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Let us start today’s lecture of soil dynamics. We are continuing from the previous lecture 

with our module 2 on vibration theory.  
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Now, what we are interested in we want to see how the response is looking like. How the 

total x of t when it is varying with respect to t, how it should look like? We have two 

separate parts of this solution. The one part is the complementary function and the other 

one is particular integral. So, if we take t tending to infinity which part will continue let 

us look back again in the solution, the form of the solution, what we had written in the 

complete solution was this. Let me put it here like this, the complete solution was here.  

So, when t tends to infinity what happened to this function of complementary function, it 

dies down it goes to 0, as we have seen for the case of under damped free vibration. 

However, if t tends to infinity this is a harmonic function with some coefficients 



something. So, that harmonic function will keep on continuing, it will not reduce. So, in 

other words if we want to know the response for a longer duration for the system... 
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If I want to write say limit t tends to infinity x of t how it should look like? It will give 

me the solution as x p of t which is nothing but P by m cosine lambda t minus theta by 

root over omega square minus lambda square whole square plus 2 eta omega lambda 

whole square. So, it will tend to the result to this harmonic function as t tends to infinity 

because the other component has, goes to 0 or vanished. So, this is a periodic function as 

I said the total solution is having two components, what I am describing you just now. I 

am just drawing them separately and then we will combine them.  

So, I am putting this plus sign here, in this I am drawing x of t the complementary 

function only and in this axis I am drawing x p of t the particular integral part. So, the 

complementary function was similar to our case of under damped free vibration. That is 

it oscillates with a harmonic function, but with a decay, because of the presence of 

exponential decay function. So, this is the part of the solution for complementary 

function and the part of the solution for particular integral as t increases, there is no 

decrease.  

So, it will keep on continuing like this like this. So, this is the part of particular integral. 

So, what will be the total solution? The total solution is nothing but when we are 



combining these two that is why this plus sign I have shown here. So, how the combined 

response should look like let us combine it and see how it should look like. 
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The combined response should be something like I am just showing the trend, how it 

should look like. x of t I am now plotting the total response, it will be let me first draw 

some dotted line with constant amplitude and then let me draw this curve that is the 

particular integral part that I am drawing. What will happen the initial portion when t just 

started from 0 it will now follow the complementary function over this curve as a base 

line. So, taking this curve as a base line our response of complementary function will run 

harmonically with an exponential decay. 

So, let me draw it now. We will have some functions like this and then it will die down 

after certain time. So, the total response becomes this firm line or the solid line then 

beyond it, it vibrates periodically or harmonically following this step. So, clearly up to 

this point we can see this zone is having complementary function plus particular integral 

together as a solution, whereas beyond this point the solution we have only the particular 

integral after a certain time t. What that means the terminology which we used for this 

zone where we have this a periodic response is called transient state. Transient state and 

when this initial effect dies down and the response of the system follows the particular 

integral solution only, that is the harmonic function in this case only, we call that state as 

steady state. 



So, beyond this point where the initial conditions of the system vanishes or dies down is 

called the starting of the steady state response. So, this is called the steady state response 

and this state is called transient state response. So, when we can say that a system has 

reached to its steady state condition when the response becomes harmonic. Then we can 

say in this case it has reached its steady state response or if we want to generalize more, 

it should be steady state of the system has been reached when the initial conditions have 

died down. So, initial conditions, effect of initial conditions are no longer existing 

because you look at the solution once again in this solution of x p of t there is no x 

naught no x naught dot. So, the initial conditions are not present in this particular integral 

which is for t tends to infinity. 

So, initial conditions have totally removed that point when it is getting started is called 

the starting of the steady state response and transient state is that state of the system 

when the response is aperiodic that is the effect of initial conditions are present because 

in this case we have that all effects of x naught x naught dot everything present and the 

response is aperiodic. 

So, that is the final solution for the forced vibration subjected to a harmonic excitation. 

We have seen how the transient state, how the steady state they behave and the responses 

we have drawn. Let us look at the slide for the same summary what I have now derived. 
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So, the particular solution as I have mentioned is computed like this for this equation. 
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And the particular solution is expressed in this form and the complementary function is 

expressed in this form. 
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Then we get the total solution as the summation of the complementary function and the 

particular integral comes out to be like this, where the particular integral gives us the 

steady state response and the initial condition this will give us the transient state. 
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So, for one example problem has been shown here for a particular value of in this case 

this omega is applied excitation in our symbol, we have used lambda. So, this is lambda 

and this omega n is natural frequency. So, the exciting frequency to the natural frequency 

ratio is taken as 0.2, the damping ratio eta is 0.05, initial displacement is 0 and initial 

velocity is given by this expression. For this values the results a typical results plotted is 

shown here in terms of non-dimensionalized form that is the u of t to the static u of t at 0 

time that is at initial time with respect to the x axis’s time to the natural time period.  

So, as the initial displacement was 0 so its starts from 0 you can see and this is the total 

response as I have mentioned and slowly with time it dies down, but this keeps on 

continuing because this is the steady state response which remains harmonic. That is 

what I have also drawn. So, this is another example problem has been shown here. 

 

 

 

 

 

 



(Refer Slide Time: 12:13) 

 

Now, from this steady state displacement let us now see what are the other things we can 

derive or we can get from the steady state displacement.  
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So, let me write down steady state displacement on which now we want to concentrate. 

Why? Because for any system we as an engineer what we want to know how it performs 

in long run, that is when t tends to infinity in future how the system or how the structure 

or how the sub structure or foundation etcetera will behave. So, we are more interested 

on the steady state displacement because transient state will vanish within few minutes. 



That also is important for the design of course, but for a long term behavior of any 

structure or sub structure we are more interested on the steady state response.  

So, let us concentrate on that steady state response. The steady state displacement let me 

denote it by x s of t this small s denote as steady state. The solution we got as P by m 

cosine of lambda t minus theta by root over omega square minus lambda square whole 

square plus 2 eta omega lambda whole square, that was the expression for the steady 

state. What we can do, we can divide both numerator and denominator by omega square. 

So, what we will get? m omega square cosine lambda t minus theta and the denominator 

it becomes root over 1 minus lambda square by omega square whole square plus 2 eta 

lambda by omega whole square. 

Now, let us define one parameter r. What is r? r is the ratio of the external frequency to 

the natural frequency of the system, which is known as frequency ratio. So, r is called 

frequency ratio, it is defined as the ratio of the applied external frequency to the natural 

frequency of the system. And what is let us look at this term P by m omega square. What 

we can simplify for this term it is P by m times what is omega square K by m. So, it is K 

by m, m m gets cancelled I get P by K. Now, what is P by K? P was the amplitude of the 

dynamic load and K is the stiffness means spring constant.  

So, load by stiffness is nothing but the static displacement. So, this we are denoting as 

say capital X s t, s t means static. So, this P by K is nothing but our static displacement. 

What does it mean? Instead of the dynamic load if I apply a static load on the system 

with magnitude P the deflection of the system will be X of s t. So, let us look back again 

this expression what we are getting. 
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So, x s t the steady state displacement, the steady state displacement we are writing now 

this P by M omega square let me put this expression here. So, it will be easy for us to 

follow. This is nothing but the static displacement times cosine of lambda t minus theta 

by root over what I am getting from here 1 minus r square whole square plus 2 eta r 

whole square where r is the frequency ratio lambda by omega. So, we can simplify again 

this expression like this. The steady state displacement by the static displacement it is 

equals to 1 by root over 1 minus r square whole square plus 2 eta r whole square times 

cosine of lambda t minus theta. 

What it shows us, the ratio of the steady state displacement to the static displacement is a 

harmonic function with amplitude or the maximum value of this comes out to be this 

value. So, the maximum value of the ratio of the steady state displacement to the static 

displacement is known as dynamic magnification factor DMF dynamic magnification 

factor DMF. So, what is the definition of dynamic magnification factor? It is the 

amplitude of this ratio of steady state displacement to the static displacement that is 

defined as dynamic magnification factor. So, what is the expression for the dynamic 

magnification factor? This one, so let us write that. 
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So, DMF is given by the expression 1 by root over 1 minus r square whole square plus 2 

eta r whole square. This parameter is extremely important. Why? Because it gives us the 

idea that under the dynamic load how much the displacement will magnify compared to 

your static displacement. So, that is why this terminology DMF is extremely important 

for any engineering design. So, if it is very important let us see the response or variation 

of this DMF with respect to the variation of different parameters like r and eta. 

So, let us plot the variation of DMF with respect to r and see how it looks like. So, x axis 

I am using r which is nothing but our frequency ratio lambda by omega and the y axis I 

am plotting dynamic magnification factor DMF. If we look at this expression very 

carefully r can vary from 0 say 1, 2 and then keep on going here, r can increase here and 

DMF dynamic magnification factor let us start it from 0 say 1, 2 and other values. If we 

take an undamped condition that is eta equals to 0, when the value of frequency ratio r 

equals to 0 what is the value of dynamic magnification factor? When r is 0 eta is 0, the 

dynamic magnification factor is 1, what does it mean when r is 0 r 0 when it can happen?  

Omega cannot be 0 as I said the natural frequency of the system cannot be 0. The 

possibility of r equals to 0 means lambda is 0 that means there is no externally applied 

dynamic load. So, for that case how much will be the displacement for the system? It 

should be nothing but the static displacement that is why we are getting the DMF equals 

to 1. So, that is the physical significance which we have understood. Let us draw certain 



lines here it will be easy for us later on. So, I am just drawing few lines. So, the starting 

point when r equals to 0 and eta equals to 0 the DMF is always 1 that is static 

displacement is equals to your dynamic displacement because we do not have any 

vibration, we do not have any dynamic load applied on the system.  

So, of course, it has to be 1 when eta is non-zero that is when we are considering damped 

material, damped system with that if we have r equals to 0 that is again the frequency 

ratio 0, what should be the value of dynamic magnification factor? Again 1, if we put r 0 

here eta is having some value, but still we have dynamic magnification factor 1 which is 

again justified physically because without presence of any forced vibration or applied 

dynamic load on the system, the displacement should be equals to the the steady state 

displacement or longer term displacement should be equals to the static displacement 

nothing more than that. So, that is why it will always start from the 1. 

Now, let us look when r equals to 1 and we have undamped system that is eta equals to 0 

with r equals to 1, what should be the value of DMF? r is 1 we are putting in this it 

becomes 0, eta is also 0. So, what it becomes? 1 by 0 means infinity so at r equals to 1, it 

goes to infinity. So, how the variation should be? Variation should be something like 

this. Close to r equals to 1, it will be tangential to this line. It goes to infinity and let us 

look when r is very, very high and eta is 0. What will happen to the value of DMF? r 

tends to infinity.  

If I put r tends to infinity in this expression what I will get? This will be 1 by infinity 

means DMF will approach to 0 with very high value of r. So, the other side of the curve 

will be something like this, tangential here goes down here, approaches 0 at very high 

value of r. So, this curve we got for eta equals to 0 that is undamped case. Now, if we 

take damped condition that is eta is non-zero still the curve will start from this point 1 

when r equals to 0. When r equals to 1 what happens? eta is non-zero, so we have some 

value here say eta is 0.1 so it is 0.2 times 1. 

So, 0.2 whole square, so we have 0.04 and here it is 1 so it becomes 0, but we have some 

finite value which we can obtain for r equals to 1 at non-zero value of the eta and let us 

look what happens when r tends to infinity for non-zero value of eta. When r tends to 

infinity whatever be your value of eta this DMF goes to 0 or approaches to 0. So, the 

type of graph which we should get is something like this. Let me draw it first. So, it will 



approach to 0 here. Then let me draw again another graph with this. Then let me draw 

another graph with this so these are the, for different values of eta.  

So, eta non-zero, these are the graphs for eta non-zero because here we will get some 

finite value. Now, what is this shows? This is in the decreasing values of eta or 

increasing values of eta? If the value of eta is increasing, what we will get? The DMF 

value will keep on decrease so this is in the increasing trend of increasing eta. So, these 

three arrows what I have shown here that shows the increasing values of eta. Say for 

example, this is for eta equals to 0.1, this is for eta equals to 0.2, this is for eta equals to 

0.3 like that just typical examples I am giving, the exact figure may be different, but 

trend will remain same. 

Now, if you look at this variation properly what we know when the r equals to 1 means 

your applied external frequency matches with the natural frequency of the system. So, 

when r equals to 1 that means lambda equals to omega, means externally applied 

frequency equals to the natural frequency of the system. So, as a layman what we know? 

When the applied frequency, external frequency matches with the natural frequency of 

the system the resonance occurs.  

So, that is why when eta equals to 0 we got DMF as maximum or it goes to infinity 

actually, but when eta is non-zero there also we got some very high value of DMF with r 

equals to 1, but those are not infinity. Infinity becomes only when it is a undamped case. 

In case damped case it will be some high value of dynamic magnification factor. Now, at 

r equals to 1 really those are the maximum value, maximum point of DMF or something 

else. Let us look. Look at the curve I have drawn the peak, knowingly little before r 

equals to 1. So, these are my peaks, not at r equals to 1. Why? Let us see now. We will 

derive it. So, where the dynamic magnification factor is maximum we want to know.  
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So, we want to find out DMF max. When it occurs? That is for what value of r that 

maximum DMF occurs. What is the expression for DMF? The expression is 1 by root 

over 1 minus r square whole square plus 2 eta r whole square. So, if we want to find out 

the maximum dynamic magnification factor what we need to do? We need to find out 

differentiate it with respect to r and equate it to 0, then let us do that operation what we 

will get from this denominator by expanding it I can write it like this 2 1 minus r square 

times minus 2 r plus 4 eta r into 2 eta equals to 0, by differentiating with respect to r.  

Now, r is non-zero. So, from which we can simplify and write it like this 2 eta square 

equals to 1 minus r square which will give me the value of r is 1 minus 2 eta square. So, 

that is the value of r at which DMF becomes maximum. So, now let us put the value of r 

in this expression of DMF. So, that will give us the maximum value of DMF. Let us do 

that. 
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So, DMF max that is equals to now I am putting this value of r in that expression root 

over 1 minus r square. So, r square is now how much? 1 minus 2 eta square, I am just 

putting the value of r, let us put it here again. So, r is now root over 1 minus eta square. 

So, I put r square is 1 minus 2 eta square this whole square plus 4 eta square r square. r 

square is again 1 minus 2 eta square. See, if we simplify this, what we are getting? On 

simplification we get 1 1 gets cancelled, this becomes 4 eta to the power 4 with a minus 

sign and then let me do that, it will be better 1 minus 1 it will give me minus. So, minus 

minus plus 2 into 2 4 eta square then I am getting plus so it becomes minus 4 eta to the 

power 4 plus this gives me 4 eta square minus 8 eta to the power 4. That is what we get, 

right? 

So, on simplification we are getting it like this, 8 eta to the power 4 4 eta square. So, it 

gives us 8 eta square minus 12 eta to the power 4. I made some mistake somewhere, this 

is 1 minus 1 gets cancelled this is… I did this whole square, sorry let me put it once 

again. I make the whole square of the bracket term, but that has to be simplified and 

then…  



(Refer Slide Time: 35:15) 

 

So, DMF max is now 1 minus 1 minus 2 eta square whole square plus 4 eta square 1 

minus 2 eta square. This, this gets cancelled, this becomes plus 2 eta square. So, that will 

give me 4 eta to the power 4 plus 4 eta square minus 8 eta to the power 4 that is it. 1 by 

root over 4 eta square minus 4 eta to the power 4 which is equals to I can take out 2 eta 

root over 1 minus eta square. Therefore, the expression for maximum dynamic 

magnification factor is 1 by 2 eta root over 1 minus eta square. This is another important 

expression which we use for our engineering solutions. 

So, it is independent of the value of r because we know at which point of r it will occur. 

So, that point is r equals to root over 1 minus 2 eta square, and the maximum value of 

that depends on what is our value of eta. So, the maximum value of dynamic 

magnification factor for an undamped case, that is when eta is 0, it is infinity. So, that is 

get cross checked from this expression also, but when eta is having some value where the 

maximum occurs, let us look back again this expression of r where the maximum occurs.  

Where the maximum occurs for undamped case that is eta equals to 0 at r equals to 1 

which we have seen in our plot. That is, it becomes infinity at r equals to 1, but when eta 

is non-zero it is having some value, it is not at r equals to 1, but at slightly lower value of 

r, that is why in the curve when I draw, I draw the curve maximum point little ahead of r 

equals to 1 the maximum occurs for non-zero values of eta and as the value of eta 

increasing the maximum DMF point will keep on shifting away from r equals 1 towards r 



equals to 0. It will shift slowly from r equals to 1 to r equals to 0. So, let me put the graph 

again here and compare with respect to this expression.  

Now, it will be easily understandable for us at eta equals to 0 maximum occurs at r 

equals to 1 with increase in value of the eta, this maximum point shifts towards r equals 

to 0 little away from 1 just before 1, but this point keep on shifting. So, remember this 

profile or projectile or whatever you say this curve, it follows another curve the peak of 

the each point with different values of eta and what is that magnitude of maximum value 

for different eta? That is what we have obtained just now. This is 1 by 2 eta root over 1 

minus eta square that is the maximum value for different values of eta. So, this is the 

discussion on dynamic magnification factor. Let us look at the slide now, here again the 

frequency ratio is defined as the externally applied frequency to the natural frequency of 

the system. 
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And DMF is given by this expression. 
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And the plot is like this. So, peak is somewhere here little before r equals to 1 then with 

increase in the damping ratio it keep on shifting slowly towards left side. Now, the peak 

is here, now the peak is here. So, with this distribution of dynamic magnification factor 

we will stop here and we will continue further with the discussion of dynamic 

magnification factor more elaborately from the next lecture. 

A small recap what we have done, the dynamic magnification factor how it varies with 

respect to frequency ratio that is the ratio of the applied frequency externally to the 

natural frequency of the system. How it varies for different damping ratio and where the 

peak occurs and what is the maximum dynamic magnification factor, all this things we 

have seen. So, continuing with this background let us further discuss on this dynamic 

magnification factor. 
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Let me draw it once again to understand the physical significance of different parameters 

involved in the dynamic magnification factor because that will finally, help us in the 

design process to decide on which parameter we have to control or which parameter we 

have to properly consider for a good design of any system which is subjected to this kind 

of harmonic excitation or forced vibration with harmonic excitation. So, this is our x axis 

frequency ratio and the y axis dynamic magnification factor.  

We have seen that it starts from always dynamic magnification factor 1 and it goes to 

infinity and here also it comes infinity to goes to 0 for the undamped case eta equals to 0, 

but for damped conditions the variations are like this with increasing eta. So, that is what 

we had seen in the previous lecture. So, suppose as I say eta 0.1 say eta 0.2 like that and 

the maximum occurs just before r equals to 1 and the value of r where DMF is maximum 

is r equals to root over 1 minus 2 eta square for DMF max and that value of the DMF 

max is 1 by 2 eta root over 1 minus eta square. That is the maximum value of dynamic 

magnification factor. Now, with this if I want to plot just for any damped case, for any 

damped case the DMF with respect to r. 
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Simply, I can plot it like it starts from 1, it attains a peak here, then comes back, then 

approaches 0 at r tends to infinity. So, this value as I have mentioned is r equals to root 

over 1 minus 2 eta square and this maximum value of DMF is 1 by 2 eta root over 1 

minus eta square. Now, let us see the different zone in this graph. DMF equals to 1 or 

very close to 1, what does it mean? That means the steady state displacement is almost 

equals to our static displacement. Dynamic magnification 1 means steady state 

displacement is equals to the static displacement and very close to 1 means they are 

equally almost equal.  

Now, how much is our static displacement; that is nothing but the amplitude of the load 

P by the stiffness K. So, what does it mean? This value of DMF very close to 1 is 

dominated or affected by the stiffness. So, if the DMF 1 is effected or dominated by 

stiffness what we can do? We can mark suppose a particular zone very close to DMF 

equals to 1. So, this zone we can shade and we can say this is a stiffness controlled zone 

or stiffness dominated zone because in this zone if you change the value of the stiffness 

of the system you will have a direct effect on the DMF. Because the DMF in this region 

is directly related to the stiffness parameter, hence, it is called the stiffness controlled 

zone. Now, let us see what about the other two zones or other two parameters rather than. 

Now, let us look at the condition when the frequency ratio is very high. 
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So, for very high value of r, r means lambda by omega. What does it mean? That means 

lambda is very high compared to the natural frequency, that is applied external frequency 

of the system is very high compared to the natural frequency of the system which will 

give us a very high value of r. Now, how it can happen? We hardly have any control on 

the applied external frequency. As a civil engineering designer or a civil engineer when 

we are going to design a machine foundation, we hardly have any control on this lambda 

because it is given by the machine producer or the manufacturer of the machine.  

So, they give us the input parameter that is at which frequency the machine will operate. 

So, it is given by them, it is just an input parameter for us, civil engineers or the machine 

foundation designers. What we can control is the natural frequency of the system. So, 

lambda if we want to make that very, very high compared to the natural frequency of the 

system, what we should do? See, natural frequency again root over K by m. If we 

increase the mass if we increase the mass of the system, mass of the foundation very high 

automatically our natural frequency will decrease. That will give us finally, this 

condition. 

So, we have now identified that the very high value of r means it can come from by 

increasing the mass of the system. So, that means this region of very high value of r is 

dominated by the mass of the system very much. Now, let us go back to our previous 

picture here. 
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So, what we can do? We can now find out another location. So, say this zone where 

value of r is very high this can be classified as mass controlled zone. So, if you want to 

keep your r value for the design very high you have to control on mass. If you want your 

r value to be very low you have to control on the stiffness of the system and what about 

this central area? Obviously, the third remaining parameter in the system what we have 

the damper. So, this region, the central region is known as damper controlled zone 

controlled zone or damper dominated zone which is obvious from the previous variation.  

Now, let me place this figure here. See; if the value of the damping ratio changes this 

region the peak value keep on changing. So what does it mean? It is this region value of 

DMF is directly related or controlled or influenced more by the damper. So, what does it 

mean in the design of your foundation system suppose which is subjected to a harmonic 

excitation like this, whether you have DMF very close to 1 or whether you have r value 

very less than 1 or very high value, compared to that you can control by changing either 

the stiffness or the mass and if you control over the damper you will get the change in 

the peak value of the dynamic magnification factor.  

That is why DMF max is a function of your damping ratio only. So, these are the basic 

three regions which are called stiffness controlled zone, damper controlled zone and 

mass controlled zone in the variation of DMF versus r. Later on we will see when we 

will take up the actual design of machine foundation, how by controlling this three we 



can get a better response. Now, coming back to mass controlled zone let me give you the 

physical significance of the mass controlled zone. Let me keep this picture as well and 

this expression. So, for mass controlled zone as I said for high value of r, I need lambda 

should be very much higher than the omega natural frequency and for getting very low 

value of omega we have to increase the mass. So, what does it mean physically? Why it 

happens? 

Very high value of mass means the system is pretty heavy. It is a heavy weight system 

which we are considering. Now, for this heavy weight system we have applied a very 

high value of external frequency. So, lambda is pretty high, but the system is so heavy 

and so rigid though the frequency of excitation externally applied is very high, it is not 

able to respond properly. So, in other words the dynamic magnification factor for very 

high value of r, it will be even less than 1. 
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Let us look back to this graph. Let me draw this line at DMF equals to 1. Look at here. 

So, at very high value of r DMF is less than 1 and DMF less than 1, what does it mean to 

us? DMF less than 1 means our steady state displacement is less than the static 

displacement. So, your dynamic displacement what you are getting is lesser than the 

static displacement. So, in other words what does it mean? As a designer if you have 

designed your system or the foundation to take care of static load only, it is sufficient 

enough to withstand the dynamic load. Correct?  



Because the displacement it is going to experience maximum is the static displacement 

because its dynamic steady state displacement is much less than that, so for that kind of 

foundation if we have designed it properly to take care of static load that is good enough 

for taking care of the dynamic load. So, we need not to design it specially for the 

dynamic load. So, that is one added advantage we are getting that is without having a 

proper knowledge of dynamics even if we design it very well under any static load, it 

should be sufficient enough to take care of the dynamic load because of this reason of 

very high value of mass. Now, physically let me make you understand in a more better 

way, what it happens. 

Externally applied frequencies pretty high and system is very rigid. So, why the dynamic 

displacement is less than the static displacement? What is the physical significance? 

Means you are applying a frequency, very high frequency to a rigid system. Its mass is 

so heavy that it is not getting enough time to respond for it. So, its dynamic displacement 

is less. Let me give you a kind of funny example actually. Suppose, if you slap 

somebody from this side and then wait, slap, it will go like this, then slap it from the 

other side it will go like this, but if you increase the frequency too much and the system 

is rigid, what will happen? You slap it continuously like this the system will not be able 

to identify that which direction it should move. 

So, it will remains almost like a static. So, that is the meaning why the dynamic 

displacement for that case is so low or a even lesser than the static displacement. This is 

the main reason that frequency externally applied is very high, mass is pretty rigid or 

very high. So, the system is not able to means give a proper response to the subjected 

excitation. It is not getting a chance to respond it to it. So, it is occurring so fast it is not 

be able to give proper response. So, that is the good example or good way I thought that 

people will understand that. 

If I apply a large frequency to a less mass system it can respond, but to a very high mass 

system it cannot respond that fast. So, that is why its dynamic displacement is pretty low. 

We will continue our lecture in the next class.  


