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Time-Dependent Approach to Energy Resolved Spectroscopy 

Welcome to module 9 of the course, Time Dependent Quantum Chemistry. In this module, 

we will go over Time-Dependent Approach to Energy Resolved Spectroscopy.  
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In general, we need to think about TDSE Time-Dependent Schrodinger Equation, we get a 

feelings that it is going to give me a time dependent wave function. And if I have time 

dependent wave function, I do not have any access to the spectrum of the system. On the 

contrary, in this module, we will find out that solution to the TDSE can give us the spectrum 

as well and that is what we are going to go over.  
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So, conventional approach to energy resolved spectroscopy, when I say energy resolved 

spectroscopy, I would like to know the spectrum of the system. If we follow the 

conventionally what we do and what we have already realized that time independent 

Schrodinger equation which is given by this equation, time independent independent 

Schrodinger equation for a quantum system provides stationary eigen states, eigen state 

energy En and eigen state with function ( )n x  is provided, they are provided by the time 

independent Schrodinger equation ( ) ( ) ( )n n nH x x E x  . 

These eigen state wave functions are orthonormal in nature that also we have understood 

generally this is going to be orthonormal in nature which means, this is going to be 

m n mn   , 1, ,mn when m n    and 0, ,mn when m n   . 

So, each state, which is a solution to the TDSE are actually orthonormal, the solution to the 

TDSE provides the spectrum, a structure featuring where the energy states are. So, this is a 

typical example, if the energy states are here, so, I can get a structure here if energy state is 

here, I can get a structure here if the energy state is here, I can get structure here and so, on.  

So, solution to the TDSE provides the spectrum of the quantum system because it gives me 

the energy states and that is exactly what is important in energy resolved spectroscopy or in 

frequency resolved spectroscopy of this frequency and energies, they are related by  , equals 

if it is En energy, then n
n

E
  .  



So, the basic idea of the energy resolved spectroscopy is that we need to know the energy 

states and then those energy states can be obtained from time dependent time independent 

Schrodinger equation that is something which we have understood from very basic quantum 

chemistry class.  
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This is just an example following the same conventional approach. We are very much 

familiar with this particle in 1 dimensional box problem, we have been doing it for a long 

time. And in the particle 1 dimensional box problem the Hamiltonian is given by 

this
2 2

2
( ; ) ( ; )

2

d
H x L V x L

m dx

 
   
 

, where more specifically we have written the parameter 

L. So, it depends on the parameter L controls the overall Hamiltonian the potential which will 

be experienced.  

So, the basic idea is that if it is a free particle in a box problem, then ( ; ) 0,0V x L x L   and 

( ; ) ,V x L otherwise  , we should remember the semicolon we have used always in the 

addabatic theory, we have used it to separate the variable and the parameter.  

So, it is going to be when otherwise. So, this is the definition of the potential, like the 

particle in 1 dimensional box is experiencing this potential, and that is why we get the wave 

function, the nth wave function and nth energy state 
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if we know the energy states
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 
  , we know what kind of transition in the 

spectroscopy we can have. Different transition we can have.  

These transitions occurs within the eigen states, that is why in energy resolved spectroscopy, 

knowing the energy states are very, very important. So, this is a very general consensus, we 

have been using this general consensus for very frequently in quantum chemistry on the 

contrary to the our conventional approach based on time independent Schrodinger equation. 

What we are going to now present and we are going to realize that it is possible to determine 

the eigen values and eigen states for any 1 dimensional potential.  
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We are continuing with the when 1 dimensional problem. So, this is possible to explore 

directly from the solution to the time dependent Schrodinger equation. 

( , )
( ) ( , )

x t
i H x x t

t








 So, this is called time dependent Schrodinger equation, we are very 

much familiar with it and we will see that this solution to this may give us eigen state energy 

and eigen state wave function for given Hamiltonian. So, yes, it can TDSE can explore the 

spectrum of a quantum system, this is what we are going to see.  
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And in order to realize that what we need to understand is called wavepacket correlation 

function. What is wavepacket correlation function? We have understood that for a given 

initial wavepacket, let us say I have a particle initially, the wavepacket is representing that 

particle. So, I know initial wavepacket which is ( ,0)x , this is the initial wavepacket. For a 

given, for this given initial wavepacket.  

Either I can do analytical solution or numerical. Most of the problems needs to be solved 

numerically, but we can have analytical solution particularly Gaussian wavepacket we have 

seen that analytical solution is possible for Gaussian wavepacket. Now, for the translational 

motion. So, for a given initial wavepacket ( ,0)x analytical or numerical solution to TDSE 

gives the wavepacket ( , )x t at any later time t that we have seen that.  

Now, our task for this present module is to correlate, correlate the initial and final 

wavepackets. So, what we need to do? Is that we have to do the correlation, how they are 

correlating that is exactly what we are going to find out. And that is given by this correlation 

function, this is called wavepacket correlation that is the integration over the entire space.  

So, I had, let us say initial this is -  to +  for x space we have. Initial wavepacket was this, 

this was ( ,0)x and final wavepacket, let us say this one, ( , )x t , all we need to find out we 

have to correlate it and this kind of correlation is nothing but the overlap between these two 

functions. So, basically is trying to explore this overlapping regime how they are correlated 

whether they are fully overlap, partially overlap.  



So, this is what we are going to find out this is what is the meaning of it. So, if we can 

correlate it, we will be able to get an information of the eigen state energy and how we can do 

that. And that is the, that is the exercise we will go over.  

So, we have seen, so, the correlation function, *( ) ( ,0) ( , ) ( ,0) ( , )c t x x t x x t dx   




   , 

wavepacket correlation function is nothing but finding out how much they are correlated, 

how much they are overlapping with each other over the space, so, extent of overlap is going 

to be calculated through this correlation function. So, in order to do that, what we will do? 

We will follow them the approach we have always taken up in this course, we know that this 

( , )x t with function of the particle of a quantum system at time t, one can say this is the 

wavepacket can be expressed as a linear combination of orthonormal eigen states.  

So, let us say I have an Hamiltonian, that Hamiltonian is giving me should give me if I solve 

TISE through TISE, it can give me all these energy states. So, let us say one energy state n . 

So, this is going to be 1n   and so on. All these energy states are given an energy there eigen 

values are En then this is going to be En minus 1 like this way. So, associated eigen state or 

eigen state energies are there, these are stationary eigen state.  

So, basically what you are going to do is that, expand represent or expand, represent or 

expand the wave function in using, you are going to use that using the orthonormal stationary 

they are all stationary because TISE gives me stationary states orthonormal stationary eigen 

states, eigen states of the quantum system, ( ,0) (0) ( ),m m

m

x c x  so that is the way we are 

going to expand.  

If we expand it, then we can have we know that it is going to be cn expansion coefficient, 

which means that at time this is a non stationary wave function. This non stationary wave 

function are represented in the, using the linear combination of stationary wave functions and 

what contribution which stationary state contributes the most at time t that is controlled by 

this cn.  

So, cn is giving you the population at the nth state these are usual meaning we have been 

using this meaning for a long time in this course. So, this is the, so we have the time 

independent part, time dependent phase factor and associated expansion coefficient, which is 



going to control the population at time t and in that state. So, this is the way we can expand 

the total wave function at time t. ( , ) ( ) ( )
niE t

n n

n

x t c t x e 


  

And as a result, at times 0, t = 0 time, I will be able to represent the entire thing. So, in that 

case t = 0, so, this phase factor will be gone, what I am going to do is that to make it as a 

general, I will just change the index the designation or the notation of the index it, so just to 

make it a general, because it will be useful to use these things and theoretically, we know that 

m will be extending index would be extending from so 0 to  , n would be 0 to  , basically, 

all states possible states, stationary states will be added together, and cm is showing the 

population at that state.  

So, I have just what I have done is that I have selected two different indices for my 

convenience, one to represent this one, another to represent this one, but the meaning of these 

indices is the same, there is no change in the meaning of the indices. So, I have these two 

functions, so all we need to do is that to find out this time correlation function, I need to add 

these two into the, into this function, so I have to include it.  
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So, that is exactly what we are going to do now, I have these two functions now. And I am 

going to now insert them here, if I insert it, then what I get here is that 

* *(0) ( ) ( ) ( )
niE t

m m n n

m n

c x c t x e dx 
 



   . So, this is what we get after inserting these two 

expressions into the time correlation function.  



And after that we can reduce it very easily we can reduce it very easily in the following way, 

I can have this two summations together * *(0) ( ) ( ) ( )
niE t

m n m n

m n

c c t e x x dx 




  .  

* *(0) ( ) (0) ( )
n niE t iE t

m n mn n n

m n n

c c t e c c t e
 

   So, if there is, if the system is representing 

an Hamiltonian and still we are considering it is our time independent Hamiltonian, so, I have 

an Hamiltonian which is time independent and that is giving me not explicit time dependent. 

So, that is the way we should put together.  

So, for this Hamiltonian I have this eigen states all these eigen states and the population is 

changing as a function of time and that is exactly what we are trying to find out. So, I have 

this m  and n they are actually representing this stationary states. That is why this part can 

be approximately a sorry, not can be represented as a delta function.  

So, only terms which will be, which will exist in the end in this summation is going to be 

when m = n and which means that I have this summation remaining 

*( ) (0) ( )
niE t

n n

n

c t c c t e


 . So, finally, the another form of the time correlation function 

which you get is this one, this is the form of the time correlation function.  

So, this summation this particular summation will be all 0, all terms of this summation would 

be 0, except for the, that term for which m = n. And that is why this summation will exist. We 

are writing here, but this summation when we are writing explicitly, each term, all terms 

should be 0, except for m equals n term which will exist. So, we have been able to get another 

form of the time correlation function which is correlating the wave function at equals 0 and 

wave function at a later time t.  
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This time correlation function now what we will do is that we will Fourier transform the 

wavepacket correlation function, so we have this wavepacket correlation function c(t) and we 

will Fourier transform it, this is the way we do Fourier transform, it is just a convention.  

So, if we have a function, let us say if we have a function, and I am converting into frequency 

domain time to frequency domain, so it is going to be time to frequency. If we do the Fourier 

transform, we will see what we have basically what information is hiding within this function 

c(t) that we will be able to explore in the frequency domain, ( ) ( ) i tf f t e dt






   

On the other hand, if we take this representation where time to frequency domain 

representation is loss, then frequency to time during the presentation when we will do inverse 

Fourier transform of these, then we will have to use i te  .  

So, whether to use i te  or i te  it depends entirely on the convention or the representation of 

the Fourier transform we are going to use and corresponding inverse Fourier transform has to 

be selected accordingly. So, here we are considering i te   there is a reason why we are doing 

it because it will give me and very interesting outcome very interesting information will 

which will emerge which is hiding within this time correlation function.  

So, let us do that. So, if we do this integration, we have to just now insert 

*( ) (0) ( ) ni t

n n

n

c t c c t e


 This is going to be over the time and as we can see that one can say 



that this the c(t), this is an more like an envelope function. So, I have let us say 

* *( ) (0) ( ) (0) ( ) ,n ni t i ti t i t

n n n n

n n

c c t e e dt c c t e e dt
   

 

 

 

    .  

So, what do you see here is that recollect this information from a pulse, we had envelope 

function which was represented by ( ) i ta t e  and then I will clearly write it when if you 

recollect the pulse formation, we had all the wavepacket information, we had an envelope 

function a(t) in the time domain, we considered in the pulse and then i te  , that is the way we 

have represented which was slowly varying and fast varying components we have got, and 

we said that this part is very slowly varying component.  

So, if this, I mean following the similar note, if we consider that the c(t) although it is time 

dependent, but it is varying very slowly as compared to these terms, these two oscillatory 

terms, then we can take it out from the integration and we can actually write down 

* *( ) (0) ( ) (0) ( )n ni t i ti t i t

n n n n

n n

c c t e e dt c c t e e dt
   

 

 

 

    And if we can take it out, then 

what will happen, we can recall the definition of the delta function we have already given 

when we have, when we are dealing with translational motion or wavepacket dynamics, delta 

function has one representation which is 
1

( )
2

ni ti t

n e e dt
  









   that was the 

representation.  

And if we in the present context, if we try to do similar representation what we have here we 

have *2 ( ) 2 (0) ( ) ( )ni ti t

n n n n

n

e e dt c c t
      







    , n
n

E
  that is the 

representation we have. So, this equation this integration is actually representing our delta 

function, how we are going to write it down and if it is delta function,  

So, we can write it down in terms of delta function, this is nothing but summation of 

*( ) 2 (0) ( ) ( )n n n

n

c c t        So, what we see that this ( )  which is representing the 

Fourier transform of the, Fourier transform of the correlation function it is given by this and 

there is a meaning which you can immediately find out from this where, n
n

E
   
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So, what we get is that this Fourier transform of the correlation function gives me a spectrum 

because this is actually representing a spectrum this is representing a spectrum. Why this is 

representing a spectrum? This, this will exist this delta function will exist only when   is 

n .  

What is n ? n  is those states representing those eigen states. So, whenever   and   is 

continuously varying, so, I am going to vary   continuously and I will have function value 

only when these states are matching with this omega. So, I will get a spectrum and that is all 

about the spectrum spectroscopy, energy resolved spectroscopy, I get the energy states, which 

is modulated by this function.  

So, I will be able to plot now, this ( )  as a function of   and I get the max, function value, 

this is the, this is kind of in this envelope is represented by *(0) ( )n nc c t . That is the way it is 

representing. So, what I need to do is that at I need to find out at time t, ( , )x t , what is my 

wavepacket and correlated with respect to ( ,0)x .  

Once we correlate it, I can Fourier transform that correlation function and I get back the 

spectrum. This is the way I get the spectrum. This function exist only when I have this is 

matching n , and n  representing the wave function stationary states, each stationary state 

of the of the Hamiltonian.  



So this is the way we are getting it. So, this exercise demonstrate that the Fourier transform of 

the wavepacket, Fourier transform of the wavepacket correlation function, wavepacket 

correlation function renders the spectrum of the quantum system and this is called time 

dependent approach to the energy resolved spectroscopy.  

It is quite interesting that through TDSE we are actually extracting the information of the 

eigen states we are not solving TISE time independent Schrodinger equation to get this we 

are actually solving TDSE time dependent Schrodinger equation, we are starting with an 

initial wave function and we are allowing the system to evolve following time dependent 

Schrodinger equation and we are then after a certain time, we have to select this wave 

function at time t.  

Then correlate them correlate which means that we have to find out the extent of overlap and 

that overlap is going to now, if I Fourier transfer that overlap has that information, how many 

states are there and what states we have, but we cannot see it in time domain, we have to, we 

have to see that we have to go to the Fourier domain or frequency domain and immediately 

we will be able to see that. So, this entire exercise gives us an interesting perspective of the 

time dependent Schrodinger equation.  
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We have been finding out the correspondence between time and frequency. We will stop here 

and we will continue this discussion in the next lecture. 


