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Module 05 Lecture 33
Split Operator Method
Welcome back to Module 5. So far what we have discussed, we have shown general
properties of time evolution operator. And we have shown that because it is a unitary operator
its time its norm is preserved. That is why normalization constant does not change over the
time during the time of evolution of this system. Next. We will go over the numerical

implementation and what are the complications associated with numerical implementation.
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Time dependent Quantum Chemistry
So, what we have shown so far is that mathematical strategy to obtain solution to the time-
dependence Schrodinger equation, time time-dependence Schrodinger equation,
ih @ h? 8°

so this solution to the TDSE can be very easily obtained by taking this form

2ZrHt
v (x,t)=e R ¥(x0)

We can we can obtain that and then we have seen that this procedure to find out this
mathematical solution was very simple and it is very straightforward. But it is numerical

implementation is not an easy task, and we will rebuild why it is not an easy task. So, I have



2mHt

¥ (x,t)=e ' R ¥(x0)

As the time evolution operator is an exponential operator, its numerical implementation
requires some method of calculating the matrix exponential. So, one of the procedures which
we have already seen in Python tutorial 2 that we can represent a wave function, this kind of
wave function under grid representation and we know how to represent a wave function on a

grid.

And the moment we represent a wave function on a grid we have to find out how to represent
this operator on the grid. And in order to get that idea, we have already mentioned that this
operator will be expressed in terms of matrix on the grid and if this is a matrix, then
ultimately, we have to find out this operator, we have to find out matrix exponential because

H is a matrix in the grid presentation.

Almost all currently prevailing numerical methods which is used to solve TDSE make use of
grid representation of a continuous wave function that we have seen. So, grid representation it
means that the problem domain, if this is called problem domain which means the position
space, this is called position space, this position space is divided into uniform grids. And this
is something which we have already understood in Python chapter. In Python tutorial 2, we

have shown how to represent our function on a grid.

So, basically, we have to take some kind of x maximum, sorry minimum and some kind of x
maximum and this range will be divided into small interval. And this edge point is going to
be the grid. So, this is called x grid. So, because | have the x coordinate here, as a position

space, we are using this, we are dividing the entire x coordinate into very small interval.

And if we do that, then if | have an wave function, let us say something like this, this is your
wave function, this kind of wave function, let us say at t equals O time. | have this wave
function ¥(x,0) then I will be able to write down this ¥(Xo ,0). So, when | say X, it means
that this one is Xo, the next one is X1, so on like this way, and this is going to be xn.1, if | have

N number of grid points.
So, if | have, so then function value

llu'[:xu:ﬂ} =%o
llu'[:xijﬂ} =7

llu'[:x::ﬂ} =¥z



and so on like this way. So then in the end, | get

P xy—1,0) = vy_y

So, these are the discrete values we get. So basically, what we are doing, a continuous wave
function, which is supposed to be continuous, but on the grid, we are discretizing the wave

function.

And this discretized wave function can be very conveniently represented as a column matrix
that we have seen. So, the initial wave function will be represented as a column matrix like

this. That is going to be

And the moment we represent the column matrix here, so this part has been represented by
this column matrix.
- }1[:' -

¥
¥z

LV -1

Question is how do | represent this exponential operator in terms of a matrix, because in the
end, if I multiply this matrix by the wave function, | get back the wave function at a particular
time and that is the motivation of doing this exercise. What would be the matrix presentation

of this exponential operator?
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Now, there are problems and there are solutions to it. The first problem is that finding an
efficient and an accurate technique of calculating the matrix exponential has been an open
problem for many decades. What do | mean? It is not an easy task to find out if A is a matrix
and A operator is represented by a matrix let us say, then exponential of that matrix is not an

easy task to find out this exponential, but there is a quick solution.

The method of getting exponential of a matrix is heavily simplified if the matrix is diagonal.

So, if A is a diagonal matrix which means that

[y O 0 . . ]
0 Q32 0
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So, if | have only diagonal elements present in a square matrix, then it is called a diagonal

matrix.

And if | have a diagonal matrix, then e to the power A exponential of that matrix can be

calculated as by exponentiating each diagonal element as follows, is going to



L . LR
So, if A'is diagonal, then exponential of that matrix can be obtained by exponentiating each

diagonal element. This is not true for any matrix it is true only for diagonal matrix.

So, what is our task? Our task could be, if we would like to use this trick, the simple solution
to get the, so our unitary operator, what is the time evolution operator is following, this is the
time evolution operator and we have to find out the matrix representation of this time
evolution operator, what we need to do is that we have to convert this to be a diagonal form,
in a diagonal form. The moment we get that, then we will be able to use this trick to get a
time evolution operator. So, that is going to be our target. But that target cannot be -- This is

problem 1 solution 1.

But that target cannot be solved, the target cannot be achieved very quickly. It is because this
Hamiltonian operator, | will show why it is difficult, because the requirement for, using this
technique we have to use, we have to get the Hamiltonian operator in the diagonal form. So,
in order to get the Hamiltonian in the diagonal form, it is not an easy task we need to use
different tricks to use that. We all know that Hamiltonian is a sum of kinetic energy and
potential energy terms.
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So, we have to individually check weather -- So, problem number 2 is that as the time

evolution operator contents Hamiltonian operator

- _ _!.E‘J?HE
U(t) =e  h

Hamiltonian operator is nothing but the summation of kinetic energy part which is given for

single particle one-dimensional problem.

5 5

—+ V(x)

H=— _
B8mremdx-

Still, we are dealing with single particle one dimensional problem plus V(x) that has the
Hamiltonian we have which means | have kinetic energy operator plus potential energy
operator, there are two operators which are clubbed together to form this Hamiltonian
operator. And we are still assuming that V(x) is time independent. We will come to the

problem later, where we will be dealing with time dependent V.

So, because this is a summation of these two operators. So, one can write down here

- _.2mHt _2ml TV _2aTe _.Zn¥i
U{_t}:e‘h =g h =g h g h

We may assume that this is true, but this is absolutely not true, we can write it like this way.
So, you cannot separate these two operators as a product of individual operators like this.

This is not true, just because T and V they do not commute, T and V these two operators
generally they do not commute. And because they do not commute, we cannot write down,

why? | will explain it very soon. But there is a solution. Solution is that approximately one



can express the time evolution operator as a product of kinetic and potential factors after
discretising the entire time interval. So, two comments | have already made, | will prove it

very soon.

First comment is that this is not true, always they are not equal, they are always, they are not
always equal, because these two operators do not commute. And the solution can come,
approximately one can express the time evolution operator as a product of kinetic and
potential factors by discretizing the entire time interval. Let us say the time interval for which
we are looking at the dynamics of the quantum system is O to t. It is starting at t equals 0 and

is ending at t equals t time at an anytime t.

But this interval has to be discretized by a very short time step A%

. If I do that, so if | do that, which means that | have a time starting at t equals O ending at t
that is the max and each time step is discretized now, and time interval is delta t. If we do

that, then | can approximately write

_.2mHAt  _ 2mTAr _ 2mViAe
[ad

e k e R e bk

This is just an approximation and we are splitting these operators that is called that is why it
is called split operator method. This is called split operator method. So, we have to now
prove, first of all, we have to show that this is true, this inequality is true. And then if |
consider very small-time step in the time evolution, then this equality may hold. | have to first

prove this one, then | have to go for a proof for this one.
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So, we will move on, and we will see how to prove this. So, let us look at the split operator
with discretize time. So, here what we will do, we will elaborate them the argument which we
had given that we can split, we can use the Split operator approach. The split operator

approach we can use if I am discretizing the entire time interval.
And the way we can do that is following, let us

So, at this point I have been able to get the wave function that is the initial wave function.
Then at this point, | have the wave function which is x, 4¢

— ] _;ZmHar
Pix,0+At) = V(AW (x,0) = k W(x,0)

At this point now, | have (x,24%) And like this way, | am just propagating the wave function.
The wave function was initially was here, then it is like this, then this like this and so on, it
will keep propagating in time, and that is what we are writing here. So, this is going to be

) _2ZmHAL
Pix,0+2At) =€ &k W(x,0+At)

this has become now initial wave function for this propagation, propagation for the next step.
Similarly, I will be able to write down

2mwHAL

Yy, 0+3A)=e =~ kB Wx,0+2A1)

In this case now, this part this wave function would be my initial wave function for the third

step propagation. And so on like this way, we can propagate. The final step let us

) _2mHAE )
Y(x,0+NAt)=e  h Wix0+(N—1)At)

And that is the way we can get this. So, this is nothing but, so t total time t, t max that is

maximum time | am going there that is nothing but initial time plus. So, this is going to be

toee = 0+ NAE

So, N times we are doing. So, collectively this entire set of time evolution discretized time

evolutions can be written and like this

) _.ImHAr  ZwHAr _ ZmwHAL ) _
Yix,t)=e &k e &k e B’ . ... (Ntimes).......¥(x0)

So, finally, | am getting a way out, a way out for split operator method. | can use the split

operator method where | will be writing

_2aHt _ 2mHAt _ 2mHAt  ZmHAt .
e h e & e h e h .. ... Ntimes).. ...




then I can use the split operator approach.
Split operator approach, what does it mean? | have already mentioned that | will be able to

write down

gitE — oA gB

In simple algebra we do this very frequently, but when A and B are operator, we cannot
directly use that, but we can use it under split operator approach within this approximation

that is has to be divided into many short time propagator.
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So, question is what about the Hamiltonian operator. Hamiltonian operator, if we consider
Hamiltonian operator, we will be able to show here. | have the requirement is that | should be

able to write down this. So, | will be able to right down this as a split operator

_2mHAt _ 2nTAt _ 2mVAt
e h Re h e h

And we will just prove that, in general this does not work unless delta t is very small. And

this is what we are going to prove it first.
So, first let us prove this one. And what will happen if | split it directly? If we split it directly,
| have two operators let us say A and B | will be able to write down
e =T+ (A+B)+o(A+ B2+ o
= T
which is nothing but

A2+B AB BA

+B _ 9 AL R
e*B =1+ (A+B)+ TR R ST

So, this is the form of e to the power A plus B.

On the other hand, | would like to check what is the form of A and what is the form of the
product of this exponential of these individual operators. So, that is nothing but | have to
expand each one as Taylor series expansion. So, | will do it

R I e 1
eleB = ['1+A+§Az+ m] [1+{B}+EBZ+ SE——

AZ+B? .
2 + AE ... ......00

et =1+ (A+B)+
So, what we see here already there is a mismatch between the terms, we have been able to

reproduce this part, but then this part is now mismatching.

So, it is quite clear that as long as A and B non-commuting operators the definition of
commuters have a pair of operators, we have shown that in the previous module, so we are
using that definition. So, if A and B are non-commuting operator then we cannot write down

this equality, they are actually inequal they are not equal.

edtE = gleh



And that is the reason why we cannot directly write down

_2mHt _2nTe _ 2ZnVt
e h =g h e h

So, they are not equal.
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However, we have shown that if A is very small then approximately one can write down

_2mHAt _ 2mTAt _ 2mVAt
e h e h e

This is called split operator. And if we do that, this is definitely an approximation then the
error in this approximation, error would be proportional to £

So, as long as At is small the error would be small and that we are going to prove right now,

that if we express this the split operator approach then the error is going to be2t ®. So, for
that we will start with

2" h ) ”

_2nlT ) 2m(T+V)Ary, 1 2a(T +V)At

We just reorganized little bit,

h

e L 5t

_ ZniT4V)ae Zn(T+V)iAty, 1. 2m(At) .
i ( 2T+ V) )+ {25800 2 L2 Ly vy

On the other hand, if I try to express this product form

_2nTht _Zavae ZaTAty 17 _2ZmTAt z
e P

i h + — . i
e T e ! i h 5 ] h w)(
1+ ( _znVﬁt)_'_ 1 _EnVﬂt]E_l_ )
= i h 2{_ i h S = <
2nTAt  ZnVie
- _2nVie
e h e h
2e(T+WVAy, 1 2Zm(Af) o 2m(At
=1+ (—i%) E{'_i L }}z{rz +V2)+ {.—i{T]]zTV

So, in order to find out the error, if | make a subtraction between these two, then what would
be the error, 1 will find out the error by subtracting these two expressions. So, why we will be
able to get

_2nlT4ViAL _2nTht _ 2mWAt
e h —e h e h

So, that is the difference | take. If | take the difference, then in the end, what we will get this

part will be cancelling out, this part will cancel out, these two parts will cancel out.



So, I will have the difference between the remaining parts. And difference between remaining

parts is going to be, one can show it very easily, -1/2, a little bit of simple algebra

_ZnlT4viat _2nTar _2avar (TV —VT) 2wht ) )
e h —e kR g h == 7 ]{ o }2+ ﬂ{.ﬂt}3+ ﬂ{.ﬂt}“

So, what we will do, we will take because delta t is already very small, we have considered.

In that case, we can neglect all other higher terms and we can say that the error, if | do that,

then error is going to be proportional to

ra

At

So, this approximation that

_.2mHAt  _ 2mTAr _ 2mViAe
[ad

e h Re h e h

this approximation will give me an error off which is proportional to Af ® . So, as long as At
is very small, we will be able to neglect this error and we can write down this the split
operator part.

(Refer Slide Time: 41:05)
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This error which we have mentioned in the split operated approach can further be reduced.

So, error can reduced and it will be then proportional toAt3 . If we take this symmetrized
product of the split operator method, which means that

_ 2mHAt  _ 2nTAt _ 2nVAt _ 2nTAt
e h e &k e h e 2Zh




This is a symmetrize product, why do symmetries product, we see that here | have kinetic
energy part, here I have Kinetic energy part, here | have potential energy part, if | take this
kind of product the symmetrize product, then error one can use the same technique through
Taylor series expansion, one can prove that, then if I do that then error would be proportional

to At 2 sorry At®

So, this is better approximation because if | take A% to be very small then error will be much
smaller here than this one. And we will show the numerical implementation of time
propagator with this symmetrize product in the next session.



