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Fourier Transform of Time Corelation Function 

Welcome back to Module 9 of the course Time Dependent Quantum Chemistry. We have 

represented, we have represented time correlation function and we have seen that the Fourier 

transform of the time correlation function is actually giving the spectrum of the system. In 

order to get that spectrum, I do not need to solve TISE, just solving TDSE I can get that. So, 

it is a very interesting perspective we have developed for the time dependent Schrodinger 

equation.  
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What you are seeing is that there is close correspondence between the close correspondence 

between the time and frequency domain representation. So, we will look at this. In the time 

domain, what is important to know is the correlation function,c(t). So, this is a typical 

example of wavepacket correlation function, do not expect that this is the way always 

correlation function will work, this is just an one example of correlation function. So, this is 

called wavepacket correlation function and corresponding spectrum by doing the Fourier 

transform.  

So, we have to do this Fourier transform this correlation function we will get that. So, 

question is, how the correlation function varies with respect to time, can we have some idea 

generic idea how it is varying and the entire discussion is developed based on the first 

proposal given by Heller in 1981. And, we are following that approach very closely. 



So, if we look at the typical behavior of a correlation function, we see that the correlation 

function is actually always decays, and it should be, it should always decay, why it should 

decay, because, I start with an initial function ( ,0)x  and I am trying to correlate with a 

function at later time ( , )x t . So, it is quite obvious that at later time this function will be 

moving away from the initial function and if it is moving away, then effective overlap will go 

down slowly.  

So, correlation function, time domain correlation function will always decay, but nature of 

the decay has characteristic timescales. There are three different kind of decays are will be 

going on in the, it can be 1, it can be 2, but this particular examples we have, we are giving is 

3 different times. So, 3, maximum 3 different possibilities I can see in the correlation function 

decay, but in some situation I can have only 1 decay. So, we need to define what kind of 

decays we are talking about.  

And depending on the situation I can have 2 different decays, so I can have 3 different 

decays, I can have 1 decay. So, let us look at what kind of decays we have, but it is quite 

clear that in the end correlation function has to decay, because more I time more time I spend 

so, if I start with let us say that, so, if this is your first sorry initial wavepacket and if the final 

wavepacket is moving away, slowly, then obviously, the overlap between the initial and final 

is going down and overlap is extent of overlap is representing the c(t) is representing the 

extent of overlap.  

So, that is the correlation function. So, it is quite obvious that it should decay, but nature of 

the decay will depends on what kind of potential the particle is experiencing and many other 

factors. This is just an example we have shown in this example we are showing the 3 

different decays are possible. 
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So, what we are going to look for here the first thing we will take a look at it is that at t = 0, 

my correlation function is nothing but (0) (0) (0)c   . I am just have removed the x 

dependency here for notation only, notational clarity, but it depends on x basically because 

this integration is over the x, we have to remember, I have just removed this x from this 

bracket to make it simple.  

So, if we look at this correlation function at t = 0, so this is your t = 0 time, we see that this is 

going to be 1 because this is normalized (see slide figure), we start with normalized wave 

function, we start with initial normalized wave function, that is the first criteria we have set to 

solve time dependent Schrodinger equation.  

So, because it is normalized, the first, the initial value of the correlation function magnitude 

would be always 1, there is no exception for that, and which means that from 1 value, unity, it 

will just decay. Now different ways it can dacay one examples, we have said just three 

examples we have shown. So, what are the possible decays we can have that is exactly what 

we are going to take a look at it closely. 
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Initial decay of c(t) may correspond to the timescale T1 so I can have a timescale T1 and what 

is this timescale? We will mention that, this decay, so this is 1 decay associated with this T1 

timescale. Now, this decay occurs, this decay may occur as the wevepacket moves away from 

its initial location. So, because this (0) ( )t  , again, I have removed this x dependency 

here for clarity, that is all, but it is the integration over the space the (0) ( )t  , it is the it 

representing the extent of overlap, extent of overlap. 

So, it is extent of overlap between the initial and the final wavepackets and as a result, as the 

wavepacket moves away from its initial location in position space, it is actually moving 

away. So, my initial position wavepacket was this and then at a later time, it is like this, it is 

like this, it is moving away. Because it is moving away, the overlap between the initial 

wavepacket and the final wavepacket is we are losing that overlap, and that is why it should 

decay.  

So, this decay is quite inherent decay of the time correlation function. It should decay 

because, so, in I can have a situation where I have only this part, for a, for a given system 

where correlation function just decays. There is no other reoccurrence, like the examples we 

have given here, this is just a generic view. So, I can have no reoccurrence. So, the 

wavepacket is actually moving away from this initial position to let us say +  it is moving 

away.  



If it is moving away, then there is no reoccurrence. And we will have only characteristic 

timescale of the of this decay time of this decay inherent decay, this decay occurs because the 

wavepacket moves away from its initial location. So, this is one type of decay we can have.  
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Another situation, we may have where after one period of motion and that is happening 

particularly in this kind of harmonic potential where I have a wavepacket here, it can go and 

it can come here and again it can come back and if it is coming back, my starting point was 

here (see slide figure). So, it is actually again having higher overlap. So, this is the 

reoccurrence I can have and if I have reoccurrence, then this is another situation it is not that 

for all wavepacket will have a reoccurrence.  

Let us say I have a particle, free particle moving from x = 0 position to + ,it is actually 

moving away from the wavepacket. So, it will just decay if there is no reoccurrence. But, if it 

is in the harmonic potential kind of thing, then it can reoccur. So, the situation I can have 

another situation which will be defined by the characteristic times equal T2, after one period 

of motion the wavepacket may return to its initial location in position space and if that 

happens, then what will happen?  

I will have a reoccurrence of c(t), just like here, what you are seeing here it is reappearing for 

three times. And this reoccurrence time is defined by this T2. So, this is the time of the 

reoccurrence time which is characterised by T2 time.  
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We can have another situation when there is a reoccurrence of the wavepacket, then I may 

have another situation the situation is following this reoccurrence time, when it is 

reoccurring, reoccurrence time in c(t) may also decay with third timescale.  

These are the all possibilities it is not necessary that our quantum system has to follow always 

this, there is a third timescale I can have T3 where reoccurrence is decaying as you can see 

this amplitude the first amplitude was 1, the reoccurrence first reoccurrence amplitude is less, 

second reoccurrence amplitude has less has become less and third reoccurrence amplitude has 

less amplitude.  

So, it is slowly decaying this reoccurrence time is decaying and if it is decaying, then this 

particular decay is defined by this dotted line…. and this decay will have a characteristic 

timescale and this characteristic timescale I can call it as T3, one can define that characteristic 



timescale as full width a half max (FWHM) at the time when the decay has gone to the 

amplitude of half of the maximum or it can be defined by some other characteristic timescale 

but that will have a timescale characteristics timescale that is T3 and this is because of the 

reoccurrence decay, decay of the reoccurrence.  

T2 was just time of reoccurrence timescale of occurrence. So, how quickly it is reoccurring, 

that timescale is T2 and how quick how quickly this reoccurrence is decaying that is defined 

by T3. So, this kind of decay can possible, is possible in  an harmonic kind, not harmonic, 

anharmonic oscillator where things can decay slowly due to dissociation, let us say so, I am 

here.  

So, I can have a situation like this which is going this way, but when and then part of the 

wave function is going away and second part of the wavefunction is coming back and that is 

why we can have a less overlap and we can have a decay in the time correlation function. So, 

this is also possible. So, these are the three possibilities we have possible possibilities for the 

decay timescale of the time correlation functions we have shown.  

(Refer Slide Time: 14:55)  

 



 

We will take a look at now what are the possibilities I can have for the frequency domain. So, 

those timescales which we have defined all the, in the time domain, how does it look like in 

the frequency domain, and we will see that always there is a close correspondence between 

time and frequency domain. The first, if we recall that the first decay of c(t) we have 

characterized as the timescale T1, which is the decay as the wavepacket moves away from the 

initial position.  

So, that is the way in the time domain we have understood that decay time. Here, we will 

have that time will have will correspond to some frequency and that frequency is going to be 

represented by 
1

2

T


 that frequency is given by this decay in the spectrum and this part is 

going to represent that T1 decay time. Now, T1 decay time has to be represented in the time 

domain, in the frequency domain we will call it this T1, T1 appears as width and remember 

width is also features a decay.  

So, when we think about a width, this width is actually featuring how things are decaying. So, 

width and decay they are synonymous in this problem. So, we will call it width or decay 

featuring a decay, but mostly decay we consider in the time domain and in the frequency 

domain it is decay because it is decaying, but we call it with in terms of width. So, T1 appears 

as width of the spectral envelope. So, what we get is that 
1

2

T


this is representing the width of 

the spectral envelope. So, T1 is appearing as a, as the width of the spectral envelope in the 

frequency domain.  
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What about T2, what we have defined T2, this T2, reoccurrence time we have reoccurrence 

time as T2, reoccurrence time of T2 in time domain. So, that T2 will correspond to the 

spacing. So, in the time, in the frequency domain it is going to be 
2

2

T


and 

2

2

T


is going to 

correspond to the spacing which is nothing but spacing but when you say spacing between 

two spectral lines, the spacing between two spectral line when you says spacing it is actually 

representing the reoccurrence of the spectral features here. So, there is a direct 

correspondence between these two, reoccurrence of the spectral features. 

So, it is going to control this 
2

2

T


is going to control the spacing between adjacent spectral 

features so, this is what we have shown, this part is going to represent, this arrow is going to 

represent, this spacing is going to represent 
2

2

T


. So, it is showing the reoccurrence of the 

spectral features, but reoccurrence this terminology we use in the time domain, in the 

frequency domain we call it the spacing the spectral how does spectrum are, spectral features 

are separated in the frequency domain.  
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The third timescale, we talked about T3, which is the decay in the time domain it was 

associated with decay of the reoccurrence features of c(t) that was the meaning in time 

domain. In the frequency domain, what it does mean? It means that this T3 appears as the 

width again width is decay in the time domain of each spectral feature in the frequency 

domain.  

So, this part I have to magnify. So, I will magnify this part first, I will magnify this entire 

spectrum spectral features, I will magnify it, it will be like this and this T3 is indicating how, 

what is the width of each spectral feature, this is 
3

2

T


. So, in the frequency domain this what 

you call T3 in time domain it is going to be frequency, in the frequency domain is going to be 

3

2

T


and 

3

2

T


is going to be again the width of each spectral feature in the frequency domain.  

Now, it is not necessary that width will be same for each spectral feature, in that case you will 

have more number of timescale and each timescale in the time domain is now going to 

correspond to the 2 pi by that time in the frequency domain and that is the way we get the 

close correspondence between the time domain and frequency domain representation. Time 

domain representation of the correlation function and frequency domain representation of that 

correlation function, which is nothing but the, the spectrum.  
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So, what we have realized that if I know the correlation functions c(t), I will be able to get to 

know its Eigen state energies. So, I will be able to explore the eigen state energies of a 

system. All I need to do is that I have to play with the propagation of the wave function. I can 

start with this a particular wave function and then I have to propagate it for a long time or 

convenient time so that I can see, I can include the eigen state energies of interest.  

But then question is once we get these Eigen states, I would like to know because TISE will 

give me if I solve TISE, it will give me Eigen states and Eigen functions. So, En ( , )x t both 

will be getting back from TISE. Now, so far with the help of TDSE, I have been able to get 

this Eigen state energies, question is what is the function we get, Eigen state function?  

And for that we have to go over another, we have to explore another realisation that the 

Fourier transform of the wavepacket at that Eigen state so, if I am interested to find out the 

Eigen state wave function associated with the Eigenvalue En, I want to find out n , then all I 

need to do is that Fourier transform of the wavepacket, wavepacket is ( , )x t . That is the 

packet I have. I have to Fourier transform that wavepacket at that energy En energy to get that 

Eigen state that is the basic idea. 

( , ) ( ,0),

( , )
n

iHt

iE t

x t e x

consider x t e dt

 












 

So, I will first prove this idea whether this is mathematically justified or not. So, bottom line 

what we are trying to make here is that one may obtain Eigen state wavefunction 

corresponding to each Eigen state energies, each Eigen state energy using the fact that an 

Eigen state is nothing but a superposition of wavepacket. This is an interesting statement. So 

far, we have seen that wavepacket is created by taking superposition of stationary states.  

Similarly, there is another theory which can be proved that if we take the linear combination 

of the wavepacket I get back the Eigen state. So, both are possible. So, wavepacket to Eigen 

state conversion is possible by taking linear combination of the wavepacket and I can again, 

wavepacket can be constructed by taking a linear combination of the Eigen states both are 

possible.  

One possibility we have already seen combining eigen states we have created wavepacket in 

many occasions. And but the reverse we have not seen and we will check this reverse is true 

for getting the Eigen state. 
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We have already seen that time evolution operator can give me ( , ) ( ,0),
iHt

x t e x 


 ( , )x t  

time evolution operator, this is represented by this exponential operator, this part can give me 

the wave function at time t, if I know the initial wavefunction ( ,0)x . So, we will make use 

of this time evolution operator and we will try to find out what we try to mean here.  

So, for that we have to consider this integration what is the meaning of this integration we 

will get to know later not now, we just move forward with this integration. This integration, 

this is very interesting integration, this integration is in mathematical language this 

integration is nothing but getting a Fourier transform of this wavepacket at time t at the 

energy En we have considered En energy.  



( , )
niE t

consider x t e dt




 ,I am taking the Fourier transform. So, that is the meaning of this 

integration, but instead of finding out the meaning of this integration, we can just move 

forward with this integration and we try to understand the meaning of this integration and this 

( , )x t will be represented in terms of the time evolution operator.  
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So, we will do that we will insert that expressions ( , )x t into this integration and we will see 

that it is we have to insert it and we insert ( , ) ( ,0)
n niE t iE tiHt

x t e dt e x e dt 
 



 

   

Now, this ( ,0)x , we have already seen that this can be expanded in terms of the Eigen 

functions like this. It does not have the time dependent face factor because t = 0. So, this 

expansion we have already done. So, we will insert this expansion here. If we insert 

it ( ,0) (0) ( )m m

m

x c x  , then what I get is. Or this is not time dependent. 

So, I will be able to take it out and if I take it out, then what I get is 

( , ) ( ,0) (0) ( )
n n niE t iE t iE tiHt iHt

m m

m

x t e dt e x e dt c e x e dt  
  

 

  

     

And ( ) ( )
miE tiHt

m me x e x 


  
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So, this integration this is what we started with is nothing but now this integration as we have 

taken the time evolution operator and now we will be able to prove that 

( ) ( )
miE tiHt

m me x e x 


 , this time evolution operator can be very easily find out what is 

the value.  

And in order to find out the value, we will use the Taylor series expansion that we have 

always done for the time evolution operator because in an exponential operator, we take the 

Taylor series expansion and we get 

2( )
( ) 1 ( ) .... ( ),

2

iHt

m m

iHt
iHte x x 


 
     
 
  

.  

And if we and we see that if this operator is acting on t ( ) ( )m m mH x E x  ,  

that is the time independent Schrodinger equation. Similarly, 

2
2( ) ( ) ( ) ( )m m m m m mH x H H x HE x E x      . So, what I get here this is nothing  

2( )
( ) 1 ( ) .... ( ) ( )

2

m
m iE tiHt

m
m m m

iE t
iE t

e x x e x  


 
      

 
  

 

So, what we have done, we have proved that this part, this part can be written in terms of the, 

this is simplified form and as a result we get this form where we do not have time evolution 

operator we have now time dependent phase factors, these two time dependent phase factors, 



because we going to insert this one here and we get the time dependent phase factor. Once we 

get this time dependent phase factor we know that m
m

E
 and n

n

E
 . So, we can insert 

that.  
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And what we get here is that this part is nothing  

 

( , ) (0) ( ) (0) ( )

(0) ( ) (0) ( )(2 ) ( ) 2 (0) ( )

n n
m n

n m

iE t iE tiHt
i t i t

m m m m

m m

i t i t

m m m m n m n n

m m

x t e dt c e x e dt c e x e dt

c x e e dt c x c x

 

 

  

       

  




  







 

   

   

 

 

Only term exists when , , ( ) 1n m n mm n         , all other terms is going to be 0.  

So, that is why it is summation will end up with this simplified form and what is the 

simplified form? We have seeing that we actually calculating this integration. So, what we 

are getting this integration ( , ) ( )
niE t

nx t e dt x 




 . What is ( )n x ? ( )n x is the Eigen state, 

this is the Eigen state with functions ( )n x  and I am doing this Fourier transform at En.  

So, corresponding to our Eigen value, I am now getting an Eigen state wavefunction and that 

is exactly what we wanted to do because TISE has given me these two informations together 



now, I am looking at through TDSE and through TDSE we are now seeing that the Fourier 

transform of the wavepacket at the energy.  
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So, the basic idea is that the meaning of this integration is that the Fourier transform of the 

moving wavepacket which is ( , )x t moving wavepacket at the Eigen value En is actually 

giving me renders eigen state wave function. So, if I Fourier transform that entire wavepacket 

at that energy En, then I get back corresponding eigen state wavefunction which is ( )n x  and 

( )n x , here ( )n x  is the Eigen state wavefunction of a Hamiltonian corresponding to the 

eigenstate energy En.  
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So, we have come to the end of this module. In this module we have gone over and a very 

interesting perspective of the TDSE. Generally, we think that TISE I need time independent 

Schrodinger equation I need to find out the spectrum of a system which is energy level of the 

system and corresponding eigen states and of wavefunctions.  

But, what we see here from this exercise from the in this module that TDSE, solution to 

TDSE can give me an wavepacket at time t and I can correlate that wavepacket with the 

initial wavepacket to get the correlation function, time correlation function and Fourier 

transform of the time correlation function gives the spectrum of the system. 

( ) ( ) i tc t e dt 






   

And spectrum has all this information energy, level information, En information is taken from 

the spectrum, can be taken from spectrum. On the other hand, the same wavepacket at t 

equals time t later time t, if I Fourier transform that wavepacket at that particular energy, then 

I get back the wavefunction corresponding to that Eigen state ( , ) ( )
niE t

nx t e dt x 




 . We 

will stop here and we will meet again for the next module. 

 


