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Welcome back to Module 8 of the course Time Dependent Quantum Chemistry. In this 

module, so far we have discussed light atom interaction and we have shown that if we use 

first order perturbation theory, time dependent first order perturbation theory, where we are 

assuming that the population was in n th state and is undergoing a transition from n state to 

the m state, what would be the population at the final state, m state, after the perturbation is 

turned off.  
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And we have already shown that this perturbation, time dependent perturbation which can be 

expressed in terms of the vector potential. Vector potential which is created by light when it 

is propagating through vacuum.  
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So, we will move on and we will now, explicitly look at the terms. This is the population. 

This will give me population. Actually, square of the absolute value of this term 
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    will give me the population at the m’th state. So, what we 

are assuming here is that we had an n state and then m state can be higher than ( in energy) 

higher than n state or it can be lower than n state.  

It does not matter where it is. So, we will just assume that it is somewhere. This is another m 

state (follow slide figure or the lecture 53 at 02:05). And system is undergoing a transition 

due to this coupling term | |m nH 


. When system is undergoing the transition, we will 

assume that the perturbation started. Which means the interaction, light matter interaction or 

light atom interaction started at t = 0, ended at t = t1.  

And immediately after we turn off the perturbation, we would like to know what is the 

population. So, we started with the population in the n state. And after the perturbation, after 

this interaction, what is the population in the m state that is exactly what we are trying to find 

out here.  

So, as I have mentioned that before is that this perturbation part can be expressed in terms of 

this vector potential   .
e
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that the light is propagating through the vacuum medium and when it is propagating through 

the medium, it is creating this vector potential, is associated with this vector potential.  

And this vector potential is now interacting with a hydrogen atom, where I have, this is 

classical way of showing, I have a nuclear center and an electron orbiting the nucleus. But 

this is a classical picture Bohr atomic model but in the quantum model, it is going to be and 

cloud of electron. So, I have nucleus and then there is a cloud of electron around it. And there 

will be a place or position in the cloud where the cloud would be dense otherwise, it is like 

this (follow slide 03:50). So, this is the interaction we are looking at, and we are trying to find 

out what kind of transition we can have.  

So, vector potential, once we express the perturbation in terms of the vector potential, one can 
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So, that is why, finally, what I will get here is, this term will be reduced to 
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particular expression, we have seen. A will be expressed as (as A is a vector and A depends 

on the position), so will explicitly write down as     0 00Re , . .
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.  

That is the way we have already seen it. So, if we insert that one here 
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     , we get now two terms. One term is 
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Another term would be, the c.c complex conjugate 
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And this can be further reduced in a following way. I can write down. 
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This integration, this is an integration within the bracket notation what we have written it is 

the integration over the entire space. So, basically this is an integration, something like this. I 

have integration over all,    
1

0* ..... 0

t

m n

all

r e r dr  . So, it is the entire space.  

So, if I have a three-dimensional space, this is x, y, z, three-dimensional space and this is the 

r vector I have, then r vector can be in any direction and this r vector can be very 

conveniently written in terms of scalar. So, either I have to express this integration in terms of 

vector. 

So, this vector, r vector can be expressed in terms of scalar quantities, r which is the distance 

from the center and then   is this angle and   is going to be this angle. How to do that we 

will find out later. But the bottom line is that this integration or whatever is written in this 

bracket notation that is the integration over the space. That is why this time part, temporal 

variation part, the time dependent part can be taken out of that integration. And that is exactly 

what we have done here.  
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So, once we have done it, we will be able to just reduce it further, to get a convenient 

expression for our treatment. So, we have this, this one and then the integration is going to be  
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 That is the, we can write it down. And what we see that now one can find out one fact that 

this integration, this is bracket, what I have written in the bracket, this integration is over the 

space, entire space.  

What the entire r space? An r is a vector right now. And this integration is over time, that is 

why this spatial integration can be taken out, and one can write down in a following way. 

One can finally write down as  
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So, this is what we finally get after the, after reducing the equation.  
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We will further reduce the equation. This is what we have got already in the previous slide, 

but we will now focus on the time integration part first. So, together this time integration is. 

So, together I can express it together to, instead of writing twice, I can actually express the 

integration as 
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So, if I do this integration, the simple integration, we have already seen this kind of 

integration before. This is the integration 
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So, now I will just make one trick, and the trick is this is a trick which we have used before as 

well. This is going to be  
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We will be able to write this down this way. So, we do that then we can immediately simplify 

cos sin cos sin 2 sini ie e i i i             
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Similarly, that we can express this as t 1 by 2 e to the power i omega m n plus minus omega 

naught divide t 1 by 2. Then this part is going to be 2 i sin omega m n plus minus omega 

naught by 2. This is the sin function. Then divided by I have i omega m n plus minus omega 

naught divided by 2 t 1. So, what I get finally is that t 1. So, this 2 and 2 will be out. This i 

will be out. So, I get t 1 e to the power i omega m n plus minus omega naught t 1 by 2.  

Then cardinal sin function which can be written as sin c omega m n plus minus omega naught 

t 1 by 2. This is the cardinal sin function. So, finally, what we are seeing is this. This time 

integral is giving me the response of a cardinal sin function. And we know that cardinal sin 

function is very very steep in his behavior. And we will it is very steep in its behavior. And 

we will now insert this into this equation.  
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So, if we insert this equation, we will be able to. So, this time derivative is now going to be, 

sorry, time integration which we had before that can be replaced by this cardinal sin function. 

So, when you replace this cardinal sin function, we get the behavior of the population. So, 

finally, the population will depend on this. The response of a cardinal sin function. 

 

So, that is exactly what we are looking at right now. So, we will insert it and we will see that 

this is now, I can write down as minus  
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Then I have another term. And when we will writing the another term, This term, the first 

term, this one and the second term is here. There are two terms which is going to contribute 

to the population in the m’th state.  

And if we look at the behavior of the cardinal sin function, we generally call it like this way. 

It is a very sharp function. It has a value to very close to this 0 point. Otherwise, it does not 

have the value. So, cardinal sin function if we plot, it will be like this. This is the cardinal sin 

function value. It gets value at x equals, near x equals 0 or to the limit x equals 0, it gets a 

maximum value. And it reduces, I mean, it goes to 0 very quickly, and when it goes to 0, I get 

x  . So, x  , I get the minimum value.  

And so, we will find out, how this cardinal sin function is affecting these two terms. This is 

term number 1 and this is term number 2. We have to check individually, how these two 

terms are getting affected by the cardinal sin function. And remember, this width is very very 

narrow. It is very very narrow. It is only the cardinal sin functions mandates the values to be 

within a very narrow width. 


