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Wavepacket Dynamics under Zero Interaction Potential: Numerical 

Welcome back to Python tutorial 5 of the course Time Dependent Quantum Chemistry. We have 

gone over just how to normalize the initial wavefunction. And we will proceed further to check 

how to now time propagate numerically. That is a very simple procedure we will follow.  
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The time propagation part will be done through the split operator approach. So, we have already 

realized and we have also found the recipe for implementing the split operator method which 

propagates the wavefunction from, t equals 0 to some other time. So, this is my initial 

wavefunction which I have already discretized and normalized it and this is your final 

wavefunction after the time t. And the way it is done is we make u a short time propagator like     

short time propagation and then we just keep propagating it in an iterative process. 

 
So, what does it mean? I start with this function and the recipe we have already discussed is that 

we start with this wavefunction, we do a full year transform to convert it to the momentum 

domain. In the momentum domain, I employ the kinetic energy operator. And so this, and then 

we come and then we come back to the position domain and then we keep repeating.  

So, propagation will be repeated until I reach the final time. So, that is the, that is the basic 

idea we have already developed it. Here, this sign is we have never used this sign before. This is 

nothing but the N times product that we have seen already. We have to do this N time, this short 

time propagation N times. So, this is called N times product, that is all, it should not puzzle 

anybody.  

 

Now recall that for each time in the product, the potential part of the propagator is carried out in 

the position space. So, we just remember that. We said that this is the potential part and these 

two are the kinetic energy part. So, this is the symmetrized product of the split operator 

approach. We have seen that initially, this part has to be acting on this. Then this part will be 

acting on the resultant part. Then this part will be acting on the resultant part.  

But when I am employing this potential, the potential part has to be carried out in the position 

space. And the kinetic part of the propagator is carried out in the momentum space that we have 

already understood. If you need recapitulation, you please go ahead and check the split operator 

approach, the module which is covering the split operator approach.  

So, with this idea, in atomic unit, we have already considered that h/2  cut equals 1. So, this 

part, this h/2  , I can eliminate if we consider atomic unit. And for the free particle, we have 

considered, because it is a free particle, we can consider V, this is not velocity, this is the 

potential, this is the potential. V is 0, because we are dealing with 0 interaction potential that is 

called free particle. 



So, in that case, if we do that, then in that case, under atomic unit and free particle -- for the free 

particle, this entire expression becomes like this.  

 
 

This is what we have. And that is exactly needs to be repeated here following this scheme.  

So, explicit numerical steps are summarized here. We start with the initial wave packet, which is 

the X, 𝚿(x,0). Then because we have to carry out the kinetic energy part in the momentum 

domain, K domain or P domain, both are equivalent, the expressions are different, but they are 

equivalent, so we have to convert this one to momentum domain, and that conversion can be 

done through fast Fourier transform.  

We are now familiar with it, we will see the implementation again, and then we have to carry out 

this kinetic energy part and get an another wavefunction, which is displaced to this time  

. So, after time, we have now though wavefunction in the momentum domain. Then we have 

to inverse full year transform to the position domain. This wavefunction is now new 

wavefunction for the feed to the next iteration. And this needs to be iterated until I reach the final 

time. That is the basic idea. And final time is going to be N  time is the final time. So, N times I 

have to repeat this one.  

 

Here this 𝚿(x,0), this represents the initial wavefunction. And this one, it represents a new 

wavefunction, new wavefunction at time T plus , sorry 0 plus . 0 plus delta t. So, delta t time 

has been advanced for this wavefunction. To implement the, this, this product recipe, this 

iterative product recipe, the sequences repeated with the help of a for loop. So, you use a for loop 

to repeat this one, for every  with 𝚿’, this is 𝚿’ will be serving as the new initial wavefunction 

for the next iteration of the loop. So, we will use the for loop for implementing this one. 

 

We must select and sufficiently small Delta t that we have also understood why we should select 

this very small delta t to achieve higher accuracy in this computation, because the split operator 

approaches and approximate approach and the error goes with like this. So, higher order errors 

will be neglected if the delta t is small. And the kinetic energy operator on the K grid is 

represented by. So, this, there is a kinetic energy operator here, T. So, this kinetic energy 



operator will be represented by, as I have mentioned previously in the atomic unit, it is going to 

be  

 
 

because it is for any K.  

So, what is the kinetic energy? It is more like a K dependent function depending on what K I 

have. And so, in the K domain, I have the, there is a K domain I have created, discretized K 

domain. And for each K, I have a kinetic energy operator. So, what we can see that Kinetic 

energy in the K domain is actually quadratic, quadratic in nature. And sorry, quadratic in nature, 

which means like this. It spreads out between both 0, but both side of the 0. So, it is quadratic in 

nature in the momentum domain. And it should be half K square, because in the atomic unit. So, 

we will express it like 0.5 K, K square. That is kinetic energy of the kinetic energy operated in K 

space.  

So, we will move, go ahead and check the function now. We will move to laptop and implement 

this. 
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So the first few lines will be kept here from scipy. We have to import the same square root 

functionality, arange functionality, exponential functionality. In addition to that, I will also 

export pi, sorry, import pi. And there is a reason why we are importing pi, because for the 

preparation of the k-grid, I need this pi.  

From integrate, I have to import again Simpson's method. And then I have to form, because we 

will make use of Fourier transform, we have to import some functionalities from scipy, fftpack 

sub-module import fft frequency, fft and ifft, these are the functionalities we are going to import. 

And then remaining part, matplot library will help us plot the function and creating the x-grid 



remains to be the same. We have the x-grid, then we have to define the normal -- define and 

normalized the initial function, that we are keeping the same is a traveling Gaussian.  

And then we have the normalized wavefunction. And once we have the normalized wave 

function, we can write down probability or psiNorm, probability, density, initial. So, we will 

compare with the initial probability density. Probability density is nothing but absolute value of 

this psiNorm square. So, we are writing this one because we would like to check the probability 

density, we would like to plot initial probability density and the final probability density after the 

iteration.  

Now we will go back, go to the important step, the iteration, how we are going to start the 

iteration. But before we start the iteration, time propagation, we have to create the k space first, 

because we need to change to k space to carry out the potential part, sorry, kinetic energy part of 

the split operator component.  

So, we will write down time, propagation, implementing, split, operator, approach N equals 

length of x, I need to know that. Because when you define K, I will define K by 2 pi multiplied 

by the frequency components, fft frequency components. For that, I have two inputs in number 

of grid points I have in the x space as well as the separation of grid points. These are the two 

things. And this is the way we create the k space.  

And then I am going to define the kinetic energy in the k space and that definition is very simple. 

It is going to be 0.5 multiplied by the K, each K multiple square. So, this is the definition of the 

kinetic energy defining the kinetic energy. Once the kinetic energy definition is over, then I can 

now define the Nt. Now Nt is total number of steps I am going to carry out. This is going to be 

total number of steps. And each step size, dt is taken to be 0.1.  

So, note that if I take dt to be 0.1, what is the unit? It is in second. No, it is in all in atomic unit. 

So, dt is the timestep, it is taken to be atomic unit of time here, x is taken to be 0.2, which is the 

separation 0.2 is in again atomic unit of length and that is the way we are moving. So, this is, 

these are presented in atomic unit.  

Now I am going to implement the for loop for the, for the iteration part. So, the way we are 

going to implement the fall loop, it is going to be i in a range functionality. This is something 

which, we know, aranage, for arange functionality, we use, we need, generally we need three 



inputs. One is a starting point, end point and the division. But arange functionality, another 

format of arange, arrange functionality is there, it is going to be how it is the endpoint of this.  

In that case, if we use this arange functionality with single input, it means that a single input is 

considered to be the end point. And definitely, endpoint will not be considered, so it will be 

considering only the point before the end point. But what it would be giving you is the -- it will 

be giving you the numbers separated by one. So, it will start with 0, then 1, 2, 3, 4, it will 

continue until it reaches 99. 

So, how many iterations it will undergo? It will undergo a 100 iteration, but it will start, the 

index will start, the index is actually here i, index would be starting from 0, and we will end at 

99. So, that is the basic idea. So, the first thing in this iteration we are going to do is there first 

we have Fourier transform the wavefunction, Fourier transform of the wavefunction. When you 

do the Fourier transform wavefunction to k-space. When you do the Fourier transform the 

wavefunction, we get that psiNorm. psiNorm, psiNorm. We get psiNorm in the Fourier space, 

which is nothing but fft of psiNorm.  

So, psiNorm underscore K is the representing the wavefunction in that Fourier domain. Then I 

have to use the Time Evolution. We have to carry out kinetic part of the split operator. Here, 

only we have kinetic part, so split operator is nothing but the kinetic part only. There is no 

potential part that I can carry out like this way. I name it KE equals, it is going to be exponential 

off minus 1.0j multiplied by kinetic energy, multiplied by dt. That is the kinetic energy part of it. 

This part will be multiplied by the fourier transform part. So, this is a scalar multiplication. So, 

each point will be, each is element wise multiplication for this. 

So, note that KE, KEK underscore K, it is an array. And this array, when you are multiplying by 

dt and minus ij which is the complex number, it is giving you another array with this 

multiplication, element-wise multiplication. So, this, this, this entire thing is an array. This array 

is multiplied by this array, which means that I am element wise multiplying it and then getting 

the, another array. So, this is again an another array.  

So, this is the way we have performed the time propagation delta t, and then what we need to do 

is that iFFT inverse fourier transform of the wavefunction to Real space. And for that, all we 

need to do is I write down psiNorm. Again, I am going to update this one. So, here I start with 



this psiNorm, the iteration is started with psiNorm. When the iteration is started in psiNorm, you 

check this, psiNorm is actually a normalized wavefunction, this one. I start with it. But when, 

during the iteration, this psiNorm will be updated.  

So, in the second iteration, after the first step, that second iteration, this psiNorm norm will be 

updated to this psiNorm. So, that is the way iteration continues. So, I am now updating the 

psiNorm value iFFT, which is nothing but iFFT of this function. So in the end, so this iteration 

will continue until Nt is satisfied, this -- until the endpoint of this array, NT array. And then once 

it is satisfied, finally, I get psiNorm, the updated value of the psiNorm. That is the, so I will find 

out the probability density, final which is going to be nothing but absolute value of the final 

updated psiNorm.  

And now if I, plotting everything, it will be easier to visualize what I am doing, plotting the 

initial and final probability densities. Plot X versus initial probability density. Plot X versus 

versus final probability density. These are the two plots I will have. And because I have already 

done this problem, I know the limit should be set to be for better visualization. That is all. So, we 

can run the program and we see that the initial probability which was centered at 0 that is quite 

expected, this is a 0, which means the 0 length which means the in atomic unit.  

So, it was centered at 0, it was normalized wavefunction, probability is normalized. So, the 

probability, so initial probability or the center of the probability was at X equals 0. But after time 

T, what is the time I am looking at? NT equals hundred. So, after a hundred atomic unit of time, 

what I get? The probability is centered almost near 10. So, probability is moving. And when the 

probability density is moving, it means that there is a quantum dynamics and that is the way we 

present them quantum dynamics.  

So, we will move to the slides now. And we will see that this, this entire protocol has been 

implemented through this, through the, through this split operator approach.  
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Now, a couple of things can be interesting here to note again is that, this steps we are, these steps 

can be one more time clarified here. We are considering Nt, Nt to be 100 atomic unit of time. 

After a 100 atomic unit of time, where the probability density is, and that is the final probability 

density we have found. So, this is something which you should remember that, and the delta T 

we have taken to be 0.1 atomic unit. 

And one more thing we have to remember that the, in the beginning of the iteration, we have this 

psiNorm normalized wavefunction that is used here. But then so that is used here in the fast 

iteration, but then this psiNorm will be updated and that is how you have kept the same name 

and it will be keep iterating until I get this 11, 100 step over. The moment 100 step is over, then I 

get the probability density as a final probability density.  

So, this is the major step, one can take a look at this part, this is the time propagation part, how 

we are doing this time propagation. As you can see that the kinetic part of the propagator has 

been implemented our carried out in the momentum space only.  
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So, with this we see that the center of the Gaussian is moving and as center of the Gaussian is 

moving, and not only that, it is spreading out also, and its amplitude is going down, it is spread 

out. And so this is the quite natural expectation for the particle, a free particle what we have 

already concluded from analytical approach previously.  
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Now we want to be a little more quantitative, quantitative in the sense that, we can test Ehrenfest 

theorem. Ehrenfest theorem suggests that the cent, the expectation value will follow the, it will 

follow the classical trajectory. So, a Gaussian function, if I have a Gaussian function like this, it 



is characterized by its center position and its width, both are important characterization of the 

Gaussian function.  

So, this suggests the spread of the Gaussian distribution and this shows the mean position or they 

expectation value of the Gaussian. So, this is the Gaussian distribution. And we, in general, 

express 

 
 

that is the way we express it. So, this Gaussian distribution is centered at x equals 0, and its 

width is given by delta x.  

Although delta x is not defined with respect to the wavefunction, it is defined, remember, it is 

defined with respect to probability density distribution. So, if this is the wavefunction, then 

probability density distribution looks like this. 

 

 
 

In this distribution function, we define delta x, this is something which we have emphasized 

previously also. 

And this delta x has many ways you can define that delta x. It can be fill width half max or it can 

be, full width half max, what does it mean? It means that the with where the intensity has 

dropped down the half of its maximum intensity, that is called full width half max. So, that is the 

way in, the distribute, the spread of the, of a Gaussian function can be described. 

And if we describe it as a full width half max, then we get immediately, this is also we have 

seen, this  

 
 

 that is we have -- we get it. So, full width half max, delta x is defined with respect to its 

distribution function not with respect to the wavefunction, this is something we should remember 



that, that is the convenience, that is, this is the standard procedure we follow always. And then 

based on that only, we defined A equals this one.  

Now in different context, when you deal with Gaussian distribution, it is the, the width is also 

expressed in terms of its variance. And that is defined 

 
 

like this. It is the variance. And if we look at that variance, so  

 
 

That is the value, that is the expression. And expectation value of x  

 
that is the way, expectation value of x is given. So, graphically, if we think about it. 

So, this is what we get from expression, that mathematical expression. And from this 

mathematical expression, we get this sigma. But sigma is the actually I told you, sigma is 

representing some kind of spread of the Gaussian distribution. And what is that spread is 

showing, in general, one can use a simple math and can show that this sigma is actually 

presenting the half width, sorry, this is, this is here. Sigma is a presenting, this is the sigma. So, 

sigma is representing half width, it is not the full width just like this, it is not the like full width, 

it is the half width at almost 60 percent of the maximum. So, this is actually 60 percent of 

maximum. 

And one can prove it very easily the way we have calculated full width half max, similar way 

one can calculate it and can prove it. And in that case, the Gaussian distribution takes this 

following form.  

 
 

Gaussian the wavefunction takes this form in terms of sigma. 



So, sigma which can be calculated analytically, because as long as we know the wavefunction, 

we can find, we can multiply, this is multiplication, we can multiply by x, so both arrays has to 

be multiplied and we can get this two values, we can subtract and get the square root of that 

value. I can immediately get sigma. So, sigma can be very easily calculated and it can be 

implemented in the Python programming that way we have learned already.  

And that is the reason why you are going to use sigma to describe the spread of Gaussian 

distribution. But the definition, graphical definition of sigma is following. I repeat one more 

time, in contrary to the full width half max, what we have learned, full width half max is the full 

width at the half maximum. Maximum is here, so at the half of the maximum, it is the width. But 

sigma, which is related to variance is also representing the spread of the Gaussian, but that 

corresponds to the half width, this is the half width, we are not taking full width here, this is the 

half width at about 60 percent off the maximum.  

So, maximum is here, 60 percent of the maximum is here. So, full width half max somewhere 

here. So, this is delta X. So, this is the difference, but still sigma can represent the variation in 

this. So, we will go back to this testing, this entire thing in laptop right now, and we will see how 

it is going to, can be implemented in the Python programming. 
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So, everything remains to be the same, I do not need to change anything. These are, should be 

there, but in the end, instead of plotting things, we do not need to plot it right now. We will do 

one thing, so we can remove this matplot library as well. Instead of plotting, what we will do, we 

will find out an average value, avg1 is defined as simpson method we will be using and we will 

find out the probability density final multiplied by x, x.  

So, this is your, the first integration we discussed. The probability density has to be multiplied by 

x and then integrate over X. So, that is exactly what we have implemented here. Then another 

average we are defining avg2 as the integration. And in this integration, you have to multiply by 

x square. 

So, x square will be multiplied, or we can say x multiply by x, that is also fine. So, x square will 

be multiplied by the probability density, and then we integrate over x, and variance would be 

defined by square root of this avg two minus avg one. These two values has to be subtracted, 

sorry. Avg2 minus avg1 multiplied by avg1. Remember, it is the difference between, square root 

of the difference between the expectation value of the x square, that is the value, and square of 

the expectation value of x, that is the way it is.  

So, that is the way we have written it and then we can print it, print width equals percent F 

percent, this is the formatted print, percent I am going to width is actually the defined by the 

variance in our calculation, so I will write down percent variance. So, we have one place kept 



within this quote, this, in this location, the variance value will be inserted. That is the way it will 

be printing.  

Another thing will be printing here is that the center of the Gaussian which is the expectation 

value of the Gaussian and expectation value of the Gaussian is shown by this way. And now this 

slot, this percentage slot will be fueled by the expectation value of x which is the average one. 

This is the expectation value, and we can now run the program. So, if we run the program, we, 

we should, we should delete these things, because we are not defining anymore.  

So, now we can run the program and we see that for this hundred after the hundred atomic unit of 

time, we get the width and the and average position. So, we can keep doing it, we can change the 

a 100 from 10, we can, we can use anything, we can use two and then run it. I get the width and 

the center position, I can make it, this was Nt to be 20, and I can see that with the end, Gaussian 

center position is changing. So, everything is changing. So, if we keep doing it, then in the end, 

we will go back to this slide right now. 
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And in the end, what we see is that we get some values. So, what we get is that if we use the -- 

this is time axis. And at 0 time, it is at the 0 position that is, we know, at 0 time and 0 position, 

and then a different time, it is actually, so this is X, this width versus, so this axis is representing 

the mean position as well as the width, and width is the sigma. So, both its representing. So, we 

can see that at starting, so at the starting point, so this part is that width and this is representing 

the sigma.  

This is the width and this is the expectation value. What we see that the blue curve at the zero 

position, it is centered at 0. So, these are the points we get corresponding to X values. You can 

keep changing, this is actually time, but we are plotting it, this is the way one can plot further all 

these values. And if we plot it, we get this different time. So, this is time versus width, which is 

sigma, and this is the expectation value of X. And we can plot it. This is this something which 

we can do it.  

So, after running this program for different Nt, different time, I want to check at different time, 

what is my final width and the position, expectation value of the position or center of Gaussian. 

If we do that, then we get these values and we just simply plot it, and if we plot it, we see that at 

the 0 time, when I start the dynamics, the center position is 0. That is expected because we 

started with center, 0, the wavefunction of centered at the 0 position, and it is linearly changing 

the position. 



This is something we should note, because it is -- because it is linearly changing, it means that if 

X is linear with respect to time, let us say  

 
 

 

 it is linear with respect to time, then  

 
 

and that it should happen, because it is a free particle, free particle is not experiencing any 

potential, it is a 0 interaction potential. If no potential is there, which means there is no force 

acting on that. So, if there is no force on a particle, it should not change the momentum, it should 

not change the velocity, it will be forever traveling with that velocity only. So, that is something 

which is very interesting to note. 

Second thing to note here is that, sigma the width spread is also almost linear with respect to 

time at a longer time. But then initial time, it is not a linear anymore, it is actually non-linear. So, 

the, the spread, how quickly it will be spreading, that is non-linear in the beginning, but later 

time, it is almost remained to be linear. Linearly, it is spreading out. So, these two facts have 

come off from the, from this study. We will we will stop here and we will look at the linear 

potential problem in the next session. 

 


