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Derivation of Quantum Adiabatic Theory 

Welcome back to module 6, we have we are presenting quantum adiabatic theorem. And one 

thing we tried to emphasize here is that when there is a dynamical evolution going on in 

quantum system, just before initiation of the dynamical evolution the system is in a stationary 

state it can be in a single state let us say ground state, but after the dynamical evolution is 

turned off, immediately after that point, point of time the system is not in the stationary state. 

System is in a non-stationary state and that non-stationary state has to be expressed in terms 

of the linear combination of the stationary states available for the system. And that is exactly 

what we have done here.  

(Refer Slide Time: 1:30)  

 

And this is general consensus of general way of doing the calculating quanta exploring the 

quantum system in the which is using TDSE Time Dependent Schrodinger equation. So, what 

we are saying is that just before the expansion it was in the stationary state and the stationary 

states are given by H0 but after immediately after the expansion we cannot give more time 

after the expansion it is just exactly immediately after the expansion of the box the particle is 

in non-stationary state and that non stationary state which means that I may have population 

in different states that is why it is non stationary.  



If it is in the with a population staying in the same state then it is not as non-stationary state 

anymore, but if the population has staying in different states, it means that all states are going 

to contribute it is more like a superposition and the moment I have superposition it is called 

non-stationary state. So, this non-stationary state will be defined as linear combination of all 

stationary states present at that time at that L(t) distance.  

And L(t) distance which means that H(t) Hamiltonian will give me that stayed stationary 

states. So, those stationary states may be occupied and we need to find out the population of 

each occupancy of the states. So, that is the basic idea, which we have to follow and we have 

clarified that due to this non-adiabatic sorry, due to this adiabatic change this temporal 

change from 0 to T the total accumulated phase would be this one for each nth state.  

 

Each stationary state is accumulating our temporal phase of this kind, because Et is changing 

En(t) is changing. So, instead of writing this expression, this entire thing, we will assume that   

 we will define a quantity called  

 

that is the  . So, basically this entire integration is . So, we will just replace this by  ,i 

does not have that.  

So, it is theta n is actually 

 

 

So, in that case I will be able to write on i  or phase factor total phase factor which is 

accumulated by the n th stationary state at that time a t L(t) distance for the L(t) of the box. 

Each stationary state is accumulating the phase this is the phase each stationary state wave 

function is given by this at that time and its contribution to the total wave function which is a 

non-stationary state.  

So, what we need to do now, as is usual for any Schrodinger way of solving the problem, we 

have to insert this 1 to TDSE to get this unknown Cn part to find out what is the population, 

each state contributing how much each state is contributing to the non-stationary state of the 

particle.  
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So, that is exactly what we are going to do right now. For the subsequent mathematical 

derivation further we will write down few things, we will write down that as a result of slow 

temporal variation of the Hamiltonian, this at time t, which is immediately after the process is 

turned off, this eigenvalue equation is valid  

 

 

this eigenvalue equation is valid and this is this is one thing which we have already said that 

before the expansion, the eigenvalue equation was 

 



  

And after the expansion I have now this is t this is instead of 0 I have now t instead of 0 I 

have now t instead of 0 I have now t and instead of 0 I have now t immediately after the 

expansion is turned off. So, this part is valid. And when this is valid, then we assume that at 

time t which is L(t) is the distance rather the dimension of the box for this dimension of the 

box, the all this  𝚿n which you have written it is actually the states here not states here, these 

are not the these states are given by H(0).  

But these states stationary states are given by H(t) that is the Hamiltonian at time t. So, those 

states are orthonormal to each other. So, I can write down that. 

 

So, they remain. So, those states are remained orthonormal at any at that time.  

So, at time t immediately after the process has been turned off those stationary states remain 

orthonormal. So, these are the facts we have been considered to solve this problem. And now, 

all we need to do is that this is the ansatz which is a trial with function we have to insert to 

this TDSE and get the solution. Solution which means that we will be looking for what the 

expression we have for Cn. Cn will give me the population of each state each available state.  
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So, let us look at the derivation, we will first insert this to the right-hand side. So, the left-

hand side so, left hand side for left hand side what I get is that 



 i h cut partial derivative with respect to t  𝚿(t) equals i h cut now, summation over n this is d 

Cn (t) this is not a partial derivative anymore because Cn depends on all the on time. But this 

is partial derivative because although explicitly not showing it x depends on the variable x 

sorry the psi depends on variable x.  

So, it should be written like this way  𝚿(x;L(t)) instead of writing like this way we are just 

writing 𝚿 (t). So, we should not get confused. What is the notation what does it mean by this 

notation and that is why we are using the partial derivative here. But Ct depends on time so 

that is why this is total derivative we are considering here. Now, this is  

 

 

Now, this is going to be also the not going to be the partial derivative is going to be total 

derivative because depends on the energy and energy depends on does not depend on x 

energy depends on only L(t). So, that is what this is, this is going to be total derivative. So, 

this is what I get.  

 

 

So, if I simplify a little bit further, I will get  
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So, this is the left hand side right hand side one can insert here right hand side right hand side 

is going to be 

 H(t) 𝚿n(t) which is nothing but  H(t) summation of Cn(t) 𝚿n(t)    equals H(t) now, H(t)  

acting on 𝚿n(t)  we have shown we have previously said that some H(t)  acting on 𝚿n(t)  will 

give me En(t) 𝚿n(t)   that is the time independent Schrodinger equation the eigenvalue 

equation at time t which is immediately after the adiabatic process is turned off this 

eigenvalue equation holds that is why we get the different eigenstates at that time.  

 𝚿n(t) =  

And so, I can write down this is nothing but following this is nothing but Cn(t) then En(t) 

𝚿n(t) . Now, because this  (t) is nothing but  one can write down 

that  
 

 

 one can write down this. So, basically integration is now converted to its derivative form, 

from this derivative form only we get this integration so, we are getting the derivative form.  

Once we get this derivative form one can write down this 

 

So, this can be inserted here we have Eb(t) this can be inserted here and what I get is that the 

right-hand side finally, transform to  

 



 𝚿n(t)=  

that is what I get from right hand side. Because it is TDSC left hand side and right-hand side 

should be equal.  
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So, this part and this part should be equal and if we make it equal what we see here is that this 

part and this part will be cancelling each other and in the end what I get is  I get 

 

 

this is what I get i end i h cut h cut will cancel out.  

So, finally, I get after inserting that trial wave function which is also called ansatz that we get 

this expression.  

 

 

And we have to further reduce it and we will be able to reduce it further by multiplying the 

entire expression multiplying the entire expression by 𝚿 so, we will multiply by 𝚿*m(t) and 

make use of ortho normalization condition. So, I will multiply this one by   𝚿m(t). So, I will 

just rewrite this one as follows. I will write down as and then integrate it over the spatial 

coordinate which is  



 

 

So, this is what I get to reduce it by multiplying by this complex conjugate of the psi n 

because we are going to make use of the orthonormal condition.  

Orthonormal condition we have seen it is this is the orthonormal condition. 

 

So, we make use of this and this is a trick which we use many occasions to reduce TDSE so, 

this is a very common trick. So, this expression this final expression will reduce down every 

other terms will be 0 because of this term, except for when n equals m.  

So, I get only this term surviving   will be surviving. On the other hand, right 

hand side, I cannot do anything because this is with respect to derivative I do not have any 

treat for the derivative yet. So, I have to keep it as it is  

=  

 

. And what we will do we will just take this 1 on the right-hand side. And finally, we will be 

able to write down  

=  

 

that is the final expression we get.  

So, in order to reduce this expression, what we need to do, we need to find out this 

expression, if we get this expression because   is has already an expression ) we have 

seen is nothing but  

 

 

this is the integration to present material. So, this part is known, the C this part if we get an 

expression, we will be able to reduce the expression further.  
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That is exactly what we will do. We have now, this expression already given. And we need to 

know this one. So, in order to get this one, what we will do, we will first take the time 

derivative of this expression time derivative of this expression, this is the eigenvalue equation 

at time t, immediately after the adiabatic process is turned off. So, 

 

 

 

So, it is going to be now, first it is going to be this is going to first term would be partial 

derivative, because Hamiltonian depends on x plus wave function also depends on x, that is 

why it is going to be partial derivative equals this is going to be total derivative, because 

energy depends on the length adopted at that time t. So, it depends on time only and this  

remains plus I have now, partial derivative En(t) partial derivative of 𝚿n(t) dt.  

 

 

So, this is the expression what we what we get. Now, if we multiply again we will use the 

same trick if we multiply from left hand side this if we multiply then what I get is that  



 

 

so, this is the expression finally, we get.  

And we have to note that this is the integration of our coordinate space coordinate space 

which means that this is nothing but that is the integration. So, this is 

this integration. This is the meaning of this Dirac notation. So, we will go ahead and we will 

be able to reduce it because H is an Hermitian operator.  

It can actually act because it is Hermitian operators the property of Hermitian operator we 

know that it can act from right hand side so, it can actually act on this. And if it is acting on 

this, then what I get from this is that this part is nothing but . So, 

this part can be written like this.  
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And if this integration can be written like this way then I can replace this part here and if I 

replace this part here, I can replace this part here. So, what we will do is following I have this 

one which can be written as now  

 

 

 



So, what we get now, if we consider that m naught equals n if m not equals n this integration 

 will become 0 this goes to 0 if m not equals n then  

 

 

Because this part and this part we are clubbed together and we are finally writing down.  

But this can be written only when m not equals n. So, and this is exactly what we have here, 

this this part so, we can insert it and if we insert it what we get here is that  

 

 

So, what we have done? This entire summation we have divided into two parts one part for n 

equals m another part for n not equals m. For n not equals m we have written this part entire 

part but for n equals m what will happen if n equals m then this is going to be Cm that is we 

have written one term we will get to n equals m, and then this is going to be m but the n 

equals m. So, this part is m and this part will go 0 because  will be 0. So, that part 

will not exist anymore. So, finally, we have found that the expression can be reduced to this.  
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And once we have reduced to this expression, we will be able to do now, at adiabatic 

approximation, that adiabatic approximation is following a adiabatic approximation assumes 

that because H is changing very slowly, one can write down  to be negligible or 0. So, 



this part becomes 0 and if this part becomes 0, I get the expansion coefficient equals 

 this is the approximate under a adiabatic approximation we get 

this expression.  

And once we get this expression one can now integrate this expression as follows this is 

going to be  

 

So, we have again distinguished the variable for the integration and the limit for the 

integration. So, limit is showing that I am looking at the integration from 0 to t.  

And if I do that integration, then immediately I get this value Cm(t) at time t which is 

immediately after the adiabatic process is turned off. This will give me the population at the n 

th state that will be controlled by Cm (0) at time t equals 0, what was the population 

multiplied by e to the power so, this part is going to be L (n).  

 

So,  

 

where  

 

 

so, this is the solution. So, what we are getting is that the expansion coefficient for each state 

is given by this expression it will depend on the initial population at that state. And it will 

depend on the another phase factor which is going to be introduced due to this adiabatic 

change.  
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So, we can now write down all everything all together this was the wave function of the 

stationary or non-stationary state immediately after them. So, it started at 0 time it ended at 

time t and immediately after the adiabatic process ended, I would like to know the wave 

function which is representing the particle, but the wave function is no longer a stationary 

state with functional it is a non-stationary state wave function and a non-stationary state wave 

function is represented as some linear combination of all stationary state available at that time 

only at this t time which is for the box L t dimension.  

 

 

And that depends on this particular phase factor which we have seen already and now Cn has 

a particular value. Now, for a general this part is for the for any m state. So, this can be also 

converted to n state also any n state, so I can convert it and the moment I convert it, I will be 

able to plug that in. And if I plug that in, I will be writing it down  

 

 

And we know that each one each expansion coefficient will be given by this so, I can write 

down as  

 

 



Now, if we consider the initial condition, initial condition was the population before t equals t 

less than 0 before the process started, we assume that this particle was in the n th stationary 

state if the particle was n th stationary state, and that means the population is going to be then 

1. So, Cn(0) is going to be 1 remaining all others C(0) which is C1(0), C2(0) at 0 time all are 

going to be 0. So, as you can see that these all terms will be 0 except for this term.  

So, in the end, what I get is that  

 

 

that is the that is the way it reduces. So, it shows that if I start with n th stationary state of H 

(0), the final finally the particle will stay under adiabatic approximation. This may not be true 

for if I do it quickly, the expansion happens very quickly.  

But the expansion because the expansion happens very slowly. The particle remains in the n 

th state of H (t) discrete n th state of H( t) but it stays in the n th state that means the energy 

state will be defined by this time, but that wave function accumulates to different phases. And 

the phases the definition of these phases, this  is called dynamical phase and these  

  is called geometrical geometric phase. We will we will look at what is the meaning of this 

different phases in the next class.  


