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Let us start today’s lecture of Soil Dynamics, we are continuing with our module 2 of 

Vibration Theory. 
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What we had learnt in the next lecture, let us quickly go through a small recap, force of 

excitation due to rotating imbalance we have learnt in the previous lecture. That is if the 

total mass of a system is capital M, and there is a rotating components with eccentricity e 

from the center of that mass of a rotating mass of small m with exciting frequency of 

lambda we have used in our derivation, here it is omega it is given. So, the equation of 

motion boils down to this form, where the forced vibration is expressed in this pattern, 

which is harmonic in nature with amplitude of this much value. That is mass of the 

rotating component, times the eccentricity, times the square of the exciting frequency is 

the amplitude of that exciting load. 
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From which we have seen how we can express the dynamic magnification factor. 
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And that dynamic magnification factor, how it varies with respect to the frequency ratio, 

and here the peak of the maximum dynamic factor or DMF occurs, little after the 

frequency or ratio of 1, that is frequency ratio little above 1. And when r tends to infinity, 

the value of that DMF approaches 1, and when r is very close to 0, than the DMF value is 

also very close to 0, at 0 it is exactly 0. And these are the patterns for different damping 

ratio, for damping ratio equals to 0 that is for undamped case, at frequency ratio 1 we get 



the value as infinity. But for damped system that is non-zero values of damping ratio, we 

get a finite value or maximum values of this DMF at r little above 1. 
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How the phase angle varies with respect to frequency ratio, that also we have seen how it 

varies, and it varies from frequency ratio at 0, the phase angle is 0, and when frequency 

ratio tends to infinity, the phase angle approaches 180 degree. And when frequency ratio 

is 1 at that point, the phase angle is 90 degree, and it varies accordingly the damping 

ratio of the system. 
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Also we have computed what is the maximum dynamic magnification factor, and at 

which value of that frequency ratio it occurs. We obtain that the value of frequency ratio 

where it becomes maximum is 1 by root over 1 minus 2 eta square, where eta is the 

damping ratio of the system. And the value of that maximum dynamic magnification 

factor is 1 by 2 eta root over 1 minus eta square. 

And when we have compared this system with our previous system, we have considered 

that is single degree of freedom system subjected to harmonic forced vibration. In that 

case whatever DMF value we obtain, and in this case of rotating imbalance, we got the 

maximum value of the DMF, magnitude of the maximum value of DMF is same. 

Whereas, the location of the frequency ratio at which point that maximum is reached is 

varies; one is reciprocal to the other one. 
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Also we have seen the concept of what is known as half power band width method, it is 

an experiential method to determine the damping ratio of a system. And using this 

concept we can find out the damping ratio, based on the applied external frequency and 

the natural frequency of the system expressed in this way. 
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Now, coming to our new topic today, we are starting with a terminology which is called 

Transmissibility Ratio or in short it is expressed as TR. So, what is transmissibility ratio, 

transmissibility ratio is defined, as the ratio between the amplitude of the transmitted 

force f T, and the amplitude of force applied to the system or to the structure. So, in 

mathematical form, the transmissibility ratio is expressed as the maximum value, this is 

the amplitude of f T max, which is transmitted to the system divided by the amplitude of 

the force, which is applied to the system. 

Now, let us see how we can obtain the expression for transmissibility ratio, it is deriving. 
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So, let me draw a single degree of freedom system here, with a rotating imbalance, so I 

am considering a system which is having a rotating mass of small m, and this is lambda t, 

e is the eccentricity and capital M is the mass of the total system, this is stiffness k, this is 

damping c. So, the transmissibility ratio TR, it is expressed as the maximum value of 

force transmitted divided by the amplitude of the force applied to the system. 

And how much is the amplitude of the force applied to the system; that is m e lambda 

square, we have derived in the previous class. That, what is the amplitude of the force 

applied to the system, that is mass times eccentricity times, that applied frequency square 

that gives us the amplitude of the force applied to the system. And how much force is 

transmitted to the system, force transmitted to the system means, it is coming from this 

spring and this dashpot. 

So, this spring and dashpot, how much force maximum force it can transmit that will be 

nothing but resultant of how much force the spring is transmitting to the base of the 

system, that is K times x, if x is the displacement of the system. And how much force is 

transmitted by the damper that is C times x dot, so resultant of this two force will give us 

the force transmitted to the base of the system. Now, remember these two forces are not 

acting in the same direction; they are orthogonal to each other, because we know 

displacement function and velocity function, and they are acting orthogonal to each other 

right. 



So, what will be the value of FT max that will be, this x if we express in terms of 

maximum value we are taking, so K times say capital X times some function, some 

harmonic function. So, we are expressing x as amplitude times some function, whatever 

resultant we obtain in the dynamic case, after solving we got some steady state response 

x s t, in terms of some amplitude times, some harmonic function, do you remember that. 

So, if it is that then the maximum value will occur only for the amplitude component, so 

that is what I am taking here. 

So, it will be the resultant of these two, so K X whole square plus C, then lambda X 

whole square, because if we differentiate this expression of displacement function, 

steady state displacement what we get, the velocity will come, the lambda factor 

involved in the harmonic function will come out. So, lambda times X will be the 

amplitude for the velocity. So, the maximum value of the velocity will be C times, 

lambda times X, now these are the two forces acting orthogonal to each other. 

So, the resultant of them should be just root over square of these two forces. So, that is 

the resultant force maximum, which is getting transmitted to the base of the system am I 

right, see if we simply this is what we can get on simplification, let me write it here 

again. 
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So, F t max is given by root over K X whole square plus C lambda X whole square, 

which we can simplify like this K X we can take out, 1 plus c lambda by K whole square, 



I have taken out K X, so I am dividing it by K X, so that is why X vanishes. So, the 

transmissibility ratio is nothing but F t max by m e lambda square, if we put this 

expression as simplify finally, we can get this expression it will give 1 plus 2 eta r whole 

square by root over 1 minus r square whole square plus 2 eta r whole square. So, that is 

the expression for transmissibility ratio for any system. 

And you can see, transmissibility ratio as it is expected will be a dimensionless 

parameter, because it is a ratio of the two forces, force transmitted to the base of the 

system to the force applied to the system. And it is function of the frequency ratio, and 

the damping ratio of the system. So, now if we look at the slide, you can see here, the 

transmissibility ratio what we have given, this is the final expression in terms of this is 

the frequency ratio, and this is the damping ratio, and it is dimensionless. 

And why this transmissibility ratio is important for our design aspect, because the 

objective is to choose the support that is support involved with the stiffness, and the 

damper. When we provide a foundation what we make sure, what is the stiffness 

provided by the foundations soil system, and how much damping is provided by the 

foundation and the soil system.  

So, we have a control on this parameters K and C in the design such that, the 

transmissibility ratio is as small as possible why, because transmissibility ratio small 

means, this is your given force to the system on which hardly you have any control as a 

civil engineer, that is provided by the machine manufacturer or the supplier of the 

machine. 

What you can do you can design a system in such a way that the force transmitted to the 

base of the system, in other words when we are handling with the foundation system, the 

force transmitted to the base of the foundation should be minimum right. So, that 

minimum dynamic load is transmitted finally, to the system or to the foundation. So, we 

want this numerator F t max to be minimum or as small as possible, to have that we can 

have a control on either support condition K or C. 

Now, the mass aim of the structure and the frequency of the load that is lambda for our 

case when we have derived, these are imposed it is given. The problem is to choose a 

support such that, the stiffness and the damping ratio gives us the minimum value of this 

transmissibility ratio; that is the basic concept of the design. We will again discuss this 



and we will come to the concept of vibration, isolation, the same methodology used later 

on. Now, we know the expression of this transmissibility ratio. 

Let us plot how it varies with respect to the frequency ratio, how it should look like, let 

us see here, this is our frequency ratio and this is the values of transmissibility ratio. Let 

us look at this sheet here, when r value is 0, frequency ratio is 0, whatever be the value of 

our damping ratio, how much is the value of the transmissibility ratio, this is 0 so this 

comes 1, this also 0 vanishes, this 0 vanishes. 

So, one transmissibility ratio at frequency ratio, so we can see r equals to 0 gives us TR 

equals to 1, whatever be the value of damping ratio, and when r tends to infinity what 

happens to the value of transmissibility ratio, it tends to it tends to infinity it tends to 0. 

And when r equals to 1, in that case if we consider the undamped system equals to 0, and 

r equals to 1 what should be the value of TR, infinity. If we put r equals to 1 here this 

becomes 0 eta 0. So, 1 by 0 we get transmissibility ratio as infinity, but if eta is non-zero 

obviously, we cannot get a infinite value, but it will give us some maximum value. 
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So, let us look at the plot on this slide once again, you can see it starts form 

transmissibility ratio equals to 1, when frequency ratio is 0 irrespective of the value of 

the damping ratio. And it attains it maximum for undamped case it goes to infinity at r 

equals to 1, and for damped system it attains a peek little before r equals to 1 that is r 

little less than 1, the maximum is obtained. Here also you can easily find out, what is the 



value of the maximum TR at which value of the r, just you need to differentiate the 

expression of TR with respect to r. 

And then it approaches to 0 at very high value of r, and you can see there is another point 

where the transmissibility ratio becomes 1, you can check at which value of the 

frequency ratio, the transmissibility ratio will become 1 irrespective of the value of 

damping ratio. So, please do this assignment that check what is the value of r, when 

transmissibility ratio becomes 1 if you solve, it is very easy exercise, I can give you the 

hint, let us look at this sheet. 

We will put transmissibility ratio TR equals to 1 here, equate it with equals to 1, then you 

simplify it it will give you two values of r, because it is a second order equation. So, you 

will get two roots of r, one value will be r equals to 0 which already we have seen, and 

the other value will be non-zero value of r that value you need to find out. 
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So, now let us move to our next subtopic, that is response to arbitrary step and pulse 

excitation. So, we have seen the cases of forced vibration with harmonic excitation with 

rotating imbalance. Now, we are coming to arbitrary excitation, state excitation, pulse 

excitation; that is all the possible types of excitations; and in those cases, how to obtain 

the solutions and things like that, we will see now. 
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So, let us start drawing the basic system here, basic single degree of freedom system with 

mass m, stiffness K, damper C, we have single degree of freedom x of t which is 

subjected to force f of t. Now, f of t is any kind of force, let us say we are defining f of t 

is something like this, what does it mean that the forced vibration is starting at time t a, 

and then it maintains a constant value with respect to time. And let us say the magnitude 

of this is unit magnitude, now I will define it in mathematical function which is known as 

this type of loads is called heave sides step function. 
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So, what is heave sides step function, let us move it little up, this type of function is 

known as heave side step function and how it is expressed, it is expressed 

mathematically like this, this is equals to some function U t minus t a. The heave sides 

step functions is a expressed mathematically in this form. The magnitude of which is 

equals to unit unit magnitude, when t is greater than t a right, from this picture we can 

write this, when t greater than (( )) magnitude is unit.  

And it is magnitude is 0, when t is less than t a, and what happens when t equals to t a 

how we compute, we just take the average of these two right, so we write it is half when t 

equals to t a to maintain the continuity at this point, we take that F t is half when t equals 

to t a. 
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So, now how we write down the equation of motion for this system, the equation of 

motion is m x double dot plus C x dot plus K x equals to U of t considering this heave 

side step function. Now, U of t represent a unit load, instead of unit load if a load F is 

applied what we should write, F of U t is that clear. So, if there is a unit load, we express 

that function in terms of U of t instead of unit load if there is a magnitude of force F, then 

mathematically we can write it as f times that function. 

And then we can use the initial conditions, as usual we do that is x at t equals to 0 is x 

naught, and velocity x dot and t equals to 0 is x naught dot. Now, let us see what are the 

different cases we can solve from this situation, so first let me solve case 1 that is a 



constant load constant load F naught is applied to the system. So, what does it mean, the 

variation of that applied dynamic load F of t with respect to time is something like this, 

so for this forced vibration, what should be the equation of motion. 
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And let us consider for this system, the initial conditions given to us are, let us say initial 

conditions given to us that x dot is, x naught is 0 and x naught dot is 0, that is the system 

is starting from absolute rest condition it is possible, because we are using the forced 

vibration, so that is why it can vibrate, so no problem. And the equation of motion will 

now change to m x double dot plus c x dot plus k x equals to F naught simple equation, 

which we can simplify now, as x double dot plus 2 eta omega x dot plus omega square x 

equals to F naught by m, we have divided both the sides by m. 

Now, we have to solve this equation, so solution is same like we have done earlier x of t 

complementary function plus x of t particular integral; and complementary function we 

know, if we equate it with respect to 0, we will get complementary functions. So, x of t 

complementary functions is already known to us, which is e to the power minus eta 

omega t. A cosine omega d t plus B sign omega d t where omega d is nothing but omega 

times d root over 1 minus eta square and of course, eta less than 1, the damper case we 

are considering, so this solution we know.  



We need to find out this particular integral, for this case with the constant value 

obtaining particular integral is very easy, if we apply our concept of basic mathematics, 

we will get the solution for particular integral x of t. 
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Particular integral is nothing but that constant divided by m omega square that is it, so 

what is the complete solution, the x of t complete solution is given by e to the power 

minus eta omega t A cosine omega d t plus B sign omega d t plus this particular integral 

F naught by m omega square. And on this total solution we have to now apply the initial 

condition, which is given to us that these all are 0.  

So, what we can do now, let us differentiate this total solution to get the expression for 

the velocity, what we will get, I am differentiating this first, it gives me minus eta omega 

e to the power minus eta omega t, it remains as it is A cosine of omega d t plus B sign of 

omega d t plus. Next I am differentiating this component, so e to the power minus eta 

omega t minus A omega d sign omega d t plus B omega d cos omega d t. 
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And this component if we differentiate of course, it will give us 0 plus 0 with this now let 

us put the boundary conditions of x at t equals to 0 is 0. Let me put the equation here, so 

it will be easy for us to follow. So, I am putting t is equal to 0, in this expression what I 

am getting here this gives us 1, A, this vanishes, this remains, so it gives us A plus F 

naught by m omega square therefore, A is minus F naught by m omega square.  

And now, so compute B let us take the second equation, this equation let me put it here, 

so that we can follow x x dot at t equals to 0 is 0 given to us by putting it t equals to 0, 

we are getting how much minus eta omega A plus from this how much we are getting 

this remains, so B omega d. Therefore, B works out to be eta omega a by omega d, now 

how much is A eta omega, A is minus F naught by m omega square, so let us put minus 

here F naught by omega d m omega square. 

So, this gets cancelled. Therefore, B is minus eta F naught by omega d m omega, so if 

we simplify what we will get minus F naught by k eta by root over 1 minus eta square. 

Because, omega d is nothing but omega times root over 1 minus eta square, so it 

becomes m omega square, m omega square means nothing but k. So, this is the 

expression for B, and this is the expression for A, so we get the complete solution now. 
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As x of t equals to F naught by k, hence 1 minus e to the power minus eta omega t cosine 

of omega d t plus eta by root over 1 minus eta square sign of omega d t. Let us look at 

the solution once again. So, that it will be easy for us to follow, this was our complete 

solution, we got the value of A as minus F naught by m omega square, and B we got as F 

naught by k minus F naught by k eta times root over 1 minus eta square. 

So, this was our B component F naught by k, F naught by m omega square is nothing but 

F naught by k that is nothing but our A and this part F naught by omega square is like 

this, so clear the complete solution. Now, if it is known to us the complete solution of the 

system, how the response should be like let us look like it, let us first take undamped 

case, for the case eta equals to 0. What is the solution for undamped case, the solution for 

x of t is nothing but F naught by k how much we are getting, 1 minus eta is 0.  

So, it becomes 1, this becomes omega d is nothing but omega d is nothing but omega 

times root over 1 minus eta square, so it becomes omega t. So, cosine of omega t here eta 

0, so everything vanishes, so that is our solution, so for undamped system subjected to a 

forced vibration with a constant force F naught, the solution is like this. And if we want 

to plot the response of it with respect to time, how it should look like, so we are plotting 

the response with respect to time t, the total response x of t, when t equals to 0 where it 

should start, at t equals to 0 it is 1, so value is 0. 



So, it should start from this point 0 0, when t equals to, let us see the variation 1 minus 

cosine omega t. How it should vary a cos function starting from this 0 a harmonic 

function, it is oscillating about which line, what is the maximum value, and what is the 

minimum value, minimum value is about this 0 that we have obtained. Maximum value 

will be 2 F naught by k, because maximum it can go up to 1, then it gives 0, minimum it 

can go to 0 on minus 1 when it becomes, then it becomes 2 F naught by k, and when it is 

1 then we are getting 0.  

So, three about this axis of F naught by k, let me draw two parallel lines, this is F naught 

by k, this will be 2 F naught by k, when it is giving minimum value of minus 1, we are 

getting 2 F naught by k. So, it is now a harmonic function oscillating like this, it is 

undamped case, so there is no damping it is keep on oscillating like this about this line, it 

is oscillating not about the base line of x t equals to 0. 

But, oscillating about the central line of magnitude F naught by k, and what is our F 

naught by k, it is nothing but the static displacement; so F naught by k is static 

displacement, and maximum it can reach up to 2 F naught by k. So, what we can say 

what is the DMF, for this case Dynamic Magnification Factor, maximum maximum 

value of the dynamic magnification factor for this case is 2. What is the definition of 

dynamic magnification factor once again, it is the the steady state or the dynamic 

displacement divided by the static displacement. 

And static displacement is F naught by k, and the maximum value of the dynamic 

displacement is 2 F naught by k, so that is why the maximum value DMF is 2. This is the 

response of this solution, which is pretty simple for us to draw for undamped case, now 

if it a damped case, how if the response should look like, let us see. 
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So, for a damped cased, when eta is not equals to 0, in that case the solution will already 

we have, so let us take the solution once again here, and let me plot it the response x of t 

with respect to the variation of t. We have seen from the previous solution, it oscillates 

about on the central line which is having a displacement of equal to the static 

displacement, F naught by k. And in this case, if we look at the solution, it is a harmonic 

function an exponential decay function, and a constant term; so here also it should 

oscillate about this value of static displacement. 

So, let us draw that line which is equals to f naught by k, and let us draw another line 

here, earlier for undamped case which we got 2 F naught by k is the maximum value, this 

is the 0 line, and this is the t equals to 0. When t equals to 0, it should start from again 

this origin 0 0 value, if we put we can get it, how the response should look like, it will be 

a harmonic function, oscillatory function, but with the decay function, and it will decay 

after it decays when time tends to infinity, the value of x t approaches to F naught by k. 

Because, these goes to zero but this component remains, so that why the oscillation I said 

will occur about the static displacement point. So, if we want to draw the response, 

earlier whatever we have drawn the similar response only change is the baseline of 

oscillation has now changed, so instead of the 0 baseline, it is now oscillating about the 

static displacement. So, the final response curve is like this, this is the final response of 

the system, with t tends to infinity which is the static displacement. 



So, in this case the DMF max, Dynamic Magnification Factor maximum what should be 

its value, we can compute it, it will be in the first cycle here, but it will be always less 

than 2, that we can comment directly from the looking at the figure. It will never reach 

this line, because there is decay function, so this envelop is nothing but the decay 

envelop. So, this oscillatory motion is for now clear to us, now there is some 

mathematical expression or the terminology that is used for this kind of response. 
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And let me now give you that, if we have U of t which is nothing but a unit load acting 

for constantly with respect to time that we have expressed as heave size stave function U 

of t. In that case the response what we get, response is known as, response is called 

INDICAL response, and mathematically it is denoted by G of t. What does it mean that if 

a single degree of freedom system is subjected to a heave side stave function of U of t, in 

that case x of t is called INDICAL response function and denoted by G of t function. 

So, for any force F, as we have used a constant forces of F naught in that case the total 

response should be F naught times that INDICAL response, INDICAL response is for a 

unit load. So, if there is F naught load is applied in that case we call it as F naught times 

F t F naught times the INDICAL response, this is just a terminology. So, you should 

know this is the terminology used for a single degree of freedom system, subjected to a 

forced vibration in terms of heave side stave function the response is known as 

INDICAL response. 
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Now, if we have finite time duration applied load, now we are considering case 2, the 

case 1 was the load was acting for infinite time constant load. But, in this case now what 

I am telling the variation of our F of t is something like this, up to say T c it is occurring 

which is quite possible, let a load of constant magnitude F is acting for a finite time T c 

on the system, and after that the load is removed and not acting on the system. Then how 

we write down the equation of motion for this kind of loading system, which is pretty 

easy x double dot plus 2 eta omega x dot plus omega square x equals to F by m, if t is 

between this. 

But, this equals to 0, if t is greater than T c that is what the equation of motion takes the 

form, it is a forced vibration case till the time T c, but beyond time T c is a free vibration 

case. So, how the solution of this type of loading to the system we can get and finally, we 

are interested about the response looks like or how the displacement function looks like 

with the respect to time. Let us see how we can do, this is nothing but composed of two 

parts as we have already given here, let me say this is our past equation is part a, and the 

second equation is part b. 
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So, the solution for part a is obtained just now, so solution of part a what was the 

solution that complete solution x of t is equals to F by k into 1 minus e to the power eta 

omega t cosine omega d t plus eta by 1 minus eta square under root sign off omega d t, 

that was the complete solution for part a. Now, how to go to part b, part a solution and 

response is known to us, to go to part b what we have to do, at t equals to T c we can find 

out x T c and the velocity x dot T c, from this expression. If we put the time T c up to 

which the load is acting, we can get the displacement and velocity. 

Now, this is, these two are the initial conditions for part b, so these are the initial 

conditions for part b. Because, look at the system here, when the time reached T c 

whatever is the displacement and velocity at that point is nothing but the initial condition 

for the second part when it is vibrating freely. 
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Now, for the second part, we know what is the solution x of t the complete solution here 

we do not have it is a free vibration case, so no need of particular integral the complete 

solution we already have minus eta omega t A cos omega d t plus B sign omega d t. 

Now, we can easily get this using the initial conditions of x T c and x dot T c from 

solution a, a solution a we get A and B, so that finally, gives us the total solution, so 

numerically or analytical we can compete easily, but putting these values here; so 

analytical solution complete solution is available to us. Now, if I want to find out what is 

the response that is how displacement function, varies with respect to time for the 

complete system, how it should look like, let me plot it. 
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This is variation of t, x of t I am trying to plot this is our 0 line, these two parallels lines I 

am drawing for F by k, and this is 2 F by k, initially what we have seen it will oscillate 

about this static displacement till the time T c. So, let us draw the exponential decay, let 

us say this is our time T c, so the function will move like this, now what happens here 

when it reaches T c at this point, we have some displacement it can stop here, it can stop 

here, it can stop here, within this range right, I have stopped somewhere for example, 

here. So, it is having this as initial displacement, and whatever be the slope is initial 

velocity for this second part that is beyond time t greater than T c. 

Now, how it should vibrate or oscillate it should vibrate about again a decay function, 

but it is baseline will now change, why because the solution for free vibration is this one, 

which oscillates about the baseline of x of t equals to 0 naught x of t equals to F by k 

right. So, now from this point it will start oscillating about this baseline not about this 

baseline, so what will happen just emetic diagram I am drawing, now it will follow 

another decay function from this point onwards, and from here it will simply drop to this 

baseline. From this baseline it will drop to this baseline, and follow that harmonic pattern 

with the decay function, that is the combined response of the system. 

Till time T c when the constant force was acting it was vibrating about it static 

displacement, about this line and beyond T c when it is removed and the case is free 

vibration, it is vibrating or oscillating about this 0 baseline clear, why the response 



should look like this. see if we have understood this one, we can now solve for any kind 

of heave sides stave function whatever I have given that any kind of constant load acting 

for any finite duration of time. Whether, from the beginning of the time or in between or 

starting from a finite time, and remaining constant throughout for any case, we can solve 

the problem right, with this we will end this lecture. 


