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In the last lecture we discussed the response of an un-damped system and we found out 

that there was an issue related to un-damped system, because it was a conservative, and 

also it could not model the energy loss, and also we introduced the concept of viscous 

damping in the structure, and from that we obtained this equation. We saw that the 

parameter C, which is the dashpot constant C upon 2 pi omega is a critical damping ratio 

and if we take the ratio of the actual damping to the critical. 
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Damping, which is C upon 2 pi omega we just define the parameter called x I, and we 

call that although that should strictly that be called ratio of the viscous dashpot constant 

to the critical dashpot constant. We specify it as viscous damping ratio or damping ratio, 

because if we modulate as viscous damping the energy loss viscous damping then we 

just call it as damping ratio. 

So, the parameter zeta, which is equal to C upon 2 m omega is the damping ratio, and e 

saw that x i was greater than 1. It was over damped over critically, which is over damped 

x i equal to 1. It was critically damped, and we got a qualitative assessment of the 



response, and we saw that in both the over damped system, and critically damped 

systems you essentially got one directional response. So, there was no cyclic response 

once. So, there was no vibration and the we say that look for x i less than 1, which is 

under critically damped or as we say under damped all structures exhibit under dumped. 

So, there for since, we looking at only structural dynamics we are strictly interested in x i 

less than 1 kind of a situation and. In fact, in structures it seen that x i is actually 

significantly less than 1, we will see what that entails let us now try to solve the free 

vibration equation for under damped system and this I will go through in detail. So, let us 

see, what does it becomes. 
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If you think back became minus x i z plus or minus i omega into 1 minus x i square. So, 

if this is the situation I am going to define a parameter omega D, which I will call by 

omega 1 minus x i square. Then s becomes equal to minus zeta omega plus minus i 

omega D. So, the u of t essentially becomes e to the power of minus x i omega t into A 1 

e to the power plus i omega D t plus A 2 e to the power of minus omega D t, let us 

assume that we ignored this term, see if you look at this is the solution right get this plug.  

It in you get put it in you get e to the power of minus x i omega plus i omega the whole 

terms becomes D. So, that the whole term becomes minus t. So, let us forget this term, if 

you look at this is identical to what we had got for the undamped system accepting that 

there we had omega, and here we have omega D, and without going to the entire process 



all over again since the r you know complex functions, and this is the real function this 

real. 

 So, only this is the complex, we know that this will actually be of the form you know. I 

already define this in the last lecture the last lecture before last and this will essentially 

becomes, because these have to add up the real function the same thing. So, this basically 

becomes this. So, from here to here the procedure is exactly the same. As we got m u 

double dot plus k u equal to 0 term. So, these this going from this exponential to this I 

am not repeating the same thing that I have already talked about last time. So, essentially 

what does it look like qualitatively look qualitatively. 
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This looks like there is a time u of t. if you look at this if you look at this term, then is 

again identically it is an harmonic function. So, it is an harmonic function accepting that 

what you had is a harmonic function modulated by exponentially decaying function. So, 

if I plot this the harmonic function is modulated by an exponentially decaying function 

this is what we have and; obviously, T D, which is 2 pi by omega D. So, in a sense what 

we are saying is that this is the time period, and the only difference here from the 

previous undamped situation is that omega D is omega into one minus x i square this was 

the natural frequency for an un-damped system. This is the natural frequency for a term, 

and relationship between these two if you look at it is what let me plot this omega D, 



upon omega is equal to square root of 1 minus x i square is basically means omega D, 

upon omega square plus x i square is equal to 1.  
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What is this? The equation for this is the equation for a circleonly problem is that x i is 

positive by definition. So, is only from here to here omega D and omega are both 

positive by definition. So, what we actually have is if we look at it this is one, this is one, 

and this. Defines remembered the words when x i equal to 0 omega D by omega is equal 

to 1 well; obviously, x i is equal 0 you have an un-damped system and omega D and 

omega are the same the damped system and the un-damped system frequencies are 

identical when x i is equal to 1 which is critically damped system what happens to omega 

D 0 why well we saw right critically damped system you do not have any vibration we 

do not have any vibration, what is omega what is omega D the damped system actual 

frequency if it do not vibrate damped frequency of natural frequency of the damped 

system is 0. It does not vibrate. 

So, that is what we have here. So, there for essentially what we have is that, I say it I say 

it something that most structural damping x i is very much less than one in other words x 

i is in the zone. The probable x i in the zone if I look at it let me take this as 0.1 if I take 

0.1 substitute into this what do I get I get for zeta for zeta equal to 0.1 for all practical 

purposes one. So, as long as x i less than 10 percent 10 percent implies 0.1. the damped 

frequency and the un-damped frequency are practically the same. So, there is almost 



known for in structurally damped system, because most structurally damped systems 

have less than 10 percent damping most structural systems have less than 10 percent 

damping. in which case this frequency or the time period is identical the damped system 

and the un-damped system are practically the same for all practical purposes. So, in other 

words all that happened is due to damping is this exponentially decaying, and this in 

essences represents the energy loss in a system. So, what we are doing is we are actually 

defining the energy loss in the system. So, now, now the question becomes remember I 

said I could not find out C for a structure can I somehow find out x i can I find out x i 

before I do that let me actually solve it because it is in its an interesting to actually solve 

for the system.  
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So, let me go back to my U of t is equal to e to the power of minus zeta omega t C 1 sine 

omega D t plus C 2 cosine omega D t, and now what I am going to do is substitute T 

equal to 0. So, what we have is u 0 is equal to 1 into C 1 0 plus C 2 into1, what we have 

is C 2 equal to u 0. We get this we get this solution next how do I find out C 1 well 

differentiate now I going to differentiate two terms right. So, first I will differentiate this 

term. So, this will become minus zeta omega e to the power of minus zeta omega into C 

1 sine omega D t plus C 2 cosine omega D t plus, now I will differentiate this one. So, 

this becomes e to the power of minus x i omega C 1 omega D cosine omega D t plus C 2 

sorry minus C 2 omega D sine omega D t. So, this the two term I differentiated both 

terms. 



And now I am going to put t equal to 0. So, what I am going to get u dot 0 is equal to 

first. look at this here we get minus x i omega this is 1 into 1 plus C 1 into 0 plus C 2 into 

0 plus 1 into C 1 omega D 1 minus C 2 omega D 0. So, let me just rewrite this I will 

rewrite this entire thing in a in a proper way write in the proper way ,what do I get I get. 
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U dot 0 is equal to I am. So, sorry here you do not have x i 2 it is its one. So, you get 

minus x i omega C 2 plus C 1 omega D is equal to u 1. So, we know that C 2 is equal to 

0. So, let us substitute that in here. So, this becomes minus x i omega u 0 plus C 1 omega 

D. So, what does C 1 become C 1 becomes x i omega u 0 plus u dot entire thing divided 

by omega D. So, if you look at this is becomes omega we have already we are seeing that 

omega D upon omega is equal to square root of 1 minus x i square. So, this basically 

becomes then C 1 becomes u dot upon omega D plus x i omega sorry x i u 0 upon 1 

minus x i square.  
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So, having plug those in what I get alternately as my solution is u of t is equal to minus x 

i omega t plus u 0 cosine omega D plus u dot upon omega D plus zeta u 0 upon square 

root of minus zeta D sine omega D a fairly complex aha equation isn’t it. So, what 

understand that t that last time if you looked at the solution what did we get we got for 

the un-damped system u 0 cosine omega D plus u dot 0 upon omega into sine omega D t 

right, because of the since its x i ,which represents the damping is non zero here. 

Now, you plug in plug into this x i equal to x i equal to x i equal to 0. if you plug in for x 

i equal to 0 this becomes 1 omega D b comes omega. So, becomes u 0 cosine omega t 

plus u dot 0 upon omega this term disappears sine omega t that exactly, what we got in 

the un-damped system. So, you see the damped system few vibration response actually 

includes the un-damped system response, but just substituting x i equal to 0 we can get 

the solution and if you look at it you know I have just got you the expression, but you 

know the expressions do not tell you about anything other than the fact that this 

essentially is a simple harmonic motion modulated by an exponentially decaying 

function.  
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. 

I can rewrite this as the question becomes that what is rho is a amplitude. Rho is equal to 

that is the amplitude rho and what is that theta, this term if you look at this particular 

thing this is u of t and so if you look at the maximum response the maximum response is 

nothing but Rho. 
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Let us take a situation, where this is my u 1, in other words I am tying that loop that if 

you look at it this is what I am saying that this is the in the sense something like this 



something like this it is starts go like this then starts. So, this if you look at it at this point 

this is rho, and I am calling that as my u one. So, I take this peak and this is my u 1 after 

one cycle the one cycle is what up to this point. it is one cycle right that is you see is T D 

this is u 2 then after threes cycle this is u 3 and. So, on after every cycle how much is one 

cycle one cycle, which is equal to 2 pi upon omega D. So, let me look at u n. So, if you 

look at this is the solution what I am saying is that this is this is one you I mean at that 

instant time by rho, and this is one that is what this is point. 

So, there for this will always be 1 after every T D, so this will always be 1. So, if I look 

at u n. it will only have e to the power of minus zeta omega t I left define t is. So, n cycle 

t is equal to n T D right. So, if I take that instant of time as 1. So, then this one is going to 

be , and to rho and now t is equal to T D. So, I am going to put in n TD over here. So, 

this is equal to minus e to the power of minus x i omega and t is n T D, which is 2 pi n 

upon omega D. see n cycle t is n T D T D is going to be equal to 2 pi n upon omega D. 

So, this becomes u n becomes this. If this is rho then this is equal to this into rho if I take. 

(Refer Slide Time: 25:56) 

 

If I put upon u 1 this is going to be equal to e to the power of minus x i omega 2 pi n 

upon omega D into rho upon rho. So, this essential become e to the power of minus zeta 

what is omega D r upon omega this is 2 pi n square root 1 minus x i square rho cancels 

out. 



And. So, I can say that look l n of u 1 upon u n is equal to x i upon into 2 pi now 

typically x i is very much less than 1 square root of 1 minus x i square for all practical 

purposes n and. So, there for we have is that. 
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One upon 2 pi n into l n of u 1 upon u n is equal to x i is approximately, because its 

approximation is I have taken to 1 approximately. So, as long as x i is less than 0.1. This 

equation is good enough now this for n equal to 1 this is known as a logarithm 

occurrence. So, this in a way is an nth logarithmic decrement. So, you see now can I 

obtain x i. 

Experimentally well. I can let me set the system into vibration and then you now this is , 

where my rho is. So, I just take my first point of time as this point, and then I go through 

an tickles and come back here and measure this from here to here. So, the original was 

this one and after end cycle is at this point. I can measure those, I can measure I will I 

will show I said again later on in this during this course you going to be going to be lab 

and you will actually be looking at this and you can get this and you can get this and this 

is something that you have taken. 

How many cycles of vibration have you taken and based on that vibration of cycles you 

can directly get x i. So, experimentally we can measure x i for any structure. So, here is 

the first one experimentally, we can get the mass of the structure experimentally, we can 



get the key of the structure and experimentally, we can get x i of the structure, and if you 

look at it the dynamic characteristics.  
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now I want to come back to of a structure, and I am going to talk about this dynamic 

characteristics of a structure over and over again in this course these are the natural 

frequency of equation note that you know you ask me why omega why not omega D well 

you see omega D is equal to omega into square root of 1 minus x i square. So, if I if I 

define my natural and you know we have already seen that for structural damping, where 

damping is typically less than x i less than 0.1, and you know another thing we do not 

really talk in terms of 0.1 0.2 0.3 we talk in terms of 10 percent of damping 5 percent of 

damping in 5 percent damping means 0.05 I 2 percent damping x i equal to 0.02, so for 

structures. 

Damping is almost always less than 10 percent and if it is less than 10 percent omega D 

and omega are identical. So, there for we do not really talk ever again of damp 

frequency, because for structures damping frequency are not cannot be measurably 

separated. it can be mathematically separated you know omega D is not omega D is 

omega into square root of 1 minus x i square, but u remember put in 0.1. I told you put in 

0.1 what happens x i square is 0.01. So, 1 minus x i square is 0.9 square root of 0.9 is 

approximately about 0.9 0 and 5. So, omega D upon omega is 0.9 9 and 5 you cannot 

measurably separate it 99 percent the natural frequency is 99 percent 0.5 percent of 



omega measurable there is no measurable difference, so measurably omega D and omega 

the same. So, there for we say we measure whenever we actually measuring omega D , 

because all that is omega because as long as I 10 percent. 

 So, therefore, omega all omega D, whichever you choose is, but in I prefer natural 

frequency of vibration of the structure and x i, which is the damping ratio these are the 

dynamic characteristics of the structure, and these determine how can I determine these 

experimental sure. I can I can find out how much time one cycle takes that is my time 

period omega is 2 pi upon the time period. I can measure that oaky x i. I can measure it 

logarithmic decrement I am measuring. So, both of these are measurable quantities for 

any structure. In fact, any building you can actually you know, it is very difficult you can 

do a numerical model of a building and then get the k matrix and m matrix etcetera, but 

you can actually measure it you know hit the building you need to hit the building till 

any normal building you really need to hit it with really heavy system, but let us assume 

that I have a system by which I can hit the building once. 

I hit the building and I am making it go, and it is in vibration and I can get the frequency 

of vibration, and I can get the x i from the logarithmic decrement. So, these are 

measurable quantities and these are known as the dynamic characteristics of the 

structures. You see as we go proceed a long that these omega and x i are parameters that 

determine the dynamic response of a structure to any kind of learning. So, when we say 

well we will talk about this a little bit later, but this omega and x i; these two terms 

determine the response and these do not need to be define this can be at least obtain 

mathematically, because k is a structure I mean k you can measure or you can you know 

numerical model m. you can measure the numerical model and omega square root of k 

upon m for single degree of numerical system.  

So, you can actually numerically model. This, but this you cannot numerically model this 

can only be obtained experimentally, and this can also be obtained experimentally we do 

not need a numerical model. So, this now defines all the characteristics of a realistic 

structure, which models the energy loss, which models the vibration of free vibration of 

the structure. So, now, these in essence is the vibration equation for again. I want to go 

back will show you what structure response looks like when subjected to initial 

displacement this is what the response looks like u 0 initial displacement initial velocity. 

If you do not give an initial displacement you only give initial velocity. if you do not 



give an initial displacement you give only initial velocity then these two terms will 

disappear and this becomes just e to the power of minus x i u dot 0 upon omega D into 

sine omega D T.  

If you do not give it an initial velocity then the response becomes u 0 cosine omega d 

plus x i u 0 upon square root of 1 minus x i square t anyways to I mean these are do not 

matter significantly, but the response can be guard and from the response we get from 

the dynamic characteristics, which are omega and x i this in essence completes our free 

vibrations equations of a structure. Now the question is becomes suppose now you know. 

I just want to go back 1 point and that is here you know I meet this approximation that 

this is approximately equal to 1 neglect this, and get you now directly from here. I can 

get this solution right what is zeta x i is not equal to 0.1 what happens well the way we 

do it we obtain x i from here compute this term and iteratively, and now you know this 

you can get start getting this. 

And now you know this will not be satisfied for anymore get a new x i. new x i this term 

come close you know to solve iteratively x i. So, the initial x i is obtained in this way and 

then if x i less greater than 0.1, then it need to go back and get the x i iteratively solving 

for this. So, that is all there is nothing great that much you can always get x i from the 

free vibration. So, what I will do is I am I am going kind of discussion on free vibration 

to at this time, and we will we will go back and look at actual you know the problems we 

will look at the labs I will start up actually with the lab and then look at how to solve 

problems form the lab. So, now, what I want to do is for the little bit of time that I have 

left for this particular lecture I am going to start looking at free. Vibration looked at 

omega zeta now we have to see how do we solve and… 
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Now, I am going to introduce this in, because this actually you know from if you know x 

i you can actually find out C, but any way it does not matter oscillator no x i as long as 

we know x i. So, this is the equation this is the equation that I need to solve for any 

dynamic loading that, I have how do I go about it just want to spend the next 10 to 15 

minutes. Looking at how do I solve this one essentially going to review solution linear 

second order differential equation. So, how do we solve this and this is of course, with u 

0 nu dot 0 the initial condition how do I solve this well mathematics says that u of t is a 

sum of u h of t plus u p of t, where what is u h of t u h of t the homogeneous path. 
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U h of t is the solution to m u double dot plus C u dot plus k u is equal to 0, and u p of t 

is a particular solution to m u double dot plus C u dot plus k u equal to p. So, p is given 

by the form of p of t this is the particular solution given p of t. we can actually define a u 

p of t, which can solve the equation with nothing else solved and u h of t is a solution of 

this what is this is nothing but the free vibration equation that we already solved. And 

then what they say is that at once you have got the homogeneous solution, which is the 

solution to this we have already know it and you have already got it u p is a particular 

solution, which depends on the form of p of t u p of t is very specific. it is a particular 

solution of this equation, where u p depends of the form of p, and once you have got that 

then what we need to do is we need to say that ok. 
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U of t is equal to u h of t plus u p of t and you know substituting in t equal to 0 you can 

get you zero is equal to u t of 0 and. So, there for from that the remember u h of t is what 

u h of t is and. So, u of t is this plus the particular solution, which is completely solved 

even this has no unknowns, because this has the particular solutions which represents u p 

of t. 

And. So, this plus this and then you substitute t is equal to 0 u 0 and u dot 0 to get an A 1 

and A 2, where its u of t, which is this plus this which gives you the solution. So, there 

for when you are looking at the solution of a first vibration solution what is the first 

vibration problem that is this problem m u double dot plus C u dot plus k u is equal to p 



of t this is the first vibration problem. So, here essentially u h of t we already said u h of t 

is this form we have already solved this, because you see equation of C essentially solves 

is a solution to this problem, which you have already solved problem u p of t depends on 

p of t. which is particular solution and once we have that then we can get A 1 and A 2 

from the initial conditions and we have the solution in u of t, which is this solution for 

this loading. So, this is the displacement response to forced loading. So, this is the over 

view of response of a structure to any kind of load now what kind of loading are we 

going to consider we just before solving that what kind of loading. Are we look at we 

going to look at the loading that occurs. in real life what kind of loading happens in real 

life just look at that.  
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If you have a structure with a rotator machinery on the top then the loading at the 

structure type is detected to like this ok. If this machinery is rotating at a constant rpm 

then this is what the kind of loading that we have this is known as harmonic vibration. 

Then another type of loading see and this is seen for example, in a ship through a the 

procular keeps is also rotating, but in that kind of a situation what you see is something 

like this you see in harmonic this gets repeated in periodic this gets repeated periodic 

loading and. So, the rotating machinery or at a constant velocity at a constant rpm on a 

building develops a harmonic loading ships procular or any kind of a system, which is 

unbalanced ships procularis.  
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Now balanced subjects the procular to periodic loading what are the kind of loading do 

we see well many kind of loading that we see is was known as sorry, p t a blast load if 

there is an exposure away from the structure and that the pressure wave coming and 

hitting the structure of this form well. Actually, t d is significantly less typically then the 

kind you know this structure, because this t d is in milli seconds and blast loading 

typically, can be it looks at as you know we will look at it later as impulse load or for 

extremely rigid structures as a pulse load.  
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So, that is another kind of loading that we see and then finally, another kind of loading 

with C is a building objected to an earth quake load this is very complex, but it lasts only 

for a while. So, this is known as transient load. So, this kind of environmental load there 

could be earth quake load or whether it be wind load is a transient load. So, what are the 

kind of load that is we are going to looking at the loads that you going to be looking at 

based on the realistic loads that you see on a structure. 
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We are going to first look at harmonic loads, then we are going to look at periodic loads, 

then we are going to look at impulse and pulse load, and then we are going to look at 

transient load these last for a while harmonic and periodic loads are defers you have 

rotationally. You have one forever transient loads these are there forever these are there 

for extremely short duration these are there for extremely longer duration. So, these are 

the kinds of loads that we have to analyze the structure for and the this significant next 

few lecture am going to be looking at the response of single degree of freedom to a 

molecule, then we going to look at the response of single degree of freedom to a periodic 

load in. We were in look at the response of single degree of system to harmonics sorry 

impulse or pulse type loading. And finally, the most complicated kind of loading we 

going to look at that is transient loading and note that the equation that we are solving is 

stated over and over again is this problem, where this load is going to be define by these 

different kinds of loads. 



Once we do all these kind of loads and these are the kinds of loads structural subjected to 

we will be able to then start looking at what are the characteristics again. I want to go 

back and state the something that I divided in the beginning we are going to solve linear 

differential equations we are going to find out u of t as a function of homogeneous and 

particular solution all those we going to do we going to go to that process, but after 

having gone through that process what will be interesting in doing is not the u of t nor 

the response time we will be interested in the peak response, and we will see again going 

back , and if we can find out somehow a p 0 upon k which is static response multiplied 

by a dynamic factor. If we can find out the dynamic factor for each kind of loading then 

always we need to do is just prepare a designing chart for kinds of loading, then having 

looked at the characteristics of the load and the characteristics of the structure we can 

determine the D. 

And once we determine D s multiply D into p naught as the static load multiplied to get 

the dynamic response of the structure in the entire t to harmonic I mean dynamic loads. 

So, I will stop here today and I just want to re to write that the reason why we look at 

loads is not because of there, but because they represent it realistic that a structure ready 

to see the one is establish the reason why we look at different kinds of loads never forget 

that we are a genius we are not mathematicians. So, all these mathematics will be 

looking at ultimately we have to step back why are we looking at the mathematics is 

important to us, because we need to look at specific responses to specific kinds of loads 

from the next lecture, we are going to look at forced vibration of a single degree of a 

system subjected to different kinds of loads.  

Thank you very much. 


