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Let us start with today’s lecture of soil dynamics. We are continuing with our module 

three, that is on wave propagation. A quick recap what we had studied in the previous 

lecture.  
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We have considered the longitudinal wave equation in an infinitely long rod, which is 

constrained in this lateral direction with material property like this. 
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And we have seen how the one-dimensional equation of motion can be derived in terms 

of stress and displacement of the particle. 
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And finally, we have simplified that in this form where v p is called the primary wave or 

p wave velocity, which is nothing but equals to root over constrained modulus by rho; 

rho is the density of the material. 
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Now, let us take the next case. Let us look at the slide here for torsional wave in an 

infinitely long rod. Last time we have taken the longitudinal wave, now we are taking the 

torsional wave. Suppose, a torsional wave is travelling through an infinitely long rod, 

then what we are doing? We are doing the same thing, we are taking a small segment 

within the rod of length d x, and the torque at the two ends of that element. Let us say at 

this end the torque is in this direction T x naught on the other end of the element, due to 

the movement of the particle in this direction is T x naught plus del T del x into d x, 

when the torsional rotation of the element is given by del theta. 

So, torque and rotation at the ends of the element of length d x with A cross sectional 

area a is shown. What we can do here? The same thing the difference between the torque 

at the two ends of this small element the total torque can be equated or total moment can 

be equated with respect to the inertia force, due to the dynamic movement of the particle 

within this element.  
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So, if we do that what we can write the dynamic torsional equilibrium will give us, this T 

x naught plus del T del x into d x minus T x naught. So, this is the resultant torque 

remains within the unit length of d x that should be equated with respect to, the inertia 

force generated due to movement of the particle which is nothing but density of the 

material, times polar moment of inertia, d x, length, times the rotational acceleration 

which is del 2 theta by del T square.  

So, this T is torque amplitude, J is polar moment of inertia now, again we can simplify it. 

If you do that,  the equilibrium equation can be represented as del T del x equals to rho J 

del square theta by del T square. So, this is the torque equation with respect to the 

rotational component. Similarly, what we got for the longitudinal case, the stress 

equation with respect to the displacement function.  
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Now, let us put it in terms of the acceleration del 2 theta del T square with respect to del 

2 theta by del x square, as we have done for the previous case of longitudinal wave. So, 

now we have torque relationship with respect to del theta del x in this form T equals to 

given by G J del theta del x, where G is the shear modulus of the rod. So, the torsional 

wave equation can be re-written in this form that is del 2 theta del T square equals to G 

by rho del 2 theta del x square, where this G by rho is represented as v s square.  

This v s is called the shear wave velocity, which is represented as root over G by rho, so 

the primary wave velocity or the longitudinal wave velocity is root over m by rho, 

constant modulus by rho and the shear wave velocity or the torsional wave velocity is 

given as the shear modulus by the density of the material under root of that. So, if we 

want to generalize this two cases, that is for any wave equation whether it is longitudinal 

wave or a torsional wave, what is the basic form of the equation of motion? 
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This is the basic form of equation of motion for one-dimensional wave equation, that is 

del 2 u by del t square equals to v square del 2 u by del x square, right? So, if it is 

longitudinal wave then it is v p, if is it torsional wave then it is v s, otherwise the form of 

the equation is exactly same. So, for longitudinal wave it is displacement, for rotational 

wave it is rotation theta that is the only difference, otherwise form of the equation is this 

one. And the solution of that type of equation can be represented by in function form like 

this, u of x of t can be given as a one function, v t minus x that is before little phase of x 

and plus x that is after phase of x, the solution can be expressed with respect to another 

terminology is given here, which is called as wave number. 

Wave number is generally denoted by kappa, so this is the symbol similar to our small k 

it is kappa actually. Kappa is nothing but omega bar by v, where omega bar is nothing 

but the circular frequency of the applied loading. What we have considered earlier 

actually the omega, omega is nothing but the circular natural frequency. So, the wave 

number is related to the natural frequency in this form, wave number you can compute 

by dividing the natural frequency by velocity.  

So, this solution can be represented in this format in terms of wave numbers and this A 

and B constants again can be obtained using the initial conditions given to us. And the 

wave numbers is related to another parameter which is known as wave length, it is 

generally denoted by the symbol lambda of the motion. So, if I want to simplify this for 



you, what I can say that, let me draw it here. So, it will simplify the understanding of our 

two system, when the displacement function u of t we are plotting with respect to the 

variation in time. 
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Let us say this was like this some variation, in that case what was our time period? If it is 

a un damped free vibration, this was our time period natural time period, right? T was 

expressed as 2 pi by omega, omega was natural frequency of the system. The same 

response now we are representing it as, the same u we are representing it with respect to 

the distance x, that is displacement u we are representing it with respect to its distance x. 

The same thing, in this case when we are representing it with respect to distance, to 

complete one cycle the distance covered is known as wave length, which you must have 

read in your physics also earlier.  

This is nothing but lambda equals 2 pi by that kappa. So, what does it mean from this 

simple figure? It will make you understand this is a simple way that the natural 

frequency circular natural frequency of any vibrating system is equivalent to, the wave 

number of the system and the natural period of the system is equivalent to the wave 

length of the system. And how they are related, that also I have mentioned, this kappa is 

nothing but this omega by the velocity, so u dot. So, that way both the terms are related 

to each other. 



So, if we look at this slide you can see here, lambda is nothing but v times the T, but I 

have written just now v by f 2 pi by omega times v it equal to 2 pi by kappa. So, the 

same relation between T and omega holds good for lambda and kappa that is wave length 

and wave number. 
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So, wave equation if we put in this form, it takes a shape of this and using complex 

notation the equivalent solution can be written in the form of a wave number like this. 
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Now, let us start with the three-dimensional wave propagation. We have seen the one 

dimensional wave propagation, how the equation of motion we are getting? Now, we are 

trying to consider the wave propagation in all the three dimension, that is generalized 

case we are considering. So, if you draw this, this is a small element we are taking of size 

d x in the x direction, d y in the y direction and d z is the length of that element in the z 

direction. And what are the stresses acting?  

On one side of this x, let us say sigma x x here, and these are the shear stresses. On the y, 

at one phase sigma y y and the these are shear stresses and this is the normal stress, and 

here on the z sigma z z normal stress and the shear stresses these. Let me draw it in a 

better way for you, so that it will be more clear.  
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So, this is 3 d element, which we are considering. So, this is our x axis, this is our y axis, 

this is the z axis we are considering. And stresses as I said on the left side, when waves 

are travelling through this element, what happens correspondingly? The particle velocity 

in X direction is let us say u, in Y direction it is let us say v, and in Z direction it is say 

w. So, what at u, v, w? The corresponding displacement of the particle, because of the 

movement of the wave. Now, on this phase on the left hand side of the element, the 

normal stress, let us say sigma x x and shear stresses in this direction, and shear stress in 

this direction this will be tau x z, this will be tau x y.  



One convention for writing the stresses, you must be knowing, when we write any stress 

about 3 d this two axis system, the first one shows on which plane the stress is acting and 

the second one shows in which direction the stress is acting, clear? So, for normal stress 

sigma x x it is acting on x plane in the direction of X, because it is a normal stress so that 

is why sigma x x, for shear stress this is acting on X plane but in Z direction, so that is 

why tau x z, and this shear stress is acting on X plane once again so tau x but in Y 

direction, so that is why tau x y.  

What happens on this side of the element, that is when it is travelled by a distance d x in 

X direction, the normal stress is sigma x x plus del sigma x x del x into over the distance 

d x, whatever the increment in stresses occurred, on this phase of the element. What 

about the shear stresses? To keep equilibrium the direction of shear stresses should be 

now, this one will be vertically up, this should be towards this direction, fine? Now, what 

is this one? This should be tau x acting in Z direction tau x z because here also tau x z in 

the opposite direction tau x z plus del tau x z by del x into the change over the length d x, 

and this will be tau x y plus del tau x y by del x into d x.  

So this is also trying to balance on the other direction, shear stress tau x y. So, these are 

the changes of stresses on the two phases of the element in the x direction. Let us see 

what happens in the other phases? Let me draw on this phase, here the normal force will 

be sigma z z plus del sigma z z del z over a distance of d z, so this distance is d z. In this 

direction one shear stress, in this direction another shear stress. This shear stress should 

be, how much? Tau, now what is it? It is acting on Z plane, in the direction of x plus del 

tau z x del z d z and this one will be, tau how much? This is acting on Z plane in Y 

direction, so z plane y direction plus del tau z y del z into d z.  

This is on upper phase, on the lower plane should be sigma z z in this direction one and 

in this direction another one, because they have to be on the opposite of this phase. So, 

this one should be tau on Z plane X direction, this one should be tau on Z plane Y 

direction, still we have two more phases that is, on the Y plane, that is this plane and the 

other side of the plane. So, on this plane let me draw it, in this direction, this should be 

sigma y y plus del sigma y y del y into d y, that is the normal stress. Now, shear stresses 

should be in this direction and in this direction, how we are taking this directions?  



You know, we have to take in such a way this and this in the opposite directions this and 

this in the opposite direction, that balance you know the equilibrium. And this values 

should be, let me write it in blue, I am writing for this one. This is tau on Y plane in X 

direction plus tau del tau y x del y into over into over a length of d y, so d y is this 

distance actually. And this force, now let me draw, will be tau on Y plane in Z direction 

plus del tau y z del y into d y. Whereas, on the other plane it should be, on the other 

plane this should be sigma y y, there should be in this direction, it should be downward 

direction. These are tau y z and this one is tau y x. On the other phase of y plane, this 

plane normal one sigma y y tau y z tau y x. 

Now, with all this forces, what we can do now? We can write down the equilibrium 

equation in each of these direction x, y and z. If we write the equilibrium equation in X 

direction, what are the forces involved? Let us look at it and try to put a tick on that now, 

let us see, the equilibrium of the forces in X direction. So, in X direction what are the 

forces are involved, let me mark them first. 
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This normal force is in X direction, this normal force is in X direction, what else? This 

shear force on Z plane is acting in X direction. Similarly, on the other side this shear 

force on Z plane is acting in X direction. Any other force acting in x direction, let us look 

here carefully what about Y plane, yes. On Y plane this force is acting in X direction 



similarly, this force is acting or this stress is acting in X direction, clear? If it is clear to 

us, let us write down the equilibrium equation. 

First let us take this two normal forces in x direction or normal stresses in x direction, 

total normal force in x direction should be multiplied with respect to the area cross 

sectional area. And what is the cross sectional area for this normal force on x plane? It is 

nothing but this is d y this is d z, so d y times d z is the cross sectional area. So, let me 

write down this equilibrium equation in x direction. 
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So, in X direction by considering equilibrium we are writing sigma x x plus del sigma x 

x del x into d x times d y d z, is the force acting on the right hand side, right hand 

direction minus sigma x x times d y d z, it is acting on the left ward direction. So, net is 

on the right ward direction, this much due to the normal force or normal stress acting on 

X plane in X direction. Plus next, whatever is in act what are the stresses acting in the x 

direction, let us see. 

We have this tau z x plus this one and tau z x in this direction and this direction. So, net 

resultant is in this direction, and on which plane it is acting? It is acting on this Z plane, 

so what is the cross sectional area for this? d x d y, so the force due to this shear stress 

will be? Tau z x plus del tau z x del z into d z times area is d x d y minus tau z x into d x 

d y plus, let us see what else we have in X direction. We have this force acting on the Y 



plane and this force acting on the Y plane, now net resultant of that should be on the 

right ward direction. And on which plane it is acting on Y plane?  

What is the dimension on this Y plane d x d z. So, if we multiply this shear stress with 

respect to the area, what we will get? The force tau y x plus del tau y x del y into d y 

times the area is d x d z, minus tau y x into d x d z, these should be equal to the inertia of 

force which is nothing but mass time acceleration. Now, in X direction how much is the 

displacement? That is u we are consider in X direction the displacement is u, so the 

corresponding acceleration is del 2 u by del t square. So, the equating with the inertia we 

will get rho times what is the volume of the element d x d y d z is the volume, times 

density will give us the mass into del 2 u by del t square mass times acceleration will 

give us the inertia force, that will balance the all this forces arising because of the travel 

of the wave, within the element, okay?  

Now, if we simplify this one, what we will get? This term gets vanished, del x del y del z 

is coming everywhere, that we can divide both the sides because they are non-zero. So, 

finally, on simplification we can write it like This, that del sigma x x del x plus del tau z 

x del z plus del tau y x del y, equals to rho del 2 u del t square. 
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Now, if we consider a very small, infinitively small element, what we know? For the 

equilibrium of infinitively small element, the moment created by the shear forces should 

be equal about it centre, what does it mean? Because of the shear the couple getting 



generated from the two phases, what we can write? For one small element this tau z x is 

nothing but tau x z to maintain equilibrium similar tau y x is equals to tau x y, and tau y z 

equals to tau z y. These are the conditions for a small element to maintain equilibrium.  

So, these symbols are interchangeable with its plane and direction, in which it is 

applying. So, what we can write then del sigma x x del x plus del tau x y del y plus del 

tau x z del z equals to rho del 2 u by del t square, this is the governing equation of 

motion in x direction, okay? This is the basic governing equation of motion in three 

dimensional wave propagation, for X direction only. So, similarly in other two direction, 

Y direction and Z direction we can write the equation in this form, you can note down. 
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So, we can simply compare in case of X direction this was u in case of Y direction the 

corresponding displacement is v. So, acceleration is del 2 v by del t square times rho. We 

are getting, we have used the symbol tau for shear stress, you can write here it tau also. 

Del tau y x del x plus del sigma y y del y, this is normal force component, delta sigma y 

y by del y this is normal force component, plus del tau y z by del z this is another shear 

stress component acting in the Y direction. This is equation of motion for Y direction 

similarly, in Z direction the equation of motion, is in Z direction. We have considered the 

displacement is noted by w. So, corresponding acceleration will be del 2 w by del t 

square.  



So, times rho will be equated with respect to del tau z x the shear stress in z direction by 

del x, plus del tau z y by del y plus the normal stress in the Z direction result in normal 

stress in the Z direction del sigma z z by del z. So, this is the easy way to remember this 

equation, the easiest way to remember this equation that, the normal component of the 

corresponding stress along that axis and the corresponding shear stresses along that axis 

to be considered, which has to be equated with respect to the acceleration, or the in other 

words the inertia component in that particular direction. Now, before simplify further 

this equations, let us go through quickly our known expressions for various modulus 

which we have studied in our solid mechanics courses, definitely in our undergraduate 

curriculum. 
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So, all components of stress and strain for an isotropic linear elastic material follows 

Hooke’s law and that can be expressed in terms of two Lame’s constants. Lame’s 

constants are denoted by these two symbols, lambda and mu. Lambda and mu are the 

two Lame’s constant. So, in terms of Lame’s constant the corresponding expressions for 

various modulus which we use are Young’s modulus E, which is given by this 

expression new times 3 lambda plus 2 mu by lambda plus mu. The expression for bulk 

modulus K is given by lambda plus 2 mu by 3.  

The expression for shear modulus G is nothing but that mu, and the Poisson’s ratio 

expression in terms of Lame’s constant mu is given by lambda 2 times lambda plus mu. 



So, these are the standard expressions which we can obtain in any solid mechanics book, 

which we have studied in our undergraduate. Now, using this standard notation of 

various modulus, what we can do? 
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In terms of lame’s constant the equation of motion, what we have derived just now in 

three dimension in the X direction that we can rewrite in terms of the strains, which can 

be written in this form. So, this is coming from the normal stress component, these two 

are coming from the shear stress component and this was as usual on the left hand side 

remains same. That equation of motion what we have derived in X direction, if we 

rewrite them in terms of strains, that is from stresses we have converted them in terms of 

strains using the Lame’s constant because we are assuming the Hooke’s law is applicable 

for the material.  

So, that is why we can write those stress expressions in these form, now the normal 

strain and shear strain they can be expressed in these forms, that we know. The normal 

strain in X direction is nothing but del u by del x, where as the shear strain epsilon x y 

can be written in terms of del v del x plus del u by del y, that is the partial differential of 

the corresponding displacement with respect to the other axis system. If you note it 

properly you can easily remember, when we are taking the shear strain in X direction we 

are differentiating the displacement in Y direction with respect to x, and when we are 

considering the shear strain with respect to Y direction we are differentiating it with 



respect to y, but displacement in the direction of x. That sum will give us the 

corresponding shears strain, right? 

Similarly, for epsilon x z, we can get at del w by del x plus del u by del z. Now, if we 

substitute this strain displacement relationship in this previous equation, how this 

equation will be further simplified and reduced to? That is the reduce form, that is rho 

del 2 u del t square left hand side remains same, the right hand side now we are putting 

the expression for all these shear strain, and normal strain so this is shear normal strain, 

these are shear strain. We can express them in this term of Lame’s constant and simplify 

it further like this, where this grad square, this symbol we call grad square u, grad square 

is nothing but the Laplacian operator which is nothing but del square by del x square plus 

del square del y square plus del square del z square.  

So, what this equation is actually? It is rho del square u by del t square equals to lambda 

plus mu times del epsilon bar by del x, what is epsilon bar? That is the principle strain, 

the combination of the three strains in the three directions, plus mu times del square u by 

del x square plus del square u by del y square plus del square u by del z square. That is 

what is the total equation in X direction, in terms of using this Laplacian operator grad 

square. So, similarly, what we can write, the equation takes the shape for other two 

directions of y and z like this. So, we can simply directly write this in Y direction it will 

be rho del 2 v by del t square equals lambda plus mu times del epsilon bar by del y plus 

mu times grad square v.  

Now, this operator has to be means, this second order differential partial differential has 

to be executed with respect to the v because we are considering this equation for Y 

direction, Y axis direction. Similarly, for Z axis direction the equation will take the form 

of rho del 2 w by del t square equals to lambda plus mu times del epsilon bar by del x 

plus mu times grad square w. Now, we are taking this Laplacian operator with respect to 

the component of displacement in Z direction that is w, okay? 
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So, now the solution of this 3 d equation of motion for the first type of wave, it can be 

calculated, how? By differentiating each of the above three equations with respect to x y 

and z, and then adding them together. So, what we are doing? The previous three 

equations what we got in the direction of X, in the direction of Y and in direction of Z. 

Now, we are differentiating with respect to x y z and adding them together to get the first 

type of wave which finally, will give us on simplification. This is the equation takes the 

shape in the simplified form, further on rearrangement we can write it like this, del 

square epsilon bar by del t square equals to lambda plus 2 mu by rho grad square epsilon 

bar, which will now help us to further simplify the equation in this form.  

That the dilation of wave propagates through the body at a velocity v p, which is nothing 

but primary wave velocity, which is expressed as root over lambda plus 2 mu by row in 

terms of lame’s constant. 
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Now, we know the Lame’s constant in terms of other parameters, that is shear modulus 

and Poisson’s ratio. If you put those expressions, what I have shown just few minutes 

back, then in terms of shear modulus and Poisson’s ratio. This is the most useful 

expression, which as a geo technical engineer or in our soil mechanics, we generally use 

the expression for primary wave velocity v p is given by root over G by rho into 2 minus 

2 mu by 1 minus 2 mu. G is the shear modulus of the soil, rho is the density of the soil 

and mu is the Poisson’s ratio of the soil.  

And remember this expression is valid for mu value less than 0.5, so this is once again I 

am telling, what is the limiting value of the Poisson’s ratio for a soil, which can be used 

for the computation of the primary wave velocity travelling through the soil media. So, 

that completes us the first type of wave which we have termed as the primary wave. 

Now, we can do another thing to get the second type of wave, what we can do? 
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What we did earlier for the first type of wave? We differentiated all the three expressions 

in X, Y, Z direction and add them together because what happens when the longitudinal 

wave or compressional wave it passes through, that is when p wave passes through it get 

added because it is going in the same direction. Whereas, when the second type of wave, 

what we are considering as a shear wave or the torsional wave, when it travels, what we 

are doing here, look at here in the slide. 
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The solution of the second type will give us we differentiate it for the x axis equation 

what we have obtained the equation in X direction, we have to differentiate that with 

respect to y and z and subtract one from the other one, so that will give us the net effect 

of the shearing on X direction, fine? In the similar way the other two direction equation 

also we can obtain. So, that is the way you can see, the difference between the other two 

directions have been written here, to get the secondary wave propagation in X direction. 

So, this the generalized form of the secondary wave equation, which can be simplified 

and written in terms of this parameter, where this term mu by rho is expressed as v s 

square. 
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So, the distortional wave it is also called as distortional wave because it creates a torsion 

in the media through which the wave is travelling through. So, distortional or s wave at 

propagates through the solid at a velocity v s, which is given by root over mu by rho, mu 

is the that Lame’s constant, which if we put in terms of our modulus what expressions 

we have obtained earlier is given by root over G by rho. Now, if we compare this two 

velocities that is primary wave velocity and secondary wave velocity, what we can 

write?  

The ratio of these two velocity that is v p by v s, can be simply written in this form. That 

is root over 2 minus 2 mu by 1 minus 2 mu. So, this is another excellent expression, 

which is very frequently used in soil mechanics or soil dynamics, why? Because later on 



when I will discuss in our module four, about dynamic properties of soil, that time I will 

mention most of the times we measure this value of v s in the field or in the laboratory 

for a particular soil, under subjected to different earthquake or dynamic motion or 

dynamic loads. So, we measure the value of v s, but simultaneously we hardly measure 

the value of v p, what we do? We if we can identify if we can determine the value of the 

Poisson’s ratio of the soil, then using this simplified expression we can easily obtain the 

value of v p in that soil media. So, that is why this equation is very much of use in 

practice. 
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Now, coming to some other different types of waves when waves in semi infinite body. 

Semi infinite body you all know, that is in one direction it is going to infinity whereas, in 

another direction there is a boundary like, our earth surface or ground surface. So. below 

ground it is extending to infinity, but at ground surface it is a ending there. So, Rayleigh 

wave motion induced by a typical plane wave that propagates in X direction and wave 

motion does not vary in the Y direction. So, the Rayleigh wave is a kind of wave which 

travels in this semi infinite body and its travel direction is shown here in X direction, also 

it is variation with respect to depth is shown, you can see here.  

Whereas, in this y direction there is no variation of the wave, there is a characteristic of 

this Rayleigh wave. And if you notice it minutely, what you can see? The wave velocity 

is pretty high very close to the ground surface very close to the free surface, whereas as it 



goes to infinity in this direction the velocity drastically reduces. So, we will come to the 

specific characteristics of this type wave pretty soon in some other slides. 
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How to write down the equations of Rayleigh wave and how to compute this Rayleigh 

wave? Let me tell you in a simplified way, if the wave is harmonic with natural 

frequency, say omega what we have generally considered and wave number, let us say it 

is denoted by K suffix R because now we are discussing with Rayleigh waves, so that is 

why the wave number has been represented K suffix R. It propagates with a Rayleigh 

wave velocity and in that case the velocity is expressed by v suffix R. Earlier for primary 

wave we have used v p, for secondary wave we has used v s.  

Now, for Rayleigh wave we are using v r, v r is similar way can be given by omega by K 

R. So, this is the relation what we have seen earlier also, it is true for any velocity related 

with frequency and wave number, right? Now, we are defining another term K R s. What 

is that K R s? It is the ratio of the Rayleigh wave velocity to the s wave velocity, so K R 

s is nothing but v R by v s, which is given as omega by v s times K R because v R is 

nothing but with respect to the wave number for Rayleigh wave equation, so omega by K 

R.  

Now, if we take the relation or ratio between Rayleigh wave and primary wave what we 

can write v r by v p can be expressed like this where v p can be expressed in terms of v s 

and Lame’s constant in this form, from our known relation between v s and v p. Now, 



this is denoted as alpha times K R s simplified in terms of alpha times K R s. So, what is 

alpha? Alpha is nothing but root over mu by lambda plus 2 mu, where these two are 

Lame’s constant, if we put there expressions for our known Poisson’s ratio expression 

and other sheer modulus expression, what the simplified form we will get? That is 1 

minus 2 mu by 2 minus 2 mu, which is nothing but v p by v s, right? Just now we have 

seen this alpha is the ratio of v p by v s, sorry alpha is the ratio of v s by v p because this 

is, this has come in the denominator.  

So, 1 minus 2 mu by 2 minus 2 mu, this alpha is the ratio of v s by v p, which also can be 

seen if we put this expression. s which will now help us to further simplify the equation 

in this form that the dilation of wave propagates through the body at a velocity v p which 

is nothing but primary wave velocity which is expressed as root over lambda plus 2 mu 

by row in terms of lame’s constant, So, this will be v R by v s. So, alpha has to be v s by 

v p, so that it equates with respect to this one, fine? 

(Refer Slide Time: 50:08) 

 

Finally, what is the final equation used to solve for Rayleigh wave velocity? To compute 

the Rayleigh wave velocity this is the expression, that is K R s to the power 6 minus 

eight K R s to the power 4 plus 24 minus 16 alpha square times K R s square plus 16 

times alpha square minus 1 equals to 0. So, in this K R s, we have already defined ratio 

of v R by v s alpha is nothing but ratio of v s by v p. So, in that way if for different 

values of Poisson’s ratio, if we want to see how these three velocities, about which we 



have studied just now, that is p wave s wave and Rayleigh wave, how they vary with 

respect to v s.  

Because see this K R s and alpha both are expressed in terms of v s, right? because alpha 

is ratio of v s by v p and K R s is also the ratio of v r by v s. So, everything is expressed 

in terms of shear wave velocity, why? again to iterate a, reiterate this one, that in 

laboratory and field we generally measure the shear wave velocity. So, if we can 

compute the shear wave velocity of the soil, then easily we can compute the primary 

wave velocity and the Rayleigh wave velocity of the soil, using these two expressions. 

And how the variation behaves for different ranges of Poisson’s ratio? Let us look at this 

chart, So, with variation of Poisson’s ratio you can see this v can be v p, v s or v r 

depending on which line you are selecting, okay? So, that is why when we are talking 

about s wave, this is a line which is nothing but at constant value of one because this 

ratio obviously will be one, v s by v s, irrespective of Poisson’s ratio. However, you can 

see the p wave values starting here like this and here it will become infinity because at 

0.5, it is not giving any particular value. 

So, that is why the equation is not valid at value of mu equals to 0.5 but just lower than 

that it is valid. Also the Rayleigh wave, if you see the variation of Rayleigh wave with 

respect to s wave, it is pretty close. The velocity of Rayleigh wave is very, very close to s 

wave velocity, it depends on mu value but for all practical purposes we can assume 

Rayleigh wave velocities about 90 percent of shear wave velocity. So, that is the 

practical design consideration most of the time we geotechnical engineers we use. So, 

practical value used by geotechnical engineers for Rayleigh wave velocity is about 0.9 

times the shear wave velocity, though the exact value can be easily computed using this 

expression by solving this expression and depending on the values of Poisson’s ratio. 

 


