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Let us start today’s lecture on soil dynamics. Before we start our lecture today; let us see 

the possible solution for quiz one. The quiz one is already been taken. So, let us look at 

the slide. The questions for quiz one for our course full marks was hundred and duration 

was one hour and all questions has to be answered. 
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Now, let us move to the third problem. So, this was the third problem. What it said? A 

single degree of freedom undamped system is subjected to a forced vibration with a 

constant amplitude harmonic loading of P cosine lambda t. If the system had started 

vibrating from absolute stationary state; that is the initial displacement and initial 

velocity both are 0, starting from the first principle derive the expression for the final 

displacement response of the system. And then draw the displacement response profile 

for a limiting case, when the exciting frequency that is lambda approaches the natural 



frequency of the system. So, let us do this solution starting from our basic principle or 

first principle. 
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So, the single degree of freedom model undamped system we are drawing now. So, m k 

this is our x of t it is subjected to a forced vibration a with P cosine lambda t. So, that is 

the basic single degree of freedom model given to us. So, what we know? The equation 

of motion is given as m x double dot plus k x equals to P cosine of lambda t. That is our 

equation of motion or x double dot plus omega square x equals to P by m cosine of 

lambda t where this omega is root over k by m is natural frequency. Now, to get the 

solution x of t is composed of x of t complimentary function plus x of t particular integral 

to get x of t complimentary function. What we do? We equate it with 0. So, we can write 

down the equation x double dot plus omega square x equals to 0. 
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Now, let us say x t equals to e to the power s t is the form of the solution. So, we can put 

it in the expression s square e to the power s t plus omega square e to the power s t equals 

to 0 or s square plus omega square e to the power s t equals to 0. Now, e to the power s. 

T is non 0. Otherwise it will give trivial solution. Therefore, s square is minus omega 

square. Therefore, two roots of the equation. We will get s 1 s 2 as plus minus root over 

minus omega square which is nothing but plus minus imaginary number i omega. 

Therefore the complete solution, not complete solution complementary function that can 

be expressed as e to the power i omega t times a constant plus another constant e to the 

power minus i omega t because plus i omega and minus i omega; the two roots. 
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So, this equation as you know we have done earlier also in the class the solution can be 

expressed as A cosine of omega t plus B sin of omega t. The same thing we can express 

now. These constants we have to obtain later on because we have another part of the 

solution that is the particular integral. So, now, to get x of t particular integral what we 

do? First we assume some form of the solution. 

So, x P of t let us say is expressed as D cosine of lambda t plus E sine of lambda t 

because our given function is a harmonic function. So, that is why the solution we are 

assuming in the form of the harmonic expression. So, it will give us x double dot t as 

minus lambda square D cosine of lambda t plus E sine of lambda t. If we put this in our 

basic equation which is nothing but this one that is x double dot plus omega square x 

equals to P by m cos of lambda t. 

So, now, we are putting this that equation we will get minus D lambda square cosine of 

lambda t minus E lambda square sine of lambda t. That is x double dot plus omega 

square times x. So, D omega square cosine of lambda t plus E omega square sine of 

lambda t that is equals to P by m cosine of lambda t. And what we have learnt? That now 

we can equate the cosine components and sine components on the both sides. So, what 

we can get if we equate the sine components? It will give us E times omega square minus 

lambda square equals to 0 which will give us E equals to 0. Because this is not equals to 



0 omega is not equals to lambda. And what about the other constant D? For that we will 

equate the cosine terms, now equating cosine terms. 

(Refer Slide Time: 07:21) 

 

We can write d omega square minus lambda square cosine of lambda t equals to P by m. 

Therefore, D is P by m omega square minus lambda square. So, what is the complete 

solution? Therefore, x particular integral part is P by m cosine of lambda t by omega 

square minus lambda square because e is 0 the other component is not 0 there. Therefore, 

the total solution x of t is now a cosine omega t plus B sine omega t plus this particular 

integral P by m cosine of lambda t by omega square minus lambda square. 

So, that is the complete solution. Now we have to find out these two constants using our 

given initial condition. So, what are the initial conditions given to us? That it starts from 

absolute stationary state. 
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So, x at t equals to 0 is 0 and x dot at t equals to 0 is also 0 it is given to us. So, now let 

us differentiate this equation to find out the expression for velocity. So, this is the 

expression we obtain just now for the total solution of the displacement function. So, x 

dot t is nothing, but now we are differentiating this minus a omega sine omega t plus b 

omega cos omega t. Now, this one will give us minus P lambda by m sine lambda t by 

omega square minus lambda square. 

Now, we will put these values here. So, if we do that in this equation first what we will 

get? If we put the velocity at t equals to 0 is 0 this term vanishes because sine 0, this term 

remains it is B omega this is also sine 0. So, vanishes. So, x dot at t equals to 0 equals to 

0 will give us only B omega which will imply B is 0 because omega cannot be 0. So, B is 

0 fine. And now if we put the first condition of displacement equals to 0 at t equals to 0 

what we will get? X at t equals to 0 is 0. Let us look at the solution once again. This 

remains a this vanishes this remains P by m, omega square minus lambda square right. 

So, let us write it. 
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So, A plus P by m cosine of lambda t by omega square minus lambda square which will 

give us A as minus P by m cosine of lambda t by omega square minus lambda square. 

Therefore, the complete solution we can now write it as x of t equals to cosine of lambda 

t will not be there. Because it is one at t equals to 0 this is one minus P by m 1 by omega 

square minus lambda square. 

So, a cosine of omega t was the solution. So, minus P by m cosine of omega t by omega 

square minus lambda square plus B is 0. So, that component is not present and the third 

component is let me take the solution once again yes. So, A cosine of omega t. So, A is 

this part. So, cosine of omega t B is 0. So, it vanishes and this particular integral part 

remains. So, plus P by m cosine of lambda t by omega square minus lambda square or x 

of t is equals to P by m cosine of lambda t minus cosine of omega t by omega square 

minus lambda square. So, this is the final solution of first part of this problem. Number 

three. So, this is the complete final solution of the system. That is what it is asked that 

derive the expression for final displacement response of the system. This is the 

derivation and expression of the final response displacement response of the system. 

Now, what is the next part? In the next part it is asked also draw the displacement 

response profile, this profile not with this function. What is asked for a limiting case 

when this exciting frequency lambda approaches the natural frequency of the system? 
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So, what we can write it is asked to find out limit of x of t when lambda approaches 

omega. That will be limit lambda tends to omega P by m cosine of lambda t minus 

cosine of omega t by omega square minus lambda square. So, when it approaches this 

one from our basic concept of limit what we can derive this expression gives us P t by 2 

lambda M sine of lambda t. So, it becomes actually sine lambda t by 2 lambda when 

lambda tends to omega. This is the final response when it approaches exciting frequency 

approaches natural frequency. What does it mean? A kind of resonance condition is 

going to form. So, I asked you to draw this function with respect to time. So, I wanted to 

feel you that under a condition close to resonance. What will be the response of the 

system? So, let us draw this now. It is pretty easy to draw this function. Let me put it 

here. 
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So, t I am drawing this limiting value of x of t when lambda approaches omega. What 

happens when t 0 it starts from 0? And how this equation we can draw easily. This will 

be you remember when there is the two functions and one is the multiplication of the 

other one sine function is harmonic function and t function is linearly increasing function 

with a slope of P by 2 lambda m. 

So, how to draw this very easily? Let me extend this side of the axis also. So, linearly 

increasing lines I have drawn the slope of it is nothing, but this P by 2 lambda m right. 

Am just drawing the equation of y equals to c x where c is the slope of the line. So, this 

part I have drawn. Now there is another function attached to it which is sine of lambda t. 

So, the actual response is not this line, but a harmonic function like this. 

So, can you see what type of disaster it is going to happen? Means when lambda 

approaches omega of course, in resonance conditions we are going to get maximum 

displacement. So, that is what it is happening. It keeps on increasing. Actually this also 

goes to the next line. So, it follows that envelope fine. So, this is the final answer of the 

problem. 
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Now, let me move to the last problem of our quiz one. So, the fourth problem was a 

machine foundation was supporting a machine with a rotating eccentric mass which 

gives the design value of the maximum dynamic magnification factor as 1.2. The 

machine is now replaced with a new machine for the same foundation to support a 

machine subjected to constant harmonic loading. If the frequency ratio and the damping 

ratio remains same for the old and new systems compute the new dynamic magnification 

factor and also comment on the force transmissibility ratio of the new system. That is as 

a designer I want you to comment on the whether the new machine installed for the old 

foundation is safe or not. 
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So, let us start the solution of the fourth problem what it said initially the machine 

foundation was of rotating eccentric mass time and for that the expression for maximum 

dynamic magnification factor which is expressed like X M by m e in our usual term that 

maximum value was 1 by 2 eta root over 1 minus eta square we have derived this things 

we know this things this value is given to us as 1.2. So, only unknown is eta. So, solving 

this we can get eta 2 values we are getting one is 0.88 another value is 0.469 and 

imaginary values are not considered of course, as you know the damping ratio cannot be 

imaginary 

Now, from this again the value of eta equals to 0.88. That will not give a maximum DMF 

because in the previous lecture what we have understood? If eta is greater than 0.7; it 

always keeps on giving a no magnification assets. 

So, the chosen design value of eta is 0.469. So, this is our design value given to us. Now 

where this maximum DMF occurs for a rotating mass type system machine? It occurs at 

frequency ratio r equals to 1 by root over 1 minus 2 eta square fine. Now we know this is 

our design value of eta. So, put it here we will get the frequency ratio as 1.34. So, this 

was our old system. Now, what is done? The machine is changed, but foundation 

remains same. Now, the new machine is subjected to constant force type harmonic 

loading. But for the system the damping ratio and the frequency ratio is maintained as 



same as the previous case of old system. So, these two values remains same. It is asked 

what will be the dynamic magnification factor for the new system. 
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So, DMF for the new system for new system which is subjected to harmonic loading 

with constant amplitude that is given by 1 by root over 1 minus r square whole square 

plus 2 eta r whole square. Now we have already computed r is 1.34 and eta is 0.469 

because they remain same. 

So, just put this values we will get the DMF of the new system. It is of course, not the 

maximum because in earlier case where the maximum occurs for this case. It is not the 

point where the maximum occurs. So, this is the solution of first part. That is what it is 

asked that what is the new dynamic magnification factor and the last part says the 

transmissibility ratio; force transmissibility ratio that t r is given by root over 1 1 plus 2 

eta r whole square by root over 1 minus r square whole square plus 2 eta r whole square. 

That is the expression for transmissibility ratio. 

Now, eta is known, r is known. You put these values. We will get it is coming as 0.13 

which is much lower than 1. So, as a designer I asked you to comment on this. So, the 

new system will be very safe because it is transmitting much lower force than what it is 

subjected to the foundation. So, our foundation will be very much safe in the new 

condition also. So, that the comment you should provide as a designer at the end of this 

problem fine. So, with this we have come to the end of the solutions of forth is quiz one. 
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Now, we will start our today’s lecture with module 2 on vibration theory a quick recap of 

what we have learnt in the previous lecture. We have seen for any arbitrary excitation 

how we can compute the solution using the concept of Duhamel’s integral if it starts 

from absolute stationary state. It is similar to the concept of derivation for the impact 

loading. But it is considered in small infinitesimal strips and then integrating over the 

entire time for which the excitation is working we can get the complete response of the 

system. 
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Then we have seen the case of dynamic loading coming due to the taxing of vehicle on 

uneven guide ways. When a vehicle is moving at a constant velocity V and there is 

undulations on the ground. Then the distance travelled at a time t. 
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We have computed and then the final solution we have seen in this form which can be 

easily obtained depending on the profile of the ground which we have assumed as a 

harmonic profile. 
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Then we have seen vibration isolation. There are two types of vibration isolation force 

isolation and displacement isolation. And where are the applications, practical 

application on force isolation? In case of machine foundation we want to make our 

foundation safe with respect to the applied load to the machine. And the displacement 

isolation the practical application in terms of structure subjected to say under earthquake 

loading where the earthquakes come to the ground level. And applied displacement due 

to the earthquake should not be transferred or magnify at our super structural level. So, 

that is why we want to protect our super structure. So, that is the concept of using 

displacement isolation. 
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Then we have derived the expression for force isolation from which the expression of 

forced transmitted to the foundation to the force amplitude of force applied to the 

machine was obtained. And the expression is nothing, but exactly as transmissibility 

ratio. 
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So, we termed it as force transmissibility ratio which varies with respect to different 

frequency ratio and different damping ratio like this. And we have seen that the value of 

r greater than root two will always give us the transmissibility ratio, force 

transmissibility ratio less than one which is desirable for the system as a designer. 
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Similarly, for the displacement isolation we have seen if the displacement function for 

the ground displacement is considered as harmonic. Like this the transmissibility ratio 

can be expressed in the same form of the force transmissibility ratio. The expression 



remains same and that is why the distribution also remains same with respect to the 

frequency ratio and for different damping ratio values. 
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Then we have seen how the vibration measuring instruments are designed to measure the 

vibrations of the ground. 
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And the measurement of displacement can be carried out and this also varies a profile 

with respect to different frequency ratio. And for value eta greater than 0.7 whatever be 

the value of r, we have seen the this magnitude will be always less than 1. 
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Now, coming to today’s lecture we are starting with new subtopic multi degree of 

freedom system basic equation of motion. We want to formulate for multi degree of 

freedom system. So, let us do the derivation for the basic multi degree of freedom 

system. How we can address this problem? 
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So, let us draw the multi degree of freedom system. Here first this is mass M 1 damper 

and spring spring K 1 damper C 1 then mass M 2 mass M 2 damper C 2 spring K 2. Then 

mass M 3 mass M 3 damper C 3 spring K 3 and this is the fixed end. Now, what are the 



degrees of freedom of the system? This is x 1 t this is x 2 t this is x 3 t. So, I have drawn 

a system with 3 degrees of freedom x 1 x 2 and x 3 and to this the forces applied are 

external. Dynamic load applied are f 1 t on this first mass f 2 t on this second mass M 2 

and f 3 t on the third mass M 3. 

So, these are all the externally applied dynamic load on the system. So, this multi degree 

of freedom system, now if we want to derive the equation of motion for this basic system 

what we need to do? First thing, to draw the free body diagram of each component; that 

is for each mass; now we will draw the free body diagram. So, let us do that free body 

diagram for the first mass will be this is M 1 it is subjected to f 1 t as externally applied 

dynamic load. Now, x 1 t I have given at one particular instant of time in this direction. 

So, the forces of resistance will come and it will act like this f I will be M I x 1 double 

dot. This is inertia force. Then there will a spring force and a damper force. Now, how 

much will be the spring force spring force should be? K 1 times the relative displacement 

between this mass and this mass. So, x 1 minus x 2 and the damper force should be C 

times relative velocity between these two mass. So, x 1 dot minus x 2 dot. So, these are 

the forces acting for the first mass. So, this is FBD of mass M 1. 
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Now if we want to draw the free body diagram of the second mass M 2 what it should be 

for M 2? It is subjected to the externally dynamic load f 2 t. Now, x 2 is in this direction 

at one particular instant of time vertically upward we have taken inertia force will be M 2 



x 2 double dot in this direction. And what are the spring forces? This spring force and 

this damper force this spring force should be K 2 times. Let us look at here. Once again 

this spring force K 2 times relative displacement between this two masses and the 

damper forces will be C 2 the relative velocity between these two masses. 

So, K 2 times x 2 minus x 3 and these damper forces C times x 2 dot minus x 3 dot is 

there. Any other force yes because to maintain the internal equilibrium of this two 

system. Whatever the forces are acting from this mass M 1 to mass M 2 connected 

through this damper and spring that equilibrium internal equilibrium has to be 

maintained. So, whatever this damper force and spring forces are acting in this direction 

downward direction; the same magnitude forces must acting upward direction to 

maintain the internal equilibrium of the system fine. So, what will act? Here we will have 

this K 1 times x 1 minus x 2 and this is C 1. So, C 1 times x 1 dot minus x 2 dot. So, this 

completes the free body diagram of mass M 2. 

Now, the third mass. That is mass M 3 we want to draw the free body diagram. What are 

the forces acting on it? The externally applied dynamic load is f three t on this side we 

will have M 3 x 3 double dot as a inertia force because again we have taken at one 

instant the direction of moment like this. So, inertia force is in this direction and spring 

force damper force connected because of this K 3 and C 3. Now, they are connected to a 

fixed support. 

So, there is no relative displacement between x 3 and nothing is there. So, it should be K 

3 times x 3 and this should be C 3 times x 3 dot. Any other force yes we have to now 

maintain again the internal equilibrium between this mass M 2 and M 3. So, whatever 

these forces C 2 x 2 dot minus x 3 dot and K 2 x 2 dot minus x 3 dot where acting on 

mass two in downward direction. The same force in opposite direction must act to 

maintain the internal equilibrium because of the connectivity through this C 2 and K 2 

clear. So, we will have here K 2 x 2 minus x 3 and here C 2 x 2 dot minus x 3 dot. 

So, that completes the FBD of mass M 3. So, is it clear now how the free body diagram 

of each of the masses. We have drawn now from this free body diagram what we have to 

do we have to use D’almbert’s principle. So, now, let us use the D’almbert’s principle 

for each of this free body diagram for equilibrium conditions. We will consider for each 



of this masses and what we can write from FBD of mass M 1 which is expressed here are 

shown here. 
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So, using D’almbert’s principle we can write M 1 x 1 double dot in this direction plus C 

1 x 1 dot minus x 2 dot plus K 1 x 1 minus x 2. This is equals to f 1 of t. This is first 

equation we got using D’almbert’s principle for this free body diagram of mass M 1. 

Now, let us use the free body diagram of mass M 2. So, free body diagram of mass M 2 

is here. Now, with us what we can write M 2 x 2 double dot plus C 2 x 2 dot minus x 3 

dot plus C 1 x 2 dot minus x 1 dot plus K 2 x 2 dot minus x 3 dot K 2 into x 2 minus x 3 

plus K 1 x 2 minus x 1 equals to f 2 t. So, this is the second equation. Do you agree with 

me? What I have done this one is in upward direction this is in downward. So, I made it 

downward by using x 2 dot minus x 1 dot. Similarly, this also I made it downward K 1 x 

2 minus x 1. So, that is why all these terms I have taken in one side and the externally 

applied force I have taken on the other side. 

Now, from the free body diagram of the third mass we can use the D’almbert’s principle 

and write the equation like M 3 x 3 double dot plus C 3 x 3 dot plus C 2 x 3 dot minus x 

2 dot plus K 3 x 3 plus K 2 x 3 minus x 2 equals to f 3 minus t. That is the third equation. 

Here also what we have done? These two forces were acting upward. We make it 

downward by just changing the sign x 3 dot minus x 2 dot x 3 minus x 2. So, that is why 

we have taken everything on this side and these are the three governing equations we are 



getting using D’almbert’s principle for each of the three masses. Now, if this entire state 

of equation we want to put in a simplified form. What we can use? We can use the 

matrix form. Then we can represent these equations in a better way or in a easier way. 
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So, let us put this equation in a matrix form and let us see how it will look like in the 

matrix form. I have M 1 M 2 M three 0 0 0 0 0 0 with this the vector is acceleration 

vector x 1 double dot x 2 double dot x 3 double dot. Then I have the next matrix C 1 

minus C 1 0 minus C 1 C 1 plus C 2 minus C 2 0 minus C 2 C 2 plus C 3 and associated 

vector is velocity vector x 1 dot x 2 dot x 3 dot plus K 1 minus K 1 0 minus K 1 K 1 plus 

K 2 minus K 2 0 minus K 2 K 2 plus K 3 and associated vector is displacement vector x 

1 x 2 x 3 which is equals to the externally applied dynamical load vector f 1 t f 2 t and f 3 

t. 

So, you can see these are nothing, but the same equations one two and three we have 

written in the matrix form. So, in other words we can simply write it as M x double dot 

plus C x dot plus K x equals to f of t. What does it mean? Even for multi degree of 

freedom system the basic governing equation of motion the form of basic governing 

equation of motion remains same. That is mass times acceleration damper times velocity 

plus spring constant times displacement equals to applied dynamic load. Whatever we 

have seen in the single degree of freedom system, the same equation is valid for multi 

degree of freedom system. Only change is for single degree of freedom system. These 



were just a single quantity or values. Now, for multi degree of freedom system these are 

the matrices. That is this is the mass matrix this is damper matrix. This is stiffness matrix 

and for single degree of freedom system this acceleration velocity and displacement were 

just again a single parameter. In this case these are the vectors, acceleration vector 

velocity vector and displacement vector. Also this right hand side earlier was a single 

force single value force. In this case it is a forced vector for number of degrees of 

freedom. 

So, if suppose if you have a two degree of system what should be the size of mass matrix 

2 by 2? Size of this damper matrix 2 by 2, size of this stiffness matrix 2 by 2 and size of 

this acceleration vector 2 by 1. Size of this velocity vector 2 by 1 size of this 

displacement vector 2 by 1, size of this forced vector 2 by 1. So, for n numbers of 

degrees of freedom system we will have mass matrix with N by N damper matrix N by N 

stiffness matrix also n by n, whereas the acceleration vector will be vector of n by 1. This 

velocity vector will be of n by 1 and displacement vector will be n by 1. Similarly, the 

applied dynamic load vector will be of size n by 1. So, this is the general form of the 

equation governing equation of motion for a multi degree of freedom system? 

Now, in this case what you have seen all the matrices. This matrix what you have seen it 

is perfectly diagonal. In this case these are also symmetric matrix about diagonal. They 

are symmetric. Both damper matrix stiffness matrix mass matrix and this is absolute 

diagonal other elements are 0 other entries are 0. So, let us see whether this is the always 

case or not. Let us take one example through which we will show the effect of coupling 

of different parameters and if the different parameters are coupled. What we need to do 

to get the solution? 
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So, effect of coupling we are considering for different parameters. Let us take a simple 

problem of a rigid beam with varied cross sectional area which is having a mass of 

capital M attached to two spring say K 1 and K 2. And considering initially just an un 

damped system to show the effect of coupling and say this is the C G of the beam. So, 

this is center of gravity and the distance of the centre of gravity from this two ends are 

say capital L 1 capital L 2 and the total length of this bean is capital L. 

Now, these two springs are connected in such a way that the elastic center of the system 

is here. So, this point is E C. What is E C? Elastic center. How elastic center is defined? 

Elastic center is such that let us say from two ends the distances are this is small l 1. This 

is small l 2 elastic center is such that K 1 l 1 is equals to K 2 l 2. At that point that is the 

definition of the elastic center. Now, we will see that for this system two degree of 

freedom system. We are considering both rotation and displacement of the system. So, 

both rotation and displacement of the system, we are considering for this which is giving 

us two degree of system. Now, selection of the axis for the rotation is extremely 

important. Why? Let us see. What I said the selection about which this beam will rotate 

the axis will rotate extremely important for this problem to know the effect of coupling. 

Why it is? So, let us see. 
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So, we can assume the choice of co-ordinate system. What do you say this as choice of 

co-ordinate system with respect to the rotation of the beam? We are considering the 

different cases. The first case I am considering when the rotational axis passes through 

the center of gravity of the system. What does it mean? If I just draw it like this what I 

want to say the line diagram, I am drawing it has rotated about its C G. 

So, about C G its rotation is angle is theta. So, this is the center of the gravity. So, what 

has happened? The two degrees of freedom for this beam I am considering it has 

displaced vertically down at a particular instant. So, this is the direction of motion I am 

considering. It has displaced as well as it has rotated and for that rotation we are 

considering theta it has rotated above its center of gravity. So, this is the case I am 

considering here. So, what will be the free body diagram for this system? If I draw the 

line diagram this was the location of our C G. Earlier, now the beam has moved to a new 

position like this and it has rotated above this C G and that angle of rotation we are 

considering as theta. 

So, it has moved down as well as it has rotated about the center of gravity. What are the 

forces should come on the system at C G? We will get suppose if the vertical moment up 

to this point C G is y, then there will be a vertical inertia force M y double dot acting at 

the C G because of its vertical movement also it has rotated. So, there will be rotational 



inertia force also which will try to put it back to its original position; so i theta double dot 

in this direction. 

So, that it goes back to its position. Now, two springs are connected at the two ends 

spring forces will act. What will be the spring force at this end? It will be vertically 

upward because it goes back to its original position try to. So, K 2 times what is the 

displacement for this spring that is y plus L 2 times theta. Am I right? Because see the 

distances L 2 is from C G to this end; so L 2 times theta fine and this side it is L 1 times 

theta. So, this distance is L 2 and this distance is L 1 and another spring force that also 

will act vertically upward because see final displacement of this point is downwards. So, 

it will again try to put it up. So, it will be K 1 times y minus L 1 theta. This free body 

diagram is clear. So, if these are the forces, now what we can do? We can write down the 

moment equilibrium about the C G. So, if we write the moment equilibrium about C G 

what we should get? 
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So, sum of moment about that C G should be equals to 0. So, let us put it here. So, that 

we can see all the forces anti clock wise I theta double dot; so, I theta double dot. This M 

y double dot is not creating any moment about the C G. What else it is creating? This is 

also creating anti clockwise. So, K 2 L 2 y plus L 2 theta and this is creating clockwise 

moment. So, minus K 1 L 1 y minus L 1 theta equals to 0 and another equation we can 

use which is sum of vertical forces is equals to 0 for the system which will give us M y 



double dot vertically upward. This is also vertically upward vertically upward. So, plus 

K 1 y minus L 1 theta plus K 2 y plus L 2 theta equals to 0. 

So, this two equation we got, which we can help us to get the two degrees of freedom 

solution which is in terms of y and theta those are the two degrees of theta right vertical 

displacement and rotation. So, this one we can represent it in matrix form very easily M 

0 0 I. Then the acceleration vector y double dot theta double dot plus K 1 plus K 2. Then 

K 2 L 2 minus K 1 L 1 then K 2 L 2 minus K 1 L 1 then K 2 L 2 square plus K 1 L 1 

square times y and theta equals to 0. We considered the free vibrations case. So, this is 

our mass matrix. This is stiffness matrix. You can see mass matrix is diagonal. 

Symmetric stiffness matrix is symmetric about this. These two are same elements, but it 

is coupled can you follow these two gives us the two equations M y double dot then with 

theta nothing is there K 1 y plus K 2 y then this 1 K 1 minus K 1 L 1 theta k plus K 2 L 2 

theta equals to 0. This is this equation and the second one is 0 with this I theta double dot 

and this one is K 2 L 2 y minus K 1 L 1 y plus K 2 L 2 square K 2 L 2 square theta. This 

gives K 1 L 1 square theta equals to 0. 

So, with this we have seen for this case mass matrix is uncoupled, whereas, the stiffness 

matrix is coupled. Now, we can consider the other cases with different center for the 

rotation. That is for the first case we have considered the C G as the point of rotation. 

Now, if we take other any other point say elastic center as point of rotation what should 

be our equation of motion? And then we will see any other point say any corner of the 

beam we have taken point of rotation. Then what should be the equation of motion? So, 

this depends on the choice of the coordinate system. That we will see in the next lecture. 


