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Let us start today’s lecture of soil dynamics. We are continuing with module two of 

vibration theory. So, we have understood the physical significance of high value of r or 

the DMF less than one. When it can happen? Now, let me give its mathematical 

validation. I have given you the physical significance to understand the problem. Now let 

me give you the mathematical validation. Mathematically how we can prove this in a 

better way if I give you?  
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So, using Maxwell diagram, we can again prove mathematically which zone is controlled 

by which parameter. We have F of t equals to p cosine of lambda t and for which we got 

the steady state response x of t is x cosine of lambda t minus theta. That was the form of 

the solution some cosine functions. So, the velocity is nothing but minus X lambda sin of 

lambda t minus theta, which we can write as X lambda cosine pi by 2 plus lambda t 

minus theta. 



So that means, the velocity is in the phase with the displacement with 90 degree, which 

is known to us; and what about the acceleration X lambda square cos pi plus lambda t 

minus theta. So, acceleration is at a phase of 180 degree with respect to displacement. 

So, this is known to us from our high school physics. So, now, what we can have? We 

can have three conditions. 

(Refer Slide Time: 03:00) 

 

So, three possibilities can arise. The first one is when r less than one that is frequency 

ratio is less than one. That means lambda is less than omega. We have theta less than pi 

by 2 that phase angle. The second case r equals to 1 that is lambda equals to omega theta 

equals to pi by 2. And the third case can be r greater than 1 means lambda greater than 

omega theta greater than pi by 2. Let me draw the Maxwell diagram for all the three 

cases. The first case if I want to draw the Maxwell diagram what it will look like? 

Suppose this is our F s which is equals to K x. I know drawing the force diagram in 

Maxwell force diagram. This is our F x F s that is stiffness force equals to K x. 

Now, damper force F D will act ninety degree of this force right because that is a 

function related to the velocity the damper force F D is nothing but c times x dot. So, that 

x dot is at 90 degree phase with respect to the displacement function. 

So, we need to draw. Now let us draw this. So, this is now F D the damper force equals 

to c x dot it should be 90 degree phase with respect to the displacement function. Now, 

let me draw the inertia force F I inertia force will be m x double dot. Now, that x double 



dot acceleration is 180 degree phase with respect to the displacement function. So, this is 

our F I which is m x double dot this is also 90 degree and it has to be a four closed 

polygon. 

So, this our F of t externally applied to maintain the equilibrium of the system and this 

angle is nothing, but the phase theta which is less than pi by 2 that is the first case. So, 

from this Maxwell diagram this force diagram what we can see? Which force is 

maximum among these four forces F s? Am I right to make this angle theta less than pi 

by 2 which satisfies this condition? We need this force to be maximum among the three. 

That is the meaning that this is a stiffness controlled zone. Is that clear now? Why r less 

than one is called stiffness controlled region because as you go r less than 1 your 

stiffness force dominates. 
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Let me put back it again as you go r much less than one your stiffness region dominates. 

So, this we had understood physically. Now, we are understanding it mathematically, let 

me see the other two cases before coming to second case. 
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Let me give the third case. First for the third case, what we have? We have F s 90 degree 

to it. We have the damper force F D. Now, 90 degree to that we have F I inertia force. 

This is 90 degree this is 90 degree and closed polygons that will be our F of t with this 

angle theta greater than pi by 2; so that the third case as we have said phase angle theta 

will be greater than pi by 2. So, in this picture what we can see? Which force is 

dominating inertia force is dominating? F I is dominating. 

So, that is why we call this case that is r greater than 1 when we have lambda greater 

than omega; so that theta greater than pi by 2. This is called mass controlled zone. This is 

the region or this is the proof. Mathematically why it is called mass controlled zone 

which we had already understood from this picture? Why this region is called mass 

controlled zone? Physically we have understood the problem. Now we have proved it 

mathematically. And obviously, the remaining parameter will control the second case 

which is something like F s F D F I and F t with theta equals to pi by 2. This will be 

actually the damper controlled as you have a control on this damping force. You will still 

it remains theta equals to pi by 2. So, the remaining 1 is damper controlled zone. So, this 

damper controlled guides you the DMF which we have seen here the peek value of DMF 

or maximum value of DMF is controlled by this damper control reached. Now let me 

discuss little bit about this phase. The phase I have used in the Maxwell diagram already, 

but I have not yet discussed about this phase. How it varies with respect to our and also 

different values of damping ratio. 
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So, the discussion on phase angle. What is the solution? We got the steady state response 

to the static response is given by DMF times cosine of lambda t minus theta where we 

know that tan theta we have defined as 2 eta omega by lambda square minus omega 

square or 2 eta r by. I think it is the other way round it was omega square minus lambda 

square yes. So, tan theta was 2 pi eta by omega square minus lambda square. So, we 

divided by omega get it 2 eta r 1 minus r square. 
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So, the expression for steady state displacement to static displacement was given by this 

where tan of theta was defined as 2 eta omega lambda by omega square minus lambda 

square. That was the expression for tan theta which we can simplify as 2 eta r by 1 minus 

r square. We have divided both numerator and denominator by omega square. So, here 1 

omega 1 omega get cancelled lambda by omega is nothing, but r frequency ratio. So, 

now, this phase how it varies for different cases. Let us see. 

So, when eta equals to 0; that is undamped case. We have the value of theta equals to 0 

degree or 180 degree when this is 0 tan theta 0 means it will be either 0 degree or 180 

degree. So, theta is equals to 0 when r less than 1 and theta equals to 180 when r greater 

than 1 and for r equals to 1 theta will be equals to pi by 2. This is for the undamped case. 

Now for damped case how the variation occurs? 
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So, when eta non 0 that is damped case for r equals to 1 what we are getting? r equals to 

1. Let us look back to the expression of tan theta when r equals to 1 it is becoming 

infinity. So obviously, theta is pi by 2. That is why irrespective of value of eta I have 

written earlier also for r equals to 1 theta will be pi by 2 fine. So, for damped case also r 

equals to 1 means theta equals to pi by 2 and r equals to 0 means if we put r equals to 0 

in this expression. We get theta equals to 0 and r tends to infinity means theta equals to 

theta fine. So, with this values now let us plot this phase variation of phase with respect 



to r like what we have seen the variation of DMF with respect to r. Now we want to plot 

the variation of phase with respect to r. 
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So, r this is theta at r equals to 1. We have some value r 0 theta varies between 0 then pi 

by 2 and pi let me draw some parallel lines first. So, it will be easy for us later on to draw 

different graphs what we got when r equals to 0 theta is 0 and when r tends to infinity 

theta goes to pi. And for undamped case when eta equals to 0 degree we got the value at 

theta equals to pi by 2 for r equals to 1. So, what will be the variation? It will follow this 

path it follows this and this. So, this the variation of phase for eta equals to 0 undamped 

case. But if eta is non 0 then the variation goes like this it starts at r equals to 0 is theta 0. 

So, from this point it will always start and at r equals 1 it will be always pi by 2. So, this 

point they must touch and r tends to infinity it becomes pi. So, all the variations will be 

like this. So, what we can write here? This will be in the order of eta decreasing. That 

means, it can be eta say 0.1 it can be eta 0.2 this can be eta 0.3 like that. So, 0.3 0.2 0.1 

and eta 0; so that is the way the phase is varying with respect to the frequency ratio r; so 

now, the same thing. What I have now just explained let us look back to the slides here. 
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The DMF variation we have seen already this is the variation of phase angle with respect 

to frequency ratio as I have explained. 0 degree 90 degree and 180 degree it always pass 

through this point. When r equals to one frequency ratio is one the phase angle must be 

90 degree when r is equal to 0 phase angle is 0 degree and r infinity tends to goes to pi. 

So, this is the variation and this is the decreasing trend of the damping ratio; so this high 

value going to the lower value. Now, let us come to the next sub topic, the forced 

vibration due to imbalance of mass. Let us look at the sheet now. 
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So, forced forced vibration due to rotating imbalance. So, what does it mean, let us draw 

a picture. That is suppose we have a big machine with amass say capital M and this is the 

C G of the machine big machine and there is a rotating component of a mass that is a 

small mass of m small m it is rotating continuously within that machine. So, it is having 

some eccentric mass with respect to its own C G which is keep on rotating fine. 

So, let us say this is the value of the eccentricity e and this frequency which it rotates is 

lambda. So, this angle I am expressing in terms of lambda t and this magnitude of 

eccentricity of that small mass with respect to the C G of the main machine is e. So this 

is the eccentricity with which it rotates. Now, as usual I have the single degree of 

freedom system. We are considering stiffness and damper we have x of t with respect to 

the c g of the main mass. And what we said capital m is the total mass of the system? 

That is mass of the main system plus mass of the main system plus eccentric mass. 

So, capital M is the is mass of the entire thing including that eccentric mass. Whereas, 

the small m is eccentric mass and what is the condition this small m is much, much lower 

than this capital M; obviously, a small eccentric mass is rotating as I have explained 

already. So, what will be our equation of motion for this system? This single degree of 

freedom system, let us see. 
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So, if I try to draw the system once again about this C G I have rotating mass here with e 

this angle is lambda t. So, what is this value is this distance e sin of lambda t. Am I right? 



And our x is measured with respect to this reference point x of t. So, if I want to write 

down the equation of motion for the entire system what it should be? The main system 

its having how much displacement with respect to its C G x t excluding the eccentric 

mass. 

So, excluding eccentric mass the main system is having an acceleration of x double dot. 

So, I have the inertia force M minus m x double dot. This is the total mass of the system. 

If I exclude that eccentric mass that is subjected to acceleration of x double t x double 

dot. So, the inertia force is M minus m x double dot plus this eccentric mass is also 

rotating. So, it is also subjected to an acceleration. Now, this eccentric mass is subjected 

to how much of displacement not x of t, but x t plus e sin lambda t. So, the acceleration 

this eccentric mass is subjected to will be. So, the inertia force if I want to write small m 

times d 2 by d t square the displacement which is x plus e sin of lambda t fine because 

this eccentric mass is subjected to this displacement and I can get the acceleration by 

double differentiating it. So, acceleration times mass will give me the inertia force 

coming because of this rotating imbalance mass in balance plus the remaining things as 

usual c x dot plus k x because they are subjected to with respect to the c g of the system. 

So, that is why see x dot only and k x only. This is equals to how much? There is no 

other externally applied force to the system. So, it should be equals to 0. So, now if we 

want to simplify this expression what we can get? Let me do it put it little above. So, that 

it will be easy for us to follow. 
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So now, I am simplifying it further capital M x double dot minus small m x double dot. 

Plus from this I am getting small m x double dot minus I have to differentiate this twice 

with respect to t. So, I am getting sine to cos cos to sine with minus sign; so m e lambda 

square sine of lambda t plus C x dot plus K x equals to 0. Now, this gets cancelled. We 

can simplify it further M x double dot plus C x dot plus K x equals to its come to right 

hand side m e lambda square sine of lambda t. So, this is the governing equation of 

motion for a system of single degree of freedom system subjected to eccentric mass 

rotating imbalance. So, look here the dynamic load is coming from the moving parts of 

the machine or the rotating parts of the machine. 

So, that is why we have mentioned in the very first class that the reason of generating 

dynamic load one of the reason is this rotating part of a machine machinery body or 

something like that. So, this is nothing, but again a harmonic load. So, what does it 

mean? Already we have solved what is the solution for a single degree of freedom 

system subjected to harmonic load. So, this we can further simplify that M x double dot 

plus C x double dot plus K x equals to Q sine of lambda t where this amplitude Q is 

measured as that rotating mass small m eccentricity of the mass with respect to the C G 

of the entire system and the frequency which the rotation is occurring external frequency. 

So, m e lambda square gives us the magnitude of this Q. So, solution of this is already 

known to us. No need to go through again the solution because a single degree of 

freedom system subjected to harmonic load. What is the final solution? We know now let 

us use that and we are interested about the steady state displacement as we have already 

talked about. 
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So, I am writing limit when t tends to infinity our x of t the total dynamic response. It is 

written as steady state displacement which comes out to be earlier it was P by K right. 

So, now, it is Q by K sine of lambda t minus theta. Earlier we had taken the cosine 

function harmonic. Now, it is a sine function. So, it will be sine of lambda t minus theta 

fine. Let me take this equation once again for you yes this divided by root over the same 

thing 1 minus r square whole square plus 2 eta r whole square. 

So, that is our x of t which we are we can rewrite again simplified further like this or x s t 

the steady state response is x sine of lambda t minus theta what we did earlier also. So, 

the same thing we are doing here where this capital X where this capital X is nothing, but 

Q by K by root over 1 minus r square whole square plus 2 eta r whole square. Now, let 

me put the expression for this Q and K Q is how much? m e lambda square. 

So, m e lambda square and how much is K in terms of a by omega K is m omega square 

fine. In that case it has to be the total mass of course, divided by root over 1 minus r 

square whole square plus 2 eta r whole square. So, this if we want to simplify further 

what we will get? Look at here lambda square by omega square. So, this is the r square 

and the rest of the term small m e and capital m we will take on the left hand side. So, 

what I am telling you? 
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So, I am simplifying it like this X capital M by small m e equals to r square by root over 

1 minus r square whole square plus 2 eta r whole square fine. This term X M by m e is 

known as DMF dynamic magnification factor for this case of rotating imbalance. That is 

a moving rotating body which is eccentric with respect to the C G these terms. 

So, this is our expression for dynamic magnification factor for a rotating mass where as 

the earlier expression was one by this. So, here there is a slight change in the numerator 

we have now r square. So, that is difference of DMF with respect to the previous case. 

Now, let me plot this DMF with respect to r again. What we did for the previous case? 

We want to do here also. Now, r this is I am plotting X M by m e which is expressed as 

DMF here at 1 0 0 1. Let me draw these parallel lines first. It will be easy for us to draw 

the graph and understand that condition. Now, when r is 0 what is the value of this X M 

by m e irrespective of the value of the damping ratio whenever r is 0 this is 0. So, it is 

start from this value 0 zero. Always when r is very, very high tends to infinity what 

happens to this? X M by m e whatever be the value of eta this is infinity by infinity. So, 

it will tend to approach to 1. 

So, it is start from here goes to 1 and when eta is 0 at r equals to 1. What is the value of 

X M by m e when eta 0? This is vanished r equals to 1 to this is 0 I get infinity. What 

does it mean for eta 0? The undamped case the variation will be something like this. It 

approaches infinity. It comes from infinity and here it approaches one that is the 



variation for eta equals to 0 undamped case and if eta is non zero; obviously, this value 

will not be 0 even if the r equals to 1. 

So, we will get some variation like this. So, starting point is always same 0 0 and end 

point approach is always same for approaching to X M by m e equals to 1. These are the 

in the order of eta increasing that is say eta 0.1. This is the eta 0.2, then this eta 0.3, like 

that and where this maximum value of X M by m e occurs. The same case like previous 

one we want to find out where the maximum DMF occurs. If you look at the figure 

carefully already we have drawn this occurs little after r equals to 1. So, let us see where 

it occurs now mathematically. So, we want find out now maximum value of X M by m e 

where it occurs. 
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So, X M by m e max for what value of r that we want to find. That means, we do this 

operation again equals to 0. If we do this from the expression of this X M by m e 

differentiate this term with respect to r and equated to 0 on simplification we get r equals 

to 1 by root over 1 minus 2 eta square; that is the value of r, where this becomes 

maximum, and what is the maximum value of that X M by m e? If we put in this 

expression the value of r equals to this much whatever X M by m e you will get that is 

the maximum value like previous case only. 

So, X M by m e max. If we put this you will get 1 by 2 eta root over 1 minus eta square, 

if you compare this two values what you will get? The maximum value the magnitude of 



dynamic magnification factor is same whether it is subjected to a forced vibration with 

harmonic excitation or it is subjected to the force vibration due to a rotating imbalance in 

the system maximum dynamic magnification factor remains the same. But the location 

that is for what value of r that maximum occurs that differs earlier it was little before 1 r 

equals to 1 that is little less than 1 r equals to 1. Now it is little above r equals to 1. 

So, r little bit greater than 1. It occur say it is again the reciprocal of the previous case. 

Earlier r was root over 1 minus 2 eta square and now it is 1 by root over 1 by 2 eta square 

as all our cases have eta are less than 1. So, obviously, this r is becoming little greater 

than 1. So, that is why I have plotted already that these peaks are occurring at little after r 

equals to 1 in this graph. 
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So, if I want to plot it for a damped case it should look like this that the variation of r X 

M by m e I have this as r equals to 1 this as 0 this 0 here its 1. So, the variation for any 

damped case is like these were I have this maximum value occurs at r equals to 1 by root 

over 1 minus 2 eta square. And this magnitude of maximum value is 1 by 2 eta root over 

1 minus eta square and how the phase varies if we look at the expression? The phase will 

vary in the same manner because this also the function is harmonic nature. Let me put 

back the equation once again for you. So, this variation is again harmonic. See, if you the 

evaluation of the phase. Let me draw it here itself. 
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The variation of the phase will be something like similar one that r theta 0 r equals to 1 

this is 0 pi by 2 this is pi at eta equals to 0. That is undamped case it follows this. So, this 

is my curve eta equals 0 and for eta non 0 it follows this trend. So, these are decreasing 

eta with say eta 0.1, here eta 0.2, here eta 0.3 like that. So, variation of phase remains 

same like the previous case. 
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So, now, let us look at the slide what I have explained, derived just now. Force of 

excitation due to rotating imbalance picture shown this the rotating mass which is 



rotating about the C G with the eccentricity of E M is the mass of the total system. The 

equation of motion governing equation of motion expressed like this from which the 

solution we get like this. 
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And the variation of that x m e is given like this with peak values coming here with 

respect to the frequency ratio for different values of the damping ratio. 
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Also the phase angle how it varies? The same way like the pervious case with respect to 

the frequency ratio. 
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Now, for DMF is equals to 1 by 2 eta for by r equals to 1 when the maximum occurs. 

Just now we have derived it occurs at 1 by 1 minus eta square and that maximum value 

of DMF is the same like the pervious case. That is 1 by 2 eta root over 1 minus eta 

square. 
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Let me come to now another sub topic which is called half power band width method. 

This is another experimental method to determine the damping ratio of any system. 

Earlier we have seen the logarithmic decrement has been used to measure the damping 



ratio of any system subjected to damped free vibration. If any system subjected to free 

vibration and we do the testing in that case; we measure the damping ratio using the 

concept of decay of motion logarithmic decrement. Now, using the concept of forced 

vibration also we can measure experientially the damping ratio of any system. This is the 

way the half power band width method by which experimentally we can obtain the 

damping ratio of any system. How? Let us look at the slide. 

So, DMF versus different applied frequency; this is actually our lambda. What I am 

using in my derivation these are exciting frequencies. We get a plot like this it starts from 

one goes back to here subjected to a harmonic excitation. We have a maximum DMF 

here and we can identify one value of DMF which is equals to DMF max divided by root 

2. So, that value will obviously, occur at two externally applied frequency values. Let us 

say one is lambda 1 another lambda 2 in terms of our notifications. This is for very small 

value of damping ratio for very small value of damping ratio. We can approximate the 

maximum damping a dynamic magnificent factor is equals to 1 by 2 eta right. 

Let us look at this sheet the maximum value of damping ratio for very low value of eta 

we can approximate it as 1 by 2 eta only fine. So, that is what it is done in the slide. Lets 

us look here again. Now, for r equals to 1 when frequency ration equals to 1. What we 

can express? The dynamic magnification factor maximum value. Now, we are dividing it 

by that root 2 term. So, that is given by 1 by 2 theta. So, now, we are dividing it by root 

2. So, in denominator we are we getting root two which is given by this expression. 

So, for two different values of r it can occur. So, from this second order expression for r 

what we will get? Two roots of r. If we solve this we will get two values of r which is 

obvious that this value will occur at two values of r. So, that is what on simplification if 

we express this almost equals to 1. So, on simplification we are expressing lambda 1 plus 

lambda 2 by 2 times of natural frequency almost equals to 1. Then the damping ratio is 

given by that lambda 1 minus lambda 2 divided by 2 omega. 
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So, in our terminology what we are using? Let me express it once again for you. What 

we were mentioning the DMF. This is say applied frequency of excitation lambda. We 

have from here to a maximum value than slowly comes to almost 0 we have a DMF max 

here and we have these two values lambda 1 lambda 2 for DMF max by root two and 

putting in the expression, what we got? That damping ratio eta is given by that lambda 1 

minus lambda 2 divided by 2 omega natural frequency. 

This lambda 1 minus lambda 2 this is called half power band width. So, this is that is 

why the name came. Half power bandwidth method to obtain experimentally the value of 

the damping ratio. So, with this half power bandwidth method we will complete our 

lecture today. We will continue our lecture in the next class. 


