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Lecture - 5 

Response of SDOF Structures to Harmonic Loading 
 

In the last lecture, we looked at the mathematical solution of the response of a single 

degree of freedom system to harmonic loading. And the specific harmonic loading that 

we looked at is p naught sin omega bar t. 

(Refer Slide Time: 00:48) 

 

I would like to start of this lecture, and this is actually a continuation of, Response of 

SDOF Structure to Harmonic to harmonic Loading. So, what we did was in the end, we 

saw that for damped system the response u of t is equal to e to the power of minus zeta 

omega t C 1 sin omega D t plus C 2 cosine omega D t plus p naught upon k into 1 minus 

beta squared the whole squared plus 2 zeta beta a whole squared, inside 1 minus beta 

squared sin omega bar t minus 2 zeta beta cosine omega bar t, this was the solution that 

we obtained. 
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Now, what is the solution contain, I mean I said you know the C 1 and C 2 can be 

obtained from you know, the fact that initial conditions now but you know. So, therefore, 

the I am not still soft the entire thing, but the essence where you look at what this looks 

at, there are two parts to this problem, this is the homogenous part. In the homogenous 

part, if you look at it, what is a homogenous part depend on it depends on omega and 

zeta, those are the two quantities that determine this part. 

And if you look at this part, what is this part depend on this part depends on p naught by 

k, which is the equivalent static peak displacement, p naught up on k remember p naught 

up on k is p naught is the peak you know amplitude. So, p naught up on k is the peak 

equivalent static, so that is gives you the static response, but the dynamic part depends on 

two terms. One term is xi which is the damping ratio and the other important parameter 

that it depends on, is beta, beta is the frequency ratio it is the ratio of the excitation 

frequency to the natural frequency of the structure. 

So, in other words if you look at it, again it boils down that the response of a single 

degree of freedom system, depends on zeta and omega which are the dynamic 

characteristics of the structure, which we talked about in the two lectures ago. And the 

other part that depends on is the ratio of the excitation frequency to the natural 

frequency. So, in other words three parameters define, xi the damping ratio, omega the 



natural frequency and omega bar the excitation frequency, these three parameters define 

the entire response of the single degree of freedom to harmonic response. 

The other interesting part if you look at this is the following. You see C 1 and C 2 

depend on the these two conditions, but if you look at this part what is happening to this 

part, this part is a harmonic excitation sorry harmonic should I say part, which is 

modulated by e to the power of xi omega bar t. So, let me put it this way, that if we look 

at a sufficiently far, time far away time from the initial condition right. If we look far 

away, what is going to happen to this part, this part is going to diminish and it is going to 

go to 0 because of this term. 

And, so this term is going to disappear after a sufficiently long window, how look that 

window depends on what this xi is, xi is small this window is large if xi is large this 

window is small it does not matter, the fact remains that this part is dissipated and what 

you are left with is this part. Now, what is this part, this mathematically is the particular 

solution, physically this part is called as the steady state response. 

Why is this the steady state, that is that as I said this part comes from the initial 

conditions. Now, if you take a sufficient window of time, away from the initial 

conditions then this is what is remain. So, this is what is known as steady state, in the 

steady state once the transient is you know, damps out the steady state response is what 

remains and typically it is seemed that you know, by a large although we looked at it 

from this perspective, but look this part does look at the initial conditions. But, if you 

look at harmonic excitation, harmonic loading what harmonic what when do you have 

harmonic loading. Remember that when you start a rotating machinery, you start it from 

a particular RPM and then you build it up to a particular RPM and then if that RPM, you 

look at that response and so the actual if you really look at it. 

About time that we start looking at, is really just a snapshot, actually the loading has 

lasted for ever and it continues and this is not drawn very well and it is actually a 

harmonic load. But, the point is that you know there is no initial condition, I mean you 

know the initial conditions, actually happens at let us say minus infinity. So, when you 

look at response, then all that you get is the steady state response that we are interested in 

so… 
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So, this is ultimately the response that how about note one thing, that if you had no 

damping this would never get damped out. And that in other words, you would never be 

able to damp out the transient part; however, even if you have very low damping at some 

point of time, the transient part will be damped out and you are left with steady state. So, 

although un damped system, does not have steady state, but you can take a situation 

where xi tends to infinity, sorry tends to 0 without it being un damped, do you 

understand my point. 



In that situation you can define a steady state, a transient will go out and if this loading is 

being on for long enough. We can say that look we do not care about the transient and 

we are left with the steady state response. And which is why, in harmonic loads because 

the load is supposed to be there forever, the initial conditions are part of the transient, the 

transient is eliminated even if you have slight damping very small damping in the system 

it is eliminated. And what you are left with is the steady state response. 
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And therefore, the steady state response takes up a large role in determining harmonic 

response to single degree of freedom response to harmonic excitation, that is in other 

words, this is true as long as xi is greater than 0, it cannot be 0 steady state response 

make sense, and steady state response is given in this form. So, I will call this now 

steady state response 1 minus beta squared sin omega bar t minus 2 zeta cosine omega 

bar t. And if you look at this, see this is sin omega bar t cosine omega bar t. So, this 

system can be written as square root of 1 minus beta squared, square plus 2 zeta beta 

whole squared square root it can be written as sin omega bar t minus theta. So, if you 

look at this, in this system this equation can be written off in this fashion. And that is, 

that it can be written as a sin wave itself. 
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So, u s and note, that if you look at this, this squared plus this squared square root, now 

this one is already this squared plus this squared. So, if you put square root on the top all 

that happens is it becomes square root at the bottom. So, u s of t becomes p naught up on 

k the square root into sin omega bar t minus theta, where theta is given by tan inverse of 

2 zeta beta up on 1 minus beta square. So, in other words the steady state response, of a 

structure to unloading given by p naught sin omega bar t, the steady state response is p 

naught up on k into this term, sin omega bar t minus t. 
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So, I can now say that look I will define, a term D which I will take as 1 up on 1 minus 

beta square the whole squared plus 2 zeta beta square root. If I define this, then I can 

define u s of t as D into p naught up on k sin omega bar t minus theta for a loading p of t 

p naught sin omega bar t where D is given by this term and theta is given as tan inverse 2 

zeta beta 1 minus beta squared. 

So, in other words if we go back what are we saying, we are saying that look at this, if 

you have a loading p naught sin omega bar t, then the steady state response is D p naught 

up on k. Note that, the amplitude of this is D into p naught up on k did you see this very 

interesting part, what is the peak steady state response become, D into p naught up on k, 

in other words where D is given by a particular parameter. So, note that if I substitute in 

this parameter and get D and I do a static analysis with D I can actually get, the peak 

response, you see the beauty of this. 

So, therefore, although we have done a lot of mathematics behind it, now and this the 

steady state lags with minus theta, lags the load by a angle which is given by tan inverse 

2 zeta beta up on 1 minus beta squared. Note that, this theta as zeta becomes very small 

also becomes extremely small, for almost all values of beta. Now, let us look at these two 

things, so this becomes a very trivial aspect now; that means, u max is equal to D p 

naught up on k where D is given by this term. 
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Since steady state response as I said, the transient response disappears, steady state 

response is what we are left with, let us look at the two parameters, the two parameters 

that define the steady state response is S and theta. So, let us look at D and theta very 

carefully. 

So, therefore, D is known as the dynamic amplification factor; obviously, why because u 

max is equal to D into p naught up on k. So; obviously, this is a static and the u max, to 

the dynamic load is given by D into p naught up on k. So, this is the dynamic 

amplification factor that gives us the peak load, and theta is called the phase lag of 

displacement response to load. In other words, what we are saying is that if there is 

damping because note that theta is equal to tan inverse 2 zeta beta 1 minus beta squared. 

In this damping there is a phase lag, there is a positive phase lag note this there is a 

positive phase lag of the displacement to the load. In other words, the load comes the 

structure thinks for a while and then response to it, although this is not strictly true 

because it is not really the loading is not starting, you know we are looking at a particular 

point of time, where the loading has been there for a while, the transient initial conditions 

the transient part, which was due to that initial conditions has been damped out. 
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And all you are left with is the steady state part and what we are saying, is that the steady 

state part lags the load by a lag, phase lag given by this term. So, let us first look at delta, 

what is delta depend on, let us look at both the terms, in fact you know, dynamic 



amplification phase lag. So, I should now only talk about dynamic amplification phase 

lag from here on out, so if you do that. 

So, dynamic amplification is given by, what is these terms depend on these terms depend 

on zeta and beta, beta is nothing but the excitation frequency to the natural excitation 

these are the only two terms, that this two things depend on. So, therefore, what we have 

is a situation, where if we look at this the D what does it look like, so this D depends on 

beta, so I will draw d with beta. 
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So, on this axis I have beta, on this axis I have D, let us see what D is let us start and this 

plot I will do for a particular value of zeta, I will do it for a particular value of zeta let us 

see let us start. So, I am going to plot this, but before I plot this let us see, put beta equal 

to 0 plug in beta equal to 0 what you get, you get this is 1 and this if you put it as 0 this 

becomes 0. So, D is 1, so d is 1 and note that D is 1 independent of xi, it is independent 

of xi. 

Now, what happens let us look at it, at beta equal to 1 what happens, at beta equal to 1 

this term becomes 0, this term becomes 2 xi squared square root. So, it becomes 1 up on 

2 xi, so at 1 the peak value is 1 up on 2 xi (Refer Time: 21:40). Now, let us look at some 

large value, a large value of beta, what happens here when you start getting large values 

of beta, if you look at it, for large values of beta and small values of xi. Remember, what 

we are looking at structural damping right, structural damping remember that xi is 



typically less than 10 percent, which basically means xi is less than 0.1. Small values of 

xi right, for very large values of beta what happens is look at this term, let us take 10 beta 

equal to 100. 

So, what happens here, this becomes 100 squared, so that is 10000 minus 1 who cares, 

you know if you look at this term, this term kind of completely you know goes over on 

this. And so at very large as beta tends to infinity D goes down, if you look at this is very 

small, so I can ignore this, so this whole thing becomes 1 up on beta squared. So, in other 

words, here it goes down in a hyperbolic part. 

So, if you look at this, this is what it looks like. And here, it goes down as almost 1 up on 

beta squared, so in a sense if we look at it what are the key aspects, the key aspects is 

dynamic amplification at beta equal to infinity is 0, that is one thing that you see from 

here. So, that is very interesting, what does it say that if you have if omega bar up on 

omega is tends to 0 then beta tends to 1, if omega bar up on omega tends to infinity beta 

tends to 0. And omega bar up on omega as it tends to 1 beta tends to 1 up on 2 xi. 

In fact, let us not say tends to it is equal to 1, beta is equal to 1 up on 2 xi, these are 

interesting points a very interesting points here. And that is that, what is omega bar up on 

this implies static loading because the dynamic the omega bar is 0, in other words the 

load, the excitation is in cyclic at all it is in a kind of a constant p naught and therefore, 

beta this is not beta this is D tends to 1 I am, so sorry I have made a mistake here, this D 

equals D tends to 1. 

Well if you have a static load the dynamic amplification tends to 1, what is that mean 

well all it means is when if you have a static load, there is no dynamic amplification well 

it is a tautology right. The more important thing is, when the excitation frequency is 

exceedingly high, relative to the natural frequency remember that, you see this is all 

relative omega bar up on omega. So, if omega let us say, is 0.1 hertz then omega bar 

which is 5 hertz or even 1 hertz. 

Now, you would say that omega bar 1 hertz is not a very high frequency, but relative to 

the flexible structure because 0.1 hertz is a 10 second time period it is a very, very 

flexible structure. So, if you have a very flexible structure a 1 hertz loading, so if you 

have a 10 second structure and if you have a 1 hertz loading, what do you have D tends 



to 0. Whereas, let us say if you have a 1 hertz structure, a 1 hertz structure omega bar 1 

hertz is residence. 

So; however, it is always relative. So, when the excitation frequency is very high relative 

to the natural frequency, then the dynamic amplification factor is 0, what is that mean 

there is no response, that is really interesting is not that, there is loading, but there is no 

response, look at to this I will explain the physical aspect to this, shortly. And that is that 

and let us look at the other situation when you have resonance, what is D 1 up on 2 xi. 

Think of xi typically in a structure is in the 2 to 5 percent; that means; take 2 percent 

here, what you get 1 up on 0.4 25. So, for 2 percent structure, dynamic amplification at 

resonance is 25, for 5 percent it is 10 still very large, so therefore at resonance you have 

large amplification of response for harmonic loads, for any kind of normal structure there 

is a normal structure, the damping is always less than 10 percent and so you have that. 

Now, let us try to look at these two aspects and let us see what this mean because this has 

a physical relevance to what I have talked about earlier and that is let us see. 
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Relative to the structure, this is actually T bar by 2 this is half cycle. So, it is T bar by 2, 

so if you have omega bar up on omega tending to 0, it basically means that as far as the 

structure is concern this load is a very, very slowly varying load, a very slowly varying 

load. If it is a very slowly varying load what happens, for practical purposes, if we look 

at it let us substitute this in. So, let us see what dynamic amplification, is tends to 1 and 



let us look at what happens to theta it will be instructive to look at theta, we are not going 

to look at theta right. 
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Now, but let us instructive, theta is tan inverse of 2 zeta beta 2 xi beta 1 minus beta 

squared. Now, beta is equal to 0, so this becomes 1 and this becomes 0 tan inverse of 0 is 

0, so theta is 0; that means, what there is no phase lag. So, when you have a very, very 

slowly varying load how does the response go the response follows. 
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So, when it is a very slowly varying load, the response there is no phase lag it follows 

exactly what it is and of course, this is p naught up on k, where this is this is p naught. 

So, we will look actually plotting it in two different you know scales, but the point that I 

am trying to make is that for a slowly varying load, as far as the structure is concerned it 

is being subjected to a static load. 

So, if the excitation frequency is very slow, compared to the natural frequency of the 

structure, you can for all practical purposes not have to do any dynamic analysis. 

Because, what is the peak response p naught up on k, you might have then do a static 

analysis for the load amplitude p naught, very important now this can actually be 

extended to all kinds of loads, all kinds of loads is later on I will discuss it further. If you 

look at loading frequencies, we will see later on that loading frequencies and we have a 

central loading frequency, these are terms. If you look at the central loading frequency, 

you can obtain this by doing some performing some mathematical operations of load, if 

this is very small compared to the natural frequency of the structure. You can do static 

analysis for peak response very, very important. 

If the loading frequency and you know I mean in this particular case it is a harmonic 

load. So, we know what the loading frequency is, but for any kind of loading by 

performing some mathematical operations, you can get the central loading frequency you 

know. The loading frequencies in which the maximum, you know energy of the load is 

once you do that and if you look at those and those are very less, compared to the natural 

frequency of the structure. So, you have very rigid structure, if you have very rigid 

structure any loading, is going to be a static load for the rigid structure. 

So, in other words if you have a very rigid structure, what can you say, you do not need 

to do dynamic analysis at all you can just do static analysis and get away with it, is that 

clear. So, that is the beauty of this approach now, the question becomes what happens as 

omega bar up on omega goes to infinity, we saw the dynamic amplification goes to 0. 

What is that, well let us look at it we just saw that for slowly for a as omega bar up on 

omega tends to 0, it becomes slowly varying load and therefore, you know it is a static 

load as far as you be concerned. 
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Now, what happens when you have omega bar up on omega tending to infinity, what 

happens when it is tending to infinity, when it tends to infinity let us look at what 

happens. This is t, this is p of t p naught minus p naught p naught minus p naught, this is 

what is happening I mean I am not going to draw it, but what we are saying is that omega 

bar is excitation frequency is very high, excitation is very high. 

What is the structure see you know that the variation is, so fast all the structures actually 

seen, is a load p naught and another load minus p naught acting on it because the time 

variation is, so quick that as far as the structure is concerned all it can see is the p naught 

and minus p naught. So, if you subject a structure to p naught and minus p naught, what 

is the response. As far as the structure is concerned right, it is not seeing any load at all, 

see this because it is being subject to two equal and opposite loads. So, if you subject to 

two equal response the displacement response of the structure is 0 and that is why D is 

equal to 0 not very obvious. In many instructive to look at what happens to theta as beta 

tends to infinity. 



(Refer Slide Time: 35:54) 

 

Theta is given by this term, as beta tends to infinity note that, this term disappears right. 

So, what do you have, you have beta up on, so basically it becomes tan inverse of 2 xi up 

on minus beta right. So, it becomes 2 xi up on minus beta, so it becomes minus 2 xi up 

on beta right, so it is tan inverse of minus 0 think about it, as beta tends to infinity this 

tends to minus 0 this term. 
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So, if it tends to minus 0 what is tan inverse of minus 0 tan inverse of minus 0 is pi or 

180 degrees interesting is not it. So, if I look at the load you know I mean the load is 



very high dynamic amplification goes to 0, but you know let us assume that it is not, it is 

not tending to infinity it is slightly less than infinity. So, the lode goes like this and how 

do the response go, the response goes like this interesting is not it, response load. The 

load completely is out of phase, the response is completely out of phase with the load. 
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What is that, what is happening you know what is happening. Now, let us also see what 

happens we have beta equal to 1, we saw that D was equal to 1 up on 2 xi, what is theta 

equal to let us see let us plug in to beta is equal to 1. So, this is 1 minus 1 is 0 and this is 

2 zeta up on 0, what is that tan inverse of infinity, what is tan inverse of infinity, if you 

look at tan inverse of infinity it is pi over 2 or 90 degrees, what it means is that if this is, 

the load then the response is of the following type, where this is maximum this is 0. 

So, response is of where this is maximum this is 0 again. So, that is the response if is 90 

degrees of out of phase with the loading, so when it is extremely high, when it is 

extremely low the response is in phase with the load because it is static. When beta is 

one which is resonance, dynamic amplification is 1 up on 2 xi, in other words it is 

extremely the response is extremely large and it is 90 degrees out of phase, it is exactly 

out of phase. 

So, in other words it is almost like being sin omega bar t is the loading, then minus 

cosine omega bar t is my response that is what it says because it is you know that sin and 

cosine is 90 degrees out of phase with sin. So, if it is lag of sin omega bar t is minus 



cosine omega bar t, if it is extremely high frequency, dynamic amplification tends to 0 

and response is completely out of phase, with the loading. Now, you know this is what 

we get, can we see is there a physical the mathematics tells us this, is there a physical 

aspect to this particular thing. And for this we need to go back to the fundamental aspect 

of what is u s. 
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U s of t is rho sin omega bar t minus theta right, that is this term of course, p naught is 

sorry p of t is p naught sin omega bar t. Now, note that rho is equal to p naught up on k 

D, so if I differentiate this u dot s of t becomes rho omega bar cosine omega bar t minus 

theta. And if we look at it u double dot is equal to minus rho omega squared sin omega 

bar t minus theta, this is what we get, you know I mean you can see it very clearly. 

So, now, let we on a complex plane plot these terms, so let us look at this, now note that 

you know if I am going to plot it on a complex these are real quantities. So, what I am 

going to be plotting is I am going to plot a complex vector, whose projection on the real 

axis represents this. So, that is what I am going to do, please note that let the vector by 

itself means nothing, the vector by itself does not represent anything. These are 

represented that the component on the real axis is what represents all these terms. So, let 

me now draw this thing and what I am drawing now is known as the argand diagram. 
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We going to draw argand diagram and how is the argand diagram look let us just plot it, 

So, this is the real axis, this is the imaginary axis, now, I have a p naught sin omega bar t 

how will that look, that looks like this, it looks like p naught this is omega bar t let us 

look at this, let us look at the real projection. Remember I said that, it always a real 

projection, so let us take the real projection, what is the real projection of this, if this is 

omega bar t; that means, this is omega bar t right. 

So, what is this term, this term is if this is p naught, this is p naught, this from here to 

here is p naught if this is p naught then; obviously, this part is equal to p naught sin 

omega bar t. Remember, that is what it is the load is given on the real axis right, so this 

is, so in other words this vector in the complex plane, represents p naught sin omega bar t 

because it is real projection is p naught omega bar t. 

In the same way, I am going to plot now the u s of t, let us see what this u s of t is. It is 

given as p naught d up on k sin omega bar t minus theta. So, to represent this I can 

actually plot it here, these are wait I mean this is not the you know I am just plotting p 

naught the p naught should be plot plotted on a force complex plane, and these should be 

the displacement complex plane. I am just drawing them on the same, you know axis it 

does not really matter, where this represents theta and the amplitude is given by p naught 

up on k into D. 



So, this is your displacement, so displacement is this direction, I mean you know if you 

look at this is omega t minus theta and you know if you take the same thing, you will see 

that this is indeed p naught d up on k. So, this is the displacement, this is you know p 

naught D omega bar up on k cosine now, how does cosine look, cosine if you look at it. 

It actually leads it always leads, so it is leading see this is lagging, this is leading let us 

plot this and this one I am going to plot it in this direction. 

So, this is the direction of the displacement vector, this is the direction of the velocity 

vector and what is the value of this, the value of this is p naught d up on k into omega 

bar, that is the velocity and let us see whether this make sense. Now, if this is omega bar 

and this is 90 degrees which is my omega bar, now if you look at it omega bar t because 

this is omega bar t minus theta and this is 90 degrees to it. 

So, which is my omega bar t minus theta, let us see this angle would be omega bar t 

minus theta is not it. And let us look at it, is real projection it is real projection is equal to 

this parameter into cosine omega bar t minus theta, see that is it that is how it is and if 

you look at this is just negative of sign, if you look at this the acceleration is in this 

direction. The acceleration is in this direction and what is the acceleration equal to p 

naught d up on k omega bar square. 

So, this is my omega bar t minus theta and you will again see that this is nothing, but sin 

omega minus sin. So, this represents these three represent the displacement vector, the 

velocity vector and the acceleration vector. And these the or this is you know, in this 

direction the velocity vector, leads the displacement vector and the acceleration vector is 

completely out of phase, with the displacement vector. And these vectors, with t keep 

rotating and they are all 90 degrees to each other. 

So, this is the very important aspect, in the next lecture I am going to carry on this to 

show you how the entire load, is carried by the various forces you are going to do force 

equilibrium Eigen diagram and we going to very interesting because if you look at it this 

is the displacement. So, elastic force opposes the displacement, the inertial force will 

oppose the acceleration and the damping force will oppose the velocity. So, these are 

interesting points and we will look at this in the next lecture. 

Thank you very much. 


