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Wavepacket Dynamics under zero interaction potential 

Welcome to Python tutorial 5 of the course Time Dependent Quantum Chemistry. In this tutorial, 

we will go over the one dimensional wavepacket dynamics, which will be solved numerically. 

So, this is the ultimate motivation we had in this course. Systematically, we have learned how to 

-- what does it mean by Python programming, we have presented that.  

Then we have presented how to get expectation value, how to normalize discretized 

wavefunction. Then we have checked how to get the eigen state and eigen values associated with 

a particular state, system or Hamiltonian. And this is the ultimate motivation which, where we 

would like to take a look at how the wavepacket can propagate in time, particularly one 

dimensional wavepacket propagate in time numerically, so that any potential can be used to 

check the propagation. 
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We have already outlined the split operator approach to solve the TDSE and we will see the 

numerical implementation of in Python programming for this split operator approach to, to 

propagate that one. 
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So, the aim is following. We may have a potential like this. This is let us say potential and this is 

the x-axis and this is V x. And I may create a wavepacket here. When I am creating wavepacket 

and drawing wavepacket like this way through this envelope function, I am not just showing the 

entire wavepacket, the actual wavepacket looks like this, there is an oscillatory part in addition to 

this envelope function. But to reduce the complexity, we just simply use this envelope function 

to show the wavepacket.  

So, the wavepacket has been created, let us say, at this initial position, x0 and it is should 

propagate. So, it may so happen that if this is the potential I have, so in chemistry, we talk about 



the reactant, and on this side, you have the product, that is all about the simplest form of the 

chemical reaction. Reactant is converting to product. And when reactant is converting to product, 

there is not a wavepacket dynamics going on the potential energy surface. And if we know the 

dynamics, if we know the timescale of this propagation, we know the dynamics of this reaction, 

this reactant converting to product. 

So, wavepacket dynamics constitute the very basic quantum dynamics in chemistry. And it is 

very easy to understand also. We know that wavepacket, analytically, we have solved it. When 

the wavepacket propagates, it will spread out and it will decrease the amplitude. In general, that 

is the basic idea, but it is not true always. If the wavepacket has been created in the harmonic 

potential, so what happens in the harmony potential, it is, it is a narrow wavepacket we create, 

then it forms, it spreads out in the middle. And then again, it becomes narrow. So, the, the exact 

nature of wavepacket and its dynamics depends on what kind of potential it is experiencing. 

But mostly, wavepacket when it would be propagating, it will be spreading out. And when, let us 

say, when wavepacket is propagating in time, this is time axis wavepacket is propagating in time 

is spreading out, it does not mean that the particle size was previously very narrow and now it is 

spreading out. It is not representing the particle size. Particle itself is a quantum particle. 

Quantum particle is a very tiny little particle, it is a point particle.  

But the problem is that its exact position, I cannot determine, it is just what will happen that I 

will have a distribution. So, single experiment can give me one experiment, one exact, I mean, 

one tiny, I mean, point position. But if you, if you repeat the experiment, we will see that that 

will have a pollution distribution.  

So, this is the distribution function which is evolving as a function of time. That is the, that is the 

meaning. We should not, we should never say that, size of the particle looks like a camel, let us 

say this, this, this, this, this size, it looks like a camel. And this camel is converted to let us say 

our dinosaur. It is not like. The size of the particle does not change; size of the particles remains 

to be the tiny little particle. That is why quantum effect is showing up. It is a point particle, but 

its distribution function, its distribution function is going to spread out. That is the, that is the 

meaning of it. And so this is something which you should remember.  



Another thing is that when wavepacket, let us say a flight, let us say a flight, if I have a mountain 

here and a flight is flying over the mountain, when a flight is flying over the mountain, it can 

reach from point A to point B. That is the classical picture. It can reach from point A to point B 

from let us say, Bangalore to Kochi or Delhi. It can reach there with 100 percent probability as 

long as it is above the, this barrier of the mountain. 

But whenever we think about the quantum dynamics, you look at this, this particle is actually 

having energy above this barrier. And when it is moving, classically we would say that, okay, 

100 percent, this entire probability will come down here, but that does not happen. Because of 

this barrier, existence of this barrier here, always, there will be a scattering at this point, even if it 

is above the barrier, it will have a scattering. There is a probability of the wavepacket going back 

and there is a probability of wavepacket moving forward, always. And that limits the percent 

yield or the kinetics or dynamics of the entire chemical process. 

So, we should always remember this one. This is something which we will be, if time permits, 

we will study it in the quantum scattering part. This is, so the quantum scattering is an important 

subject in chemical reactivity. And we study that one, and it suggests that, it is a very unusual 

outcome of quantum scattering. Even if the particle is above the barrier, it will be scattered 

because of the presence of this barrier. The barrier is present, and that is why it will be scattered. 

And to some, what percentage will be scattered, that depends on where you are with respect to 

the barrier, but there will be a scattering.  

And if there is a scattering, there is no chance of 100 percent probability transmission here. So, 

product formation is limited by the barrier and where you are. So, this is something which you 

should keep it in mind, and these are the effects, like quantum scattering effects and all these 

things, we can understand better with the help of this wavepacket dynamics. 

So this contrary, this contradictory picture should be kept in your mind always, that classical 

particle can transmit the barrier, I mean, can go over the barrier with 100 percent probability, but 

part, quantum particle, when it is going even over the barrier, it cannot transfer the probability 

100 percent. There is, always there will be a scattering and a percentage will be reflected back.  

So, with this, and question is why we need numerical methods? We have used analytical 

approach to follow wavepacket dynamics. Wavepacket dynamics. We have seen analytical 



approach, and we have seen that it works for 0 interaction potential when the particle is not 

experiencing the potential, it works for linear potential when the particular is experiencing linear 

potential and it works for, analytical approach works for when you have this, the quadratic 

potential.  

 
So, these are the three situations where analytical approach works and we can solve it 

analytically. But if we go beyond this quadratic potential or linear potential, or this 0 potential, 

you need to solve it numerically. And these are the cases very, in practical situation, we do not 

get this linear potential, we do not get this quadratic potential even.  

In practical scenario, my potential may have this kind of potential, and there is neither linear 

potential nor this quadratic potential. We have to create our own potential, and based on that 

potential, we have to propagate it. And in that case, we need the numerical solution to this 

wavepacket dynamics. So, numerical solution to this wavepacket dynamics is very important for 

practical application and we will go over it.  
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Parts of the techniques we are going to use for this entire wavepacket dynamics that the part of 

those techniques we have already gone over Fourier Transform the normalization. We will just 

integrate them and then we will come up with the solution. So, we will make use of, as I have 

told earlier, that we will, we are going to make use of split operator approach in this numerical 



problem. And the, conceptually, the probability of finding the particle at any given position and 

time is determined by the square of absolute value of the wavefunction. 

So, if I have an, a function like this, then probability of finding the particle, this is, this gives you 

quantum mechanics, always gives the probabilistic answer to the question, where is the particle? 

And it gives the probability. So, if 𝚿(x,t) is the wavefunction, then the probability function is 

become ׀𝚿 .)x,t(2׀ absolute, square of the absolute value of the wavefunction. 

So the, this is something which we have understood in this course. As we did before during the 

translational motion, discussion of translational motion, let us assume that, that initial 

wavefunction. So, the entire wavepacket dynamics is based on the, or any quantum dynamics is 

based on few steps. 

The steps is that we have to construct the initial wavefunction that is the initial guess we have to 

make. And what kind of initial guess, how to make up good initial guess, that depends on our 

understanding of the experimental condition, because the particle, how it is starting its evolution, 

that has to be decided based on the experimental condition. 

 
 

And if the, and that is why we need to understand the experiment or experimental condition very 

well so that we can come up with a proper initial wavefunction representing the system or 

representing the particle. But here, we will assume that At equals 0 initial time, I have the 

wavefunction like this.  

 
 

This is called propagating wavefunction, propagating Gaussian wavefunction. So, we have seen 

that. This is called propagating Gaussian wavepacket.  

So, this part is responsible for the propagation and this part is responsible for the envelope. So, 

this fast varying component is represented by   and this part envelop function, blue part is 

given by you . These are the two components we have, and this is normalized as we see. It 



is normalized and that is the another requirement we have to always begin with normalized 

wavefunction and then go for the solution.  

Good thing about TDQC is that it preserves norm of the wavefunction. So, normalization is not 

time dependent anymore, normalization will be constant, and that is a good thing, because every 

time we have to confirm that at any given time, the total probability of finding the particle from 

minus infinity to plus infinity has to be 1, because I have single particle which is moving. So, 

this is the only interpretation of quantum mechanics through this probabilistic idea. 

Now so this is, this is our initial wavefunction, that is the assumption we have made, and we 

know that this ko, this ko is going to, this is a real constant, real constant representing the angular 

wave number of the carrier wave of the wavepacket, these, the meaning of this angular wave 

number is now clear to us in two different context, we have presented in Fourier Transform we 

have presented it and also in the context of translational motion we have presented it.  

And we have also understood that this ko, the moment, this is x domain representation of the 

wavepacket. If we do the Fourier Transform, we get another, because it is a Gaussian shape in 

the x domain, so in the K domain, Fourier domain, we also get a Gaussian and the center of the 

Gaussian is actually represented by ko. This, all these consequences and features of our 

wavepacket is known to us already based on the Fourier Transform discussion we had previously  

And also we know that the, this ko is actually defining the velocity of the particle. This is 

defining the velocity of the particle. So, ko has multiple perspective. It is defining that velocity of 

the particle, it is defining momentum of the particle, it is defining the center of the spectrum, this 

is a momentum domain spectrum. It is, so  ko has many perspective and those perspectives 

should be clear to us before we go for our or before we make use of this wavefunction for our 

wavepacket dynamics.  

And another thing we remind here that the way we have taken this function, this envelope 

function , we know that, that this function is centered at x equals 0 that we know. 

So, , this is centered at x equals xo. But if I do not have xo, then it is centered at x 

equals 0. So, this is something we should remember that we are starting with a wavepacket, 

which is centered at x equals 0 and we will see how it is evolving. 

 



Now question in this entire problem is that, how do we explore, how do we explore the 

wavefunction, the initial wavefunction numerically given the initial wavefunction? So, the 

question is how do we explore 𝚿(x). And analytically, we have seen that this is an analytical 

approach we previously used and we have seen that this is the wavepacket we get. And finally, 

we have got this integration term and one final wavepacket expression we have been able to 

produce in the earlier one of the modules.  

What we are going to do is that we are going to do the same thing numerically, and we can check 

what we previously got analytically and how does it compare with the numerical solution?  
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So, in order to do this, if we now jump into the numerical problem, it is clear that we are going to 

use this t equals 0 time, At t equals 0 time, we are going to use this wavefunction. And the first 

step of this entire procedure is to normalize the wavefunction. So, first, we will check how to 

normalize the wavefunction, this is quite clear to us now.  
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I will move to laptop and we will write down the initial wavefunction as follows. First, we will 

be importing certain modules and sub-modules for our work. Importing the required library from 

scipy import, we will import square root functionality, arange functionality, and exponential 

functionality. From scipy dot integrate, this procedure is quite similar to what we did to find out 

the normalized wavefunction in Python tutorial 2, and that is the procedure, so we are, because 

we are familiar with it and that is the reason why I can directly write down what I need to import. 

So, from scipy integrate, I have to import Simpson's method, because I have to do this 

integration, numerical integration through Simpson's method from matplot library, pyplot, I will 

import plot x limit and show. All these features are known to you now, now I'll be first creating 



the x grid. When I first create the x grid, I will write out x minimum equals minus 1000 x 

maximum equals plus 1000, plus 1000.2 I will write down because the, this point will be 

excluded from the list prepared by the arange functionality. And then dx I will place 0.2.  

So, we have -- this will create the x domain. And then I will define x equals arange functionality, 

x minimum, x maximum, and dx. So, this will create the array. Now I will be able to define the, 

define and normalize the initial wavefunction. Good comment line will help you remember what 

you are doing right now, because it is very easy to forget this programming, unless you do the 

practice regularly exponential of minus x square.  

I will make minus x square by 2. It is just, that is the way I am selecting. It does not need to be 

like that, anything you can select as long as it is a Gaussian envelope, it is perfectly fine. And 

then this propagating part, which is 1J, we know that the complex number is written in Python as 

j, then k naught, then multiplied by x. Now x is actually T, this is x domain, yes this is x domain. 

And so once we have defined this one, this definition we can write down, this is a traveling 

Gaussian form.  

Then we have to find out the probability density, probability density would be given by absolute 

value of psi. This is the probability density, then I can find out norm, norm equals Simpson's 

method, y, this y and x I have to give and y is going to be the probability density comma x, so it 

will be sampled on each point of x and it will be done, it will be, the numerical integration will 

be done. Numerical integration in the end, giving you the area under the curve. 

And finally, I will be plotting this psi, sorry psiNorm I am getting as the wavefunction divided 

by the norm, divided by sqrt off the norm, that is the definition of, that is the way you can, you 

normalize the wavefunction. So, this is the way we have done it. And as we can see that this 

plotting part we can avoid right now, we can just check whether what we get from here and this 

is the way it can normalize it. So, I can write down print norm.  

So, if we run the program, we see that it is printing the -- and the value, the norm, it has given 

1.77 value. And it is, it can be assumed that and I can also plot if we want to check the 

wavefunction which we are dealing with. So, in that case, I need this matplot library dot py plot, 

we have to use plot, show, x limit, these are the things we need. So, we can plot on even plot, 

psiNorm comma.  



This is x coma, this part is x comma psiNorm. So, I will remind, this also I have reminded 

before, but I can remind again, see when you use Simpson's method, you write y value first and 

then x value. But when you use plot, you drive x value first and then y value. So, y array. These 

are all array. So, that is the way it does, the syntaxes are. So, I can again run the program and I 

can see that it can be plotted as this and we have, we can make the, we can do one thing, we can 

change the x limit, we can control the x limit as let us say minus 5 to plus 5. Let us see what 

happens.  

If we use minus 5 to plus 5, yeah, this is, this is the wavepacket we have right now, which is 

having an oscillation, and if we forget that oscillation, it is going to give you the envelope 

function. So, this is all we have, the initial wavefunction we have defined already, and we can 

see that it is centered at a 0, which is x equals 0 position.  
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So, these are the, these are the points we have found from the from this. So, now we will go back 

to the discussion here. What we have done in this is that the momentum of the free particle, if we 

look at the momentum of the free particle, momentum of the particle, that is going to be  
, that is the momentum we get. All these calculations in general we do in atomic unit. It is an unit 

system which is very frequently used in calculation of atoms and molecules, electronic structure, 

calculations of atoms and molecules, and then wavepacket dynamics, all these calculations are 

used based on atomic unit.  



Under the atomic unit, there are certain things we assume or we consider. Under atomic unit, 

h/2  is considered to be 1 atomic unit. And in that case, momentum, we get as k0 in atomic unit. 

So, when I say momentum in close k0 in atomic unit, it is k0. Now if the particle is considered to 

be an electron, if we consider the particle, is an electron, in that case, this momentum will be 

represented by this k0 and Me is considered to be again an in atomic unit, mass of the electorn is 

considered to be 1 atomic unit. In that case, velocity is equal to k0. That is the -- and this is in 

atomic unit only.  
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So, when I have considered in the, in the, in this numerical procedure, I have considered you can 

see that this k0 we have considered to be 1. It means that I have considered velocity of the 

particle, the particle is considered to be electron, to be electron and velocity equals k0 equals 1 in 

atomic unit and it means that it is 1 atomic unit of velocity.  

So, what is the velocity with which the particle electron is traveling in my problem? In this 

problem, we are assuming that the particle is traveling, initial velocity was 1 atomic unit. Which 

is equivalent one atomic unit may not make sense to you but which is equivalent to in the SI unit 

if we write down, it is going to be 2.188 into 10 to the power 6 meter per second. This is the SI 

unit equivalent, SI unit component, SI unit value.  

So, we are assuming that particle is traveling with this velocity. So, what is the idea of atomic 

unit? Atomic unit was proposed by Hartree in the beginning of the, I mean, when the quantum 

mechanics was being proposed. Hartree actually came up with this idea that we should use 

atomic unit in these calculations, because we are going to deal with very large number or very 

small number. Sometimes we may deal with minus 10, this kind of number or sometimes we can 

deal with this kind of large number.  

And to use this kind of large number, it is going to be very difficult to use the SI unit for this 

calculation, it will be much convenient to do with this atomic unit. And slowly entire quantum 

mechanics community has accepted that, yes, it is the convenient way to go ahead. So, when I 



have written here x maximum, x minimum, that 1000 and 1000.2, it is assuming the atomic unit, 

atomic unit of length. So, when I say that, the wavepacket is centered at 0, that is 0 atomic unit of 

length, if the wavepacket has moved from 0 to some other value, let us say 10, then this is the 10 

atomic unit of length.  

Everything has been represented in the atomic unit. And based on this representation only, if I 

think about the kinetic energy of the particle, kinetic energy of the particle is going to be half me, 

we are considering electron as a particle, half me and then v2 , which is nothing but half me is 

one and v equals k which is k0, so half naught square is the kinetic energy of the particle in 

atomic unit. 

So, as you can already realize that if we use an atomic unit, many, factors is being simplified. If 

we use the atomic unit. So, that is the basic idea. Remaining part, whatever we have written in 

the program is equivalent to what the way we have learned the normalization thing, how to 

normalize a discretized wavefunction. So, this is a discretized wavefunction representation, and 

we are normalizing it. So, first thing we have to do is the, we have to normalize the 

wavefunction, and initially wavefunction.  
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And then we have to propagate the initial wavefunction. The propagation part we will look at in 

the in the next session. 


