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Welcome to lecture series on advanced geotechnical engineering and we are in module 4 stress

strain relationship and shear strength of soils.
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And we have discussed in length about the following topics like you know introduce ourselves

with the stress state and Mohr circle analysis.
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And then we have defined pole and then we introduce ourselves to principal stress space and the

stress paths in p-q space then we have discussed about Mohr Coulomb failure criteria and its

limitations  and  then  different  stress  strain  behaviors  and  then  you  know  under  isotropic

compression cases and definitions of the failure and interlocking concept and then we introduce

ourselves  to  triaxial  behavior  and  stress  state  and particularly  in  difference  with  you  know

unconfined  compression  test,  unconsolidated,  undrained  triaxial  test,  consolidated  undrained

triaxial test and consolidated drained triaxial test and other special test.

We are not much covered on the special  test  and then we also discussed about the drainage

conditions. In this particular lecture we will be you know trying to concentrate on octahedral

plane and octahedral you know stresses and interpretation of the elastic modulus from the triaxial

test.  So in the lecture, in this lecture we are going to discuss about the octahedral plane and

elastic modulus from triaxial test.

We all know that you know the failure criteria’s actually which are used in soil mechanics for

actually deduced from advanced materials mechanics of materials.
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Especially the comprehensive of failure conditions or yield criteria are first developed for metals,

rocks and concrete. So this comprehensive failure conditions or yield criteria basically they are

developed for you know metals, rocks and concrete, now let us consider the application of this

yield criteria to soil and determine the yield surfaces on the principal stress space. 

Von Mises 1913 proposed a simple yield function and which is given as F=(σ 1- σ 2)ʹ ʹ 2+(σ 2-ʹ

σ 3)ʹ 2+(σ 3- σ 1)ʹ ʹ 2-2Y2=0, so if you if we name this equation as 1 and you know this was actually

proposed by Von Mises in 1913 and you know proposed basically a simple yield function and

that yield function is F is given by (σ 1- σ 2)ʹ ʹ 2+(σ 2- σ 3)ʹ ʹ 2+(σ 3- σ 1)ʹ ʹ 2-2Y2=0 where Y is nothing

but the yield stress obtained in axial tension.

However, the octahedral shear stress can be given by the relationship which is actually given

below which is  τ octahedral=1/3√(σ 1- σ 2)ʹ ʹ 2+(σ 2- σ 3)ʹ ʹ 2+(σ 3- σ 1)ʹ ʹ 2  so  τoct=1/3√(σ 1- σ 2)ʹ ʹ 2+

(σ 2- σ 3)ʹ ʹ 2+(σ 3- σ 1)ʹ ʹ 2. Now what we do is that if we square this one then you know we get

τoct2=1/32= you know (σ 1- σ 2)ʹ ʹ 2+(σ 2- σ 3)ʹ ʹ 2+(σ 3- σ 1)ʹ ʹ 2.
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Now if you substitute this in equation 1 what we get is that 32 τoct2=2Y2 that means that this term

will come outside and this term will become oct232 okay, then with this what will happen is that

32 τoct2=2Y2 and τoct can be given by √2/3 into yield stress that is τoct can be given by √2/3 into

yield stress. This means that what is the physical significance of this is that the failure will take

place then the octahedral shear stress reaches a constant value which is equivalent to √2/3Y.

So where Y is the yield stress in tension, so what we have tried to do is that if you, you know

when we equate when we substituted you know the τoct in the yield function which was given by

Von Mises what we have got is that τoct in terms of √2/3Y and this indicates that the failure will

take  place  when the  octahedral  shear  stress  reaches  a  constant  value  which  is  equivalent  to

√2/3Y. 

Now what you do is let us plot the, this on the octahedral plane where octahedral plane is the

plane on which the σ1+ σ2+ σ3=constant. So let us plot this on the octahedral plane where the

σ1+ σ2+ σ3=constant.
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So this is the octahedral plane which is actually shown you know the octahedral plane is obtained

by passing a plane through the unit points on the principal axis, so in this particular slide what

we see is that σ1 and σ2 and σ3 and this is the hydrostatic axis where σ1= σ2= σ3 so this is the

hydrostatic axis and the line joining this points which are actually this particular plane is called

as octahedral plane. 

So the octahedral plane is obtained by passing a plane through the unit points on the principal

axis and the principal axis are nothing but σ1 σ2 σ3 and hydrostatic axis is nothing but σ1= σ2=

σ3 which actually passes from the origin to the from the center point which actually adopted out

which is shown in the octahedral plane here.

So octahedral plane is very near to the soil failure state so very useful basically to derive failure

theories of soils, so why octahedral plane has been adopted is that octahedral plane was found to

be very you know very near to the soil failure states and so you know where this is adopted to

derive this failure theories of soil. So we have discussed that you know these theories actually

what deduced for metals initially and then you know these are actually extended for the soils.

So the octahedral plane is very near to the soil failure state and so you know these very useful to

derive  the  failure  theories  of  the  soil,  so  octahedral  plane  is  has  been  adopted  because  it

represents the you know close to the failure state in the soil and so this is actually used for failure

theories derive the failure theories in the soil.
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Now here the yield surface in three dimension is shown here so here with σ1 σ2 σ3 and for

example here the diagram shows the Mohr Coulomb failure surface as an you know hexagonal

shape here and this is the bounded failure surface and here all failure stresses are assumed to be

in the bounding surface so all failure surface, failure stresses are assumed to be on the, they are

assumed to be on this boundary surface.

So this is the principal stress shaped showing principal stresses at time of failure or yielding so

this is the principal stress space showing the principal stresses at the time of failure so like this

you know octahedral plane is normal to a space diagonal in principal stress space and there are 8

such planes, so this octahedral plane is normal to the space diagonal so you can see that when we

have this σ1 verses √2σ3 this is nothing but deduced from the remidlic plots.

And this is compression analog failure and analog in compression and this is the failure analog in

the extension slope and this is the space diagonal through which σ1= σ2= σ3 and this plane

which is right section perpendicular to this on this level the octahedral plane is represented and

the normal to each of the octahedral plane has the direction of cos-1√1/√3, so the normal to the

that is the space diagonal id inclined to the each of the you know each octahedral plane has the

direction which is actually equivalent to cos-11/√3.

So what we have done is that in this we have actually represented the principal stress space

showing the principal stresses at the time of failure or yielding so on this you know boundary



surfaces you know all failure stresses are assumed to be lie on this surface and this is the Mohr

Coulomb failure surface was shown as actually as an example.

(Refer Slide Time: 10:14)

And further the any state of stress consisting of three principal stresses like σ1 σ2 σ3 may be

resulted  into  two component  states  of  stress  and these  are  called  octahedral  stresses  one  is

octahedral normal stress octahedral shear stress. A component consisting of equal tensile stresses

you know acting on in all directions and a component state of stress consisting of 8 octahedral

shear stresses.
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So we have you know this octahedral you know σ octahedral this is the normal stress and this is

the  shear  stress,  σoct  and  σ  this  τoct.  So  any  state  of  stress  can  be  represented  by  two

components states of stress one is you know the component consisting of equal tensile stresses,

tensile or compressive stresses acting in all directions and the another one is that component of

shear stress consisting of 8 octahedral shearing stresses.

So the normal and shearing stresses on the octahedral plane are called as you know octahedral

stresses  the  normal  and  shearing  stresses  on  octahedral  plane  they  are  actually  referred  as

octahedral stresses and the first invariant is indicated as J1=σ1+ σ2+ σ3 and σoct= σ1+ σ2+

σ3/3=J1/3 and τoct=1/3 √(σ1- σ2)2+(σ2- σ3)2+(σ3- σ1)2, so σ oct= σ1+ σ2+ σ3/3-u and τ oct=τʹ ʹ

octahedral.

So total and effective octahedral shear stress will be equal like we have got q =q similarly hereʹ

τ oct=τoct and σ oct=σ1+ σ2+ σ3/3-2 that is σ oct= σ1+ σ2+ σ3/3-u. ʹ ʹ ʹ

(Refer Slide Time: 12:28)

Now using from the Mohr circle if you look into the you know the failure interpretations we can

write radius=σ1- σ3/2=c+cos + σ1+ σ3/2 cos  repeat r= σ1- σ3/2=c+cos + σ1+ σ3/2 sin ,soϕ ϕ ϕ ϕ

by  using  this  σ1-  σ3=2ccos +  σ1+ σ3  sin .  Now this  can  be  expressed  in  terms  of  moreϕ ϕ

generalized  condition  more  Coulomb  condition  of  failure  in  more  generalized  form can  be



expressed as (σ1 - σ2 )ʹ ʹ 2-2c cos + (σ1 + σ2  sin )ϕ ʹ ʹ ϕ 2 (σ2- σ3)2-2c cos + (σ2 + σ3  sin )ϕ ʹ ʹ ϕ 2(σ3-

σ1)2-2c cos + (σ3 + σ1  sin )ϕ ʹ ʹ ϕ 2. 

Now you know this  particular  you know is  represented  as  you know Mohr  Coulomb yield

surface the point of intersection of the octahedral plane and the hydrostatic axis is actually is

indicated by a. And bcdefg is the Mohr Coulomb yield surface this is the Mohr Coulomb yield

surface and this is the octahedral plane, so what we are seeing is you know when you see this in

plan in the, when we have the you know octahedral plane and this is the Mohr Coulomb failure

surface.

So this when it is you know super imposed here Mohr Coulomb failure surface is super imposed

here we see like this, where bcdefg are the you know vertexes at the points which are shown and

a is the point if intersection of the octahedral in hydrostatic axis. So this is actually called as

Mohr Coulomb yield surface and this is octahedral plane.

(Refer Slide Time: 14:39)

Now the failure surface is defined by equation 2 that is basically this one is a parameter, basically

is  a  pyramid with  space  diagonal  which  is  σ1= σ2= σ3 as  axis  that  is  the  isotropic  line or

hydrostatic axis which is actually called as σ1= σ2= σ3 as axis and a cross section which is an

irregular hexagon with non parallel sides of equal length.



So this is actually the cross section is basically the equation which is the more general form of in

Mohr Coulomb condition which this equation 2 which is you know represents a pyramid with the

space diagonal σ1= σ2= σ3 as axis and a cross section which is an irregular hexagon with non

parallel sides having equal length. So this is the you know this is the π plane what is called this is

π plane and this is the σ3=constant plane and the stress point, stress paths in the conventional

triaxial test are represented here.

Stress path in conventional triaxial test are represented here, and this is the failure lockers and

this is the π plane and this is the Mohr Coulomb failure surface which is actually shown here. So

this  is  basically  the more general  form of  Mohr Coulomb condition,  Mohr Coulomb failure

condition represents a pyramid with space diagonal σ1= σ2= σ3 as axis and a cross section which

is an irregular hexagon with non parallel sides of equal length.

(Refer Slide Time: 16:29)

The projection of this irregular hexagon on the plane σ1+ σ2+ σ3=constant that is the plane right

angles to the space diagonal or an octahedral plane. The projection of this irregular hexagon on

the plane σ1+ σ2+ σ3=constant that is on the plane at right angle to this space diagonal or an

octahedral plane. When yield surface defined by equation 2 is plotted on the octahedral plane it

will appear as an irregular hexagon in section with non parallel sides of equal length that we

have discussed.



But point a is the, is the point of intersection of the hydrostatic axis with the octahedral plane

where point a is the point of intersection of the hydrostatic axis with the octahedral plane. Thus

the yield surface will be hexagonal cylinder coaxial with the isotropic stress line, so because of

this  the yield surface will be hexagonal  cylinder coaxial  with the,  so it is like an hexagonal

cylinder coaxial with the isotropic stress line.

(Refer Slide Time: 17:34)

So the isotropic stress line passes through the center of the hexagon where you know that is it is

coaxial with the isotropic stress. See octahedral plane which is the one which is actually we Von

Mises according to Von Mises yield function if you look into it and this yield function when we

define this one when this simple yield function which can be expressed as F=(σ1 - σ2 )ʹ ʹ 2+(σ2 -ʹ

σ3 )ʹ 2+(σ3 - σ1 )ʹ ʹ 2 is 2Y2=0 as we have done here so this circle which is actually indicates the Von

Mises yield surface and the radius is nothing but the τoct that is nothing but √2/3Y and Y is the

yield stress.

So the Von Mises you know yield stresses is something like a cylinder circular cylinder having

you know diameter which is equivalent to √2/3 σY or yield stress. So failure takes place when

maximum shear stress and octahedral plane is equal to when maximum stress on the maximum

shear stress on octahedral  plane is  equal to  you know this  √2/3Y, so the distance ab that  is

nothing but the distance ab that radiant distance ab.



So according to now Von Mises failure surface is actually represented on the octahedral plane

and from the earlier discussion whatever we have we actually have determined that τoct=√2/3y

this is nothing but this radius of this Von Mises yield surface.
(Refer Slide Time: 19:23)

And this is represented further in depth here as this is the octahedral plane and this is the Von

Mises yield surface and ab is nothing but √2/3Y and this is the hydrostatic axis σ1= σ2= σ3 and

so this Von Mises failure surface is you know you can see like a circular cylinder having with

coaxial  with you know hydrostatic  axis this cylinder  is actually the diameter  is the radius is

equivalent to ab here, where ab= τoct=√2/3Y.

And note that the locus is unaffected by the value of the σoct, so that means that various values

of σoct will generate circular cylinders coaxial with the hydrostatic axix which is a yield surface.

So we can see that the locus is not getting effected by the values of σoct that means that the

values of σoct will generate a circular cylinder coaxial with the hydrostatic axis which is a yield

surface. So various values of σoct will generate a circular you know cylinder coaxial with the

hydrostatic axis.
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The discussion which we continue further yield surface is a circle Von Mises yield surface is a

circle  and radius  is  equivalent  to  τoct  which is  nothing but  √2/3σY and distance  OA is the

octahedral normal stress OA is the octahedral normal stress and locus is actually not affected by

the values  of  σ oct  then you have you know the different  values  we actually  have differentʹ

cylinders coaxial with the you know the hydrostatic axis.

So  where  as  values  of  σ oct  will  generate  a  circular  yield  surface  which  is  coaxial  withʹ

hydrostatic axis and σ oct=σ1 + σ2 + σ3 /3 and OB= (σ octʹ ʹ ʹ ʹ ʹ 2+ τ octʹ 2)2. So the OB is nothing but

which is distance which is shown here the division which is shown here which is nothing but

σ octʹ 2 that is OA2+AB2, AB2 is nothing but this radius which is nothing but √2/3Y, so this is OB

is given by this √σ octʹ 2+ τ octʹ 2.
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Now the octahedral plane is also given on stress presented by tresca on the tresca yield function

so which is  nothing but  the tresca criterion  or  tresca function is  defined as  σmax-σmin=2k,

σmax-σmin=2k, where factor k is defined by the case of a simple tension by Mohr circle actually

shown in the slide. So this indicates that failure takes place when the difference that is max shear

stress reaches a constant critical value.

When σmax and σmin you know that is the max shear stress reaches say a constant value which

is nothing but σ1- σmax- σmin that is  nothing but σmax- σmin/2 then Richard say constant

critical value. So this constant critical value that factor k is defined by the for the case of a simple

tension which is shown here for a simple tension for unconfined tension which is actually shown

here, where σmin that is k where k= this factor.

So if yield function is plotted on the octahedral plane σ1+ σ2+ σ3=constant the locus will be a

regular hexagon, this equation actually represents the regular hexagon equation.
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So the tresca yield surface on the octahedral plane is actually represented where bcdefg these

shown here which is where similar to Mohr Coulomb failure surface, but a is the you know the

point through which the hydrostatic axis or you know where σ1= σ2= σ3 is ensured and where

bcdef and g so a represents the octahedral normal stress the point passing through the octahedral

normal stress through a the octahedral normal stress passes and b represents the failure condition

in compression.

b represents the failure condition in compression where σ1 value is greater than σ2 that is σ1 that

is axial stress is more than σ2, σ2= σ3. So this point b represents the failure condition in the

compression and similarly point e represents failure conditions in extension where σ2= σ3 and σ

greater than σ1, and point d represents failure condition for σ3 greater than σ1= σ2 and point g

represents failure condition where σ1= σ2 and σ2> σ3.

And point f represents failure condition for σ2> σ3= σ1 and point c represents failure condition

for σ3= σ1 and where σ1 is actually greater than σ2. So we have on this tresca yield criterion

which is also represented as a hexagon on the octahedral plane and since locus is unaffected by

the σ oct  yield surface there will  be hexagonal  cylinder  and here also we have for differentʹ

values of σoct the different you know coaxial to the hydrostatic axis we have got number of

hexagonal cylinders are possible.
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So the yield surface and tresca criteria is actually shown here in this zone where σ1- σ2=2k

where σ1 > σ3  ≥σ2  in this zone σ3- σ2=2k where σ3  ≥σ1  greater than equal to σ2  in this zoneʹ ʹ ʹ ʹ ʹ ʹ

σ3 - σ1 =2k and σ3  is ≥or σ2  ≥σ1  and similarly here in this zone that is the zone between inʹ ʹ ʹ ʹ ʹ

this point and then this σ2  axis σ2 = σ2 - σ1 =2k where σ2  ≥σ3  ≥σ1 . And similarly what weʹ ʹ ʹ ʹ ʹ ʹ ʹ

have is that here and here where σ1 - σ3 =2k, where σ1 ≥σ2 ≥σ3 . ʹ ʹ ʹ ʹ ʹ
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The  Mohr  Coulomb  Von  Mises  and  Tresca  criteria  are  actually  seen  to  coincide  for  the

compressive test, so the different failure surface are actually shown here and basically here we

have  the  octahedral  plane  and  the  tresca  surface  which  is  actually  shown  here  and  Mohr

Coulomb failure surface is actually shown here and the round surface that is actually this is the

tresca and this is the Von Mises failure surface which is actually cylinder circular cylinder this is

the circular cylinder.

And so if you look into this Mohr Coulomb Von Mises, Mohr Coulomb failure surface yield

surface and Von Mises yield surface and tresca yield surface from the tresca criteria they seen to

coincide for the compressive test. However, the strength in the tensile test is report to be less for

the Mohr Coulomb failure theory, so the strength in the tensile test is report to be less for the

Mohr Coulomb failure theory.
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Here in this particular slide the Scott 1963 plotted various you know Mohr Coulomb envelopes

plot in octahedral plane for values  of π values of 30 to 40 and 50, so here the Scott 1963 after

Yong and Warkentin 1975 you know the various values of Mohr Coulomb analog where been

plotted for different values of friction angles for 30, 40 and 50 and these were the based on the

test on sand the results of the test on sand for varying normal, varying stress conditions obtained

by Kirkpatrick and Kjellman also plotted here.

And these points are actually were reported by Kirkpatrick and Kjellman and as can we noted

here the Mohr Coulomb failure analogous plotted by Scott and the measured values which are

actually  plotted  by  the  or  obtained  by  Kirkpatrick  and  Kjellman  are  found  to  be  in  good

agreement for the values which are actually shown like =37 and 39˚and this is for the =37˚ϕ ϕ

and then this is for the =39˚.ϕ

(Refer Slide Time: 29:55)



So after having discussed about the octahedral plane then we have actually have discussed about

you know the result of the you know these values of the triaxial test or diaxial test so in case of

triaxial test in case of directional test we actually get shear stress verses shear strain variation for

different  normal  stresses  so  there  also  we  can  actually  get  the  initial  modulus  and  tangent

modulus then there can be possibility that we can also get a see ken modulus interpretation we

can actually obtain from the test data.

So in the initial modulus which is actually drawn for the initial portion of the curve where the

soil stiffness is high and then the tangent modulus is actually drawn which is actually portion

where which is actually shown here which actually represents you know this particular value

here Et in the horizontal 1 vertical, so at certain stress level we actually draw and then make this

the initial tangent modulus.

The initial  tangent  modulus  is  nothing but  for  the initial  portion where when the tangent  is

actually drawn that is actually shown as initial tangent modulus and let us say that if we are

actually drawing let us say at a point here and then a line which is actually joining this point and

this and that it actually, let us say that we are having a strain value of 2% and 2% strain or 50%

of axial strain, then we can actually get the E50 with the value the slope of that line joining you

know the strain of at which is meeting at that particular deviated stress or particular normal stress

for the shear stress we can actually get the you know the Young’s modulus values. And so with

this you know in this particular slide which is actually shown the initial tangent modulus and



tangent modulus at certain stress level computation and in addition to that there is also a seekin

modulus which can actually can be interpreted.

In  case  of  triaxial  test  when  we  are  actually  have  got  unconfined  compression  test  or

unconsolidated  undrained  test  we  actually  get  for  you  know  the  based  on  the,  in  case  of

unconfined  compression  test  with  σ3=0  we  get  σ1  verses  ε  so  from there  we  can  actually

interpret to some extend what is the initial tangent modulus and seeken modulus you know up to

a certain stress level.

So the second modulus which is actually defined as that the modulus which is actually referred

up to that particular stress level the slope of that line is actually valid. So it is very important for

determining this you know this initial the soil stiffness correctly. Suppose if you are actually

trying to determine these you know the soil stresses the stiffnesses in the initial portion then in

the prevalence stresses in like as we have discussed in one of the modulus the physical model

stress when the soil stresses are very low.

And if and then if you are actually having the you know with, we are dealing with the higher

stresses higher stiffness values then resulting you know strains or stiffnesses will be very, very

low. But in reality when we actually subjected to the real stress conditions the soil stiffness is

low so the soil settlements will be very, very high. So in this particular slide we are actually

trying to discuss about the interpretation of the initial modulus and tangent modulus from the

triaxial test data.

A typical triaxial stress data for a given σ3 is actually shown here where σ1-σ3 is the deviated

stress and ε1 is the axial strain. Then we also have some empirical equations where Ei initial

modulus which is also given as.
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Kpa(˚3 /Pa)ʹ n  where σ3 = minor effective principal stress and Pa is atmospheric pressure and Kʹ

modulus number and the n= exponent determining the rate of variation of you know Ei with σ3 .ʹ

So n basically indicates that the exponent which actually determines the rate of variation of Ei

with σ3 .ʹ
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And then Ei=as we have given the values of K and n for a particular soil can be found by number

of triaxial testing and plotting Ei verses σ3 on the logarithmic scale and the ranges K=300 to

2000 and n=0.3 to 0.6 so the value of the K ranges from 300 to 2000 and n=0.3 to 0.6.
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And according to Duncan and Chang 1970 where Et that is nothing but ∂(σ1-σ3) ∂ε, so Duncan

actually  have  shown that  the  E  value  that  is  Et=[1-Rf(1-sin )(σ1 -σ3 )/2c  cos +2σ3 sin ]ϕ ʹ ʹ ϕ ʹ ϕ 2

Kpa9σ3/Pa)n.
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So if  you look into this  the Duncan and Chang actually  modified the Janbu 1963 empirical

equation, where in to this empirical equation the Duncan and Chang actually have added this

particular  term  which  is  [1-Rf(1-sin )(σ1 -σ3 )]ϕ ʹ ʹ 2 [1-Rf(1-sin )(σ1 -σ3 )/2c  cos +2σ3 sin ]ϕ ʹ ʹ ϕ ʹ ϕ 2

when where Rf is nothing but the failure ratio then generally the ratio is equal to 0.75 to 1. So the

Duncan and Chang is actually nothing but the modification of Janbu’s 1963 empirical equation.
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So for that the portions ratio can be actually obtained by ν= ε axial that is – εv/2 εa and where ε,

∆ε  axial  is  nothing  but  increase  in  the  axial  strain  and  ∆εn  is  nothing  but  increase  in  the

volumetric strain which is nothing but ∆εa+2∆εr for the axis symmetric triaxial test and ∆εr is

nothing but the lateral strain, so with this when you substitute this we get ν=∆ν or the symbol

which is actually shown here which is equal to ∆εa and -∆εa+2εr/2∆εa which is nothing but

-∆εr/∆εa.

So this can be also determined by measuring or by pasting strain ages where you are actually

having  you  know  unconfined  compression  test  and  with  that  we  will  be  able  to  get  the

Possession’s ratio of a soil particularly with the ratio of εr to εa, and so the ν=∆εa-∆εv/2∆εa

where  the  ∆εv=∆εa+2∆εr  bu  substituting  this  what  we have  got  is  that  you  know this  one

-∆εr/∆εa.
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And they are the typical values of Young’s modulus for granular material particularly here we

have you know if the use unified a soil classification system according to that if you have a

granular materials which the Young’s modulus which are actually shown for Mega Pascal’s the

values are shown in all these values are actually reported in MPa where GW and SW that is well

graded gravel and well graded sand, gravels and sand well  graded when the loose state they

actually have got 30 to 80 MPa and medium and then say in dense state you can see that the E

values of the higher side that is 160 to 320 MPa.

When you have you know the sand which is uniform that is called poorly graded sand where you

actually have got all uniform size particles then the loose state we actually have got only 10 to 30

MPa, and in the dense state we actually have got 50 to 80 you know MPa. Similarly we have you

know slity soil gravel and slity gravel when we are actually have got GM and SM type of soils

we can see that the Young’s modulus values so typically arranged from 7 to 12 MPa and the

dense state or you know which is actually represented as 20 to 30 MPa.

So you can see that depending up on the groups the types even in the case of granular materials

you know the ranges of the you know in the different stress states the loose medium and dense

configuration so is a function of density or the packing of the particles and with that we can also

you can  see that  you know the,  how the  values  particularly  the  stiffness  soils,  stiffness  are

Young’s modulus value changes with the soil type particularly we have got well graded gravel or

poorly graded sand or sand and gravel in slity nature or sand gravel in slit ion nature.



(Refer Slide Time: 40:16)

Now let us consider for the cohesive materials particularly wined graded soils where you have

got a slits with low slide plasticity so we have got low plastic slits that is ML type of soils in this

the consistency is actually represented as very soft to medium and stiff to very stiff to very hard

so in this case the E values range from 2.5 to 8MPa to 40 to 80 MPa, and similarly we have the

slits with low plasticity they vary from 1.5 to 6MPa to 30 to 60 MPa.

And CL that is clay with low medium clays with low medium plasticity they can actually have in

a very, very soft state the E value can be as do as 0.5MPa and in hot state the CL deposit soil can

actually have 30 to 70 MPa, and this CH that clay with high plasticity CH type of soils can have

in very soft state very low you know the Young’s modulus values and the deposit ratios for this

type of soils under saturated conditions are definitely can range from 0.45 to 0.5 and the clays

with high plasticity CH will have the very soft state will actually has got 0.35 to 4MPa.
To in the hot state it can actually have as high as 20 to 30 MPa and organic slits OL which is

actually medium consistency have 0.5 to 5 very low organic clays also have actually got very

low you know the very low E values even under the medium consistency so in these two slides

what actually have seen the distinct difference actually what we have for the different soils where

you have got you know the values which are actually for gravel soils and very high values are

shown for depending up on the dense condition or loose conditions.



Where in case of fine grain soils are cohesive soils where actually have got low values when they

are in the very soft to soft state and the values are on the high state for higher order for the, I

mean the same soils particularly in the hot state. So in this particular lecture we try to understand

about you know the octahedral plane and octahedral shear stresses and based on that three failure

criteria’s namely Von Mises and Tresca and Mohr Coulomb failures surface.

So the Mohr Coulomb failure surface we have seen as a hexagon and then on the you know these

because it actually has got, it has got the capability of having different for different Y angles we

are actually have got the different hexagonal cylinders are possible. But in case of the Tresca it is

also  indicated  as  you  know the  hexagonal  cylinder  so  but  we  have  seen  for  as  far  as  the

compressive the soil in compression is concerned.

That both you know all the three tresca and Von Mises and you know Mohr Coulomb criterion

where  found  to  coincide.  But  as  far  as  intension  is  concerned  the  value  which  is  actually

predicted from the Mohr Coulomb criteria was found to be on the lower side. So in this particular

module we have try to understand about the stress strain relationship for the soil and then we try

to discuss about you know different stress paths particularly we have discussed about MIT based

stress paths and as well as the Cambridge based stress paths.

And we have referenced the stress  paths  with reference  to  unconfined compression test  and

unconsolidated, undrained triaxial test and consolidated undrained and consolidated drain triaxial

test and then in the case of consolidated undrained triaxial test during the shear we do not allow

the pore water pressure to dissipate so because of that there can be a possibility that you will be

able to measure the pore water pressure.
So in that case when we have you know normally consolidated soil or a loose sand then there is a

possibility that the entire pore water pressure is actually positive and the sample undergoes you

know the volumetric compression. When we have got very dense sand or a stiff clay or highly

over consolidated clay then there is a possibility that initially to undergoes compression and there

after with increase in the axial strain.

There is a possibility that the soil undergoes a desiccation where in the riding of the soil particles

on each other actually happens and because of this increase in volume up on the strain there is

you know a phenomenon which is actually called the negative dilution from which actual results

in the negative pore water pressures. 



And the relevant stress pass actually what discuss then there after we connected ourselves to the

you know the failure criteria particularly with the principal stress space with Mohr Coulomb

failure criterion and Tresca and Von Mises we have discussed and then finally in this lecture we

discussed about how to interpret you know elastic modulus from the triaxial test data.
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