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Nonradiative Transition Part 3 

Welcome back to module 7, we are discussing non-Adiabatic Transition Nonradiative 

Transition, they are synonymous, but we have not discussed this non-Adiabatic coupling yet 

we will do that in a later stage we are using non-Adiabatic coupling, the concept of non-

Adiabatic coupling which is involved in Nonradiative Transition, and we have said that it is 

constant it does not depend on time, that is why, but this is coupling two states which will 

undergo the Nonradiative Transition.  
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So, what we have seen so, far is that, this part is a Time Independent part and that is why it 

can be taken out of the integration. So, I can write it down directly like this way,  

 

 

So, if we if we integrate this one, what I get is here  

 

0 to t1 time is that t1 time is the n time for the interaction immediately after the interaction we 

are trying to find out what is the cm because from cm I will be able to get the population at the 

m th state the final state.  

So, but this one I can write down as 

 

 

If I use the limits and little bit trick will make here to get a convenient form of this 

expression, 

.  

 

 

So, what we see here is that this part [ ] can be written as the  

. So, I will erase this part and we will just write down . 

.  

So, as a result finally what I get here from here is that we can simplify it further and we can 

write down this is nothing but 

 



that is the final form of cm(t1) we get and once we get this, this Cardinal sin function is 

Cardinal sin function is nothing but it is a sin x/x. So, that is exactly what we have this is sin 

part here and then the another part this x part is here.  
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So, Cardinal sin function, we are using to express this population. So, finally we have to 

consider the square magnitude the square of the absolute value of the Cm and we take the 

square of it, and if we take the square of it finally, we get this expression for the population at 

the m th state. So, we started with ׀n> state discrete state and interaction was on for t1 time 

and we are trying to find out what is the population and the final state.  

So, the population at the final state immediately after time t1, when the process of interaction 

between two states switched off represents the probability of transition from initial state to 

the final state. So, probability of transition is nothing but how much population in the final 

state because the probability of being in state ׀m> is the probability of transition from state 

 m> due to the constant perturbation. This part is not time dependent this is time׀ n> to state׀

independent.  

Therefore, the probability of transition from initial state to the final state is given by this and 

if we look at this Cardinal sin function, this function is actually is a very sharp function it 

says exhibits are very sharp peak with a width and here width when I say width, I will not use 

this full width half max generally we use this full width of maths, but I will say when the 

function becomes 0.  

So, this is the width we are saying and this width would be when this   , 

then the function value becomes 0 and we are defining this is to be the width. So, if we have 

and then later there are some oscillation, but these are very low magnitude there is almost 

nothing so, you can say that this is a very sharp function sharp peak and then almost there is 

nothing.  



So, that is why we are saying that this is the this particular region is the is defining the width 

of them have this this function cardinal sin function and if it is so, then I can write down this 

difference in the energy the energy difference between the initial and final state as  

 

 

So, what it suggest? It suggests that transition to the final state ׀m> it suggests that transition 

to the final state ׀m> for which  difference between these energy states this energy and 

this energy 2 state energy difference does not deviate from 0 by more than  this value if it is 

deviating, then this value, then this function will become 0, this cardinal sin function 

becomes 0 and that is why population becomes 0.  

So, what it suggests is suggest that I can have an population transfer from ׀n> state initial 

state to the final state only if this final state energy has to be within this width plus minus 

width. So, if this is the energy of Em, then both side is possible this side and also this side is 

also possible this side. So, I have I will draw it like this way, let us say this is the allowed 

energy states. So, I cannot go beyond this energy spacing.  

So, population transfer can only possible bit from initial state to the final state if the final 

state energy stays within this  or  within this state where we are 

assuming that En equals Em. So, all these possible states can be populated with a varying 

population but it can be populated, but if the states are here or states or here it cannot be 

populated because it is going beyond the allowed energy spacing which will which will 

control which will be controlled by this cardinal sin function for this population in the final 

state.  

So, bottom line what we have learned from this exercise that is that a transfer of population 

known as nonradiative transfer of population from initial state to the final state is possible 

only when if the final state energy a difference  does not deviate from 0 by more than 

this value this is going to be plus minus both values are possible. So, all those states are will 

be populated if they are within this energy bandwidth.  
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So, what we have noticed that the transition from initial state ׀n> may occur towards all 

possible final states whose energy Em is located in the energy bandwidth of this. So, I have 

this ׀n state and then I may have many other states here as the final states, but only those 

states which are within this bandwidth. So, this is if it is En energy, then the same energy 

would be Em and then I will have this is -  and this is +  they have to be within this 

bandwidth.  

But it may so happen I mean this is call allowed according to this equation all possible 

allowed transitions under this nonradiative process is this but if I have a situation where I 

really do not have these many states even within the bandwidth. So, I do not have all the 

states let us say I have only 1 state, if I have 1 state available within the allowed bandwidth, 

then what will happen it is called it is going to be then state to state transition.  

So, I will have a state to state transition, because I do not have many final states and within 

this state to state transition if the straight state to state transition is going on, then one can say 

that I can take one particular limit this is a mathematical limit we are taking t1 tends to let us 

say infinity, what does it mean it means that I am allowing the system to be to interact for a 

long time. So, it is it means that I am using the long-time limit t1 is the interaction time 0 to t1 

is the interaction time.  

So, we are allowing the system to interact for a long time and if it is long time, then one can 

write down this 

 

 

 So, this is a definition of a delta function I had a very sharp.  

So, basic idea is that this this function is a very sharp function this Cardinal sin function and 

at that infinite t limit which means very very long t1 is very very long, then what happens this 

sharply peak function Cardinal sin function adopts the Dirrac delta function in the limit that 

the peak height of the sharply peaked function becomes infinite.  

So, this becomes like this with 0 width is a delta function in the limit of this t tends to infinity 

which means the area under the carve will go 0 because it is now for the long time and it 

becoming the height would be infinite and it be it behaves like a delta function ). So, 



within this limit within this long-time limit, this entire population in the ׀m> th state can be 

written as follows, one can write down as follows, this is going to be then. 

 

 So, this function is becoming a delta function for a long-time limit and this is a property of 

delta function which is . So, because 

 

We Will be able to write down this as follows. This is going to be then  

 

 

what I get here.  

So, rate of transition, so this is the population at the ׀m> th state. This is the population at the 

 m> th state and the rate of transition if we try to find out the rate of transition that is going to׀

be 

 

So, what we get here is that presence of a delta function in this equation, this delta function in 

this equation it means that this function will have a finite value finite positive value whenever 

you have Em equals En. If they are not equal then this entire value becomes 0.  

So, presence of a delta function in this equation mandates the fact that in the limit t tends to 

infinity which is the long-time limit only transition which will be allowed is the one for 

which the initial and final state must be equal. So, this must be equal otherwise the transition 

will not be allowed because delta function will be 0 for every other state, this requirement is 

serendipitously fulfilled by certain electronically excited states of helium and neon in He-Ne 

laser.  

So, in He-Ne laser we have seen that this helium excited state and neon excited state they are 

coinciding with each other they should have the same energy and then only this helium can 

transfer energy it can it can deexcite and the entire energy can be given to excite a helium 

sorry neon ground state system to the excited state system. This equation is called Fermi's 



Golden rule of State to State Nonradiative Transition, where we have this involvement of the 

delta function.  
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We will now move forward to the State to Continuum Nonradiative Transition, in the State to 

Continuum Nonradiative Transition our starting point again this population in the ׀m> th  

state which is defined by this cardinal sin function square function, this is a very sharp 

function and the concept again has been depicted here as you can see that this state can 

transfer population to the to a number of states possibly number of states if they are available, 

but within the band within the energy bandwidth.  

So, this is the definition of the bandwidth we have given this bandwidth is  within this 

bandwidth plus minus, So, this is  and this part is -  that is given by E this 𝜂 plus minus 

𝜂. So, several final states are available if they are available, then the allowed bandwidth the 

bandwidth of this transition which is controlled by this cardinal sin function will allow the 

transition to happen from initial discrete initial state to the number of final states.  

And if the final states are so closely spaced in energy, they can form the Continuum they may 

look like a Continuum and if it is Continuum, if you are dealing with Continuum then we 

have to make use of a quantity called Density of States, because we do not have one state we 

have multiple states and when you have many states together very closely spaced together 

then often we use this quantity called Density of states.  

Density of states   at a particular energy level it is defined by number of states number 

of states present per unit energy range between Em and Em+dEm. So, within this range within 

this interval per unit range how many states I have that is called Density of states. So, in that 

case this dEm will represent the number of states present in the dEm range.  

And we have already realized that, so, this is the number of states present in this range dEm 

range and for each state the probability of transition is given by. 



 

 

 This is the probability of transition to each state. And we have this many states that is why 

total transition probability would be for transferring the population to this many states will 

have multiplied by . 

 

So, this is the total probability of transition from to these many states. And if we say that the 

Raditionalist Transition occurs from an initial state to a group of final states, whose energy 

Em lies within an energy interval from Em+𝜂 to Em -𝜂, in that case, the total probability total 

probability will be given by this integration, 

 

 So, we are integrating the contribution coming entirely from this region, this energy space, 

all the contributions were calculating. So, each one each state probability of transition is 

given by this part, only this part. Then we are multiplying by this because this is the number 

of states I have within this energy range. And in the end, I am just integrating the total 

contribution.  
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So, if we if we do that, then then what will happen? Here we can assume that for each state, 

so, I had an ׀n> state here, and it is transferring the population within this entire interval. 



Within this entire interval I am transferring the population when I am transferring the 

population will assume that for each state transition, I will consider that the density of states 

this  is constant, to make the mathematical derivation simple. Density of states will be 

constant and will say that  this coupling term is also constant.  

So, for each state final state density of states is constant and coupling constant and that… So, 

if it is constant, then we can take them out of the integration and if we do that, then finally 

this integration becomes  

 

So, just an integration between these two and we have already understood that non-radiative 

transition may occur from an initial state ׀n to those final states whose energy Em is located 

within this energy bandwidth, that is exactly what we have already understood. So, one way 

to further reduce this equation is to assume that  𝜂 ,  what does it mean? It means that the 

number of available states it showing that number of available states. So, 𝜂 is controlling how 

many states I am going to integrate and this part is controlling how many states I have 

available.  

So, this condition suggests that the available number of states are significantly greater than 

the required final states within this energy bandwidth. So, this bandwidth which is plus minus 

this value this  value this is given by h/t1. So, what we are saying is that number of 

states here as depicted here number of states are much larger than the required bandwidth for 

this transition and if this is so, then one can assume that this integration can be considered to 

be from minus infinity to plus infinity within this limit.  

So, if I have states which are available, available states is much larger than the states where I 

can transfer the population. If it is so, then I can transform this integration within the limit of 

minus infinity to plus infinity, because if we do that, then very easily we can calculate this 

this integration it is because I can assume that 

 

 

And in that case, I can write down  

 



I can plug that in here.  

And I will be able to reduce it in a following way, I can use the standard integral, a standard 

integral for the cardinal sin function is follows  

 

So, we will use the standard integral. And if we do that, then total probability 

 

So, we get this t1 will be cancelling each other. So, I get these h will be cancelling each other. 

So, I get finally, this is what we get  

 

And as a result, the rate of transition will be given by this equation. 

 

 So, what we see here is that this equation is quite similar to State-to-State transition except 

for the fact that here I have density of states. And their I have for the State-to-State transition 

I had this for delta function.  

But we remind here is that this this rule Fermi's Golden rule for the state to Continuum 

transition, the derivation has been gone under the assumption that I have available states 

much larger than where I can transport the population. So, within this limit, I will be able to 

get this. So, there are two rules we have found already. And these two rules are suggesting 

that the transition rate will depend on density of states and the coupling strength.  

If the coupling strength is strong, then transition rates would be high and if the coupling 

strength is weak, then transition will be transition rates will be low, how fast the energy 

population can be transferred from the initial state to the final state. We will stop here and we 

will continue the session in the in the next class. 


