the levels of the pitot tubes and then if you join those levels with a line, that line 

is called energy line. As shown here with reference to hydraulic grade line the difference 

is that there is extra velocity head. For hydraulic grade line we consider only the datum 

head and the pressure head, we are using locus of the levels with reference to piezometric 

tools and various equations but as the energy line is concerned we are considering the 

velocity head also. You can see in this figure we are introducing the pitot tubes at various 

locations and then we finally get a line so called energy line. 

This hydraulic grade line and energy line concepts are very useful especially for pipe 

flow analysis and open channel flow analysis. This is coming here and again we are using 

the Bernoulli’s equation of total energy so that principle of conservation of energy is 

used. 
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This concept of energy line and hydraulic grade line is used in many problems especially 

pipe line problems also sometimes in open channel flow. In all these problems what we 

have seen so far when we measure the velocity we are getting the mean velocity or say 

the velocity measurement is with respect to most of the 1 dimensional problem, V is the 

average of the mean velocity. 

Here, we have to do a correction with respect to this. Since we are considering the mean 

flow if you consider a pipe then you can see that with reference to this we are considering 

the mean flow velocity. So, with respect to the mean flow velocity the average velocity at 

a cross section is taken; the actual velocity may not be uniform. The concept which we 

are using here is that the mean velocity is taken in such a way and then it is multiplied by 

all other area of cross section. Q is equal to area of cross section into velocity, V is the 

mean velocity. This mean velocity is not actually considered in a pipe flow like this with 

reference to the center line. The mean velocity you can see the velocity is varying like 

this; it will be maximum at the center line; then, it will be minimum 0 at both sides of the 

pipe valve. 

The mean velocity concept will not give a correct value as far as you find the various 

measurements like discharge. So, it will not give a correct value, we have to use a 

correction factor. So as far as kinetic energy is concerned we have the actual velocity is 

non-uniform as you can see in this pipe flow or even the open channel flow so what we 

are considering will be non-uniform flow. For the non-uniform flow we have to use a 

correction factor called kinetic energy correction factor which is so called alpha.  
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We can obtain this alpha. With respect to mean velocity we can say what is the discharge 

or with respect to the continuity equation we can derive this alpha is equal to integral v 

cube dA divided by V cube A, where small v is the varying velocity. You can see that the 

velocity is varying. So you can consider various sections like this. Then, it is the integral 

of V cube, v is the velocity at any point and then capital V is the mean flow velocity. The 

energy correction factor alpha is equal to integral small v cube dA divided by V cube A 

area of cross section of the pipe or the channel section which you are considering so 

alpha is equal to integral v cube dA by V cube A, where V is the mean flow velocity, A is 

the area of cross section, small v is the velocity varying from various section which you 

are considering. 

When we are consider the V square by 2 g term we have to use this. We have to multiply 

by the kinetic energy correction factor alpha so that we get a correct velocity head or the 

correct kinetic energy. If you consider the flow to be uniform you can say that alpha is 

equal to 1. No need of this correction and if it is greater than 1, we can say that it will be 

greater than 1 for all other forms. That means for non-uniform flow condition it will be 

greater than 1 and then for laminar flowing pipes this we can derive as equal to 2. Finally, 

if you use the kinetic energy correction factor the energy equation becomes p1 by gamma 
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plus alpha V1 square by 2 g plus z1 that is equal to p2 by gamma plus alpha V2 square by 

2 g plus z2. 

We have to utilize this correction factor and finally the equation become p1 by gamma 

plus alpha V1 square by 2 g plus z1 is equal to p2 by gamma plus alpha V2 square by 2 g 

plus z2. To get a correct value, this energy kinetic energy correction factor to be used, we 

multiply with respect to the velocity head V1 square by 2 g or V2 square by 2 g when we 

use the Bernoulli’s equation or the energy equation as shown in this slide. 

Finally, to conclude the Bernoulli’s equation or the energy equation, as I mentioned 

earlier, we have to see the various losses whether any of the various energy levels are 

added or taken out or external work done. All these things are to be considered while we 

solve real practical field problem. 
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General equation for conservation of energy for incombustible fluid between two sections 

we can write as p1 by gamma plus alpha V1 square by 2 g plus z1 plus qw plus H E is 

equal to P2 by gamma plus alpha V2 square by 2 g plus z2 plus e2 minus e1, where this qw 

is the heat added per unit weight of fluid so that effects is to be considered. e1 and e2 are 

the internal energies, it is there where the flow is considering and H E is the external 

work done., 
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This is the final form of the energy equation even though we have seen the simple form 

of the Bernoulli’s equation but when we solve practical problems we have to see what is 

the work added or energy is added or any losses of energy due to various aspects, like 

internal energy aspects or any heat added. All these things we have to consider and final 

form of the equation when we consider the conservation of energy as shown here. 
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Now, e2 minus e1 minus qw can be written as reversible plus irreversible head. 

Irreversible head is can be written as head loss and it is the energy loss per unit weight of 

fluid due to friction and other causes. For incompressible fluid we can write total head at 

1 plus heat added due to machine like pumps or turbine and then minus head loss is equal 

to total head  

Finally, the energy equation can be written as H1 plus HE minus HL is equal to H2 and if 

you want to find the work done over a fluid, power input into a fluid is equal to gamma Q 

Hm in watts, where gamma is the unit weight of fluid in Newton per meter cube, Q is 

discharge in meter cube per second and Hm is the head added to flow in meter. So this is 

the general form of the energy equation which is used to solve many of the practical flow 

problems.  
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We have now seen various application of the Bernoulli’s equation and we have seen the 

general energy equation. Later, we will be discussing various limitations of the 

Bernoullli’s equation and we will solve some of the example problems related to 

Bernoulli’s equation. 


