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Welcome to Module 5 of the course Time Dependent Quantum Chemistry. In this module, 

we will go over the numerical approach to solve TDSE, that is the practical thing, which we 

are going to learn for the first time in this course. 
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Now, we have already understood in the first module, that when a potential does not have any 

explicit dependence on time. So, potential does not depend and that is the way we have been 



assuming. There are problems in time dependent quantum chemistry, where potential will be 

dependent on time, but that part will be discussed later. So, far, we are saying that the 

potential does not depend on time, if it does not have dependency on time, then one-

dimensional Schrodinger equation should look like this, this is we are quite familiar with this 

form. 

 

 

And we can solve this equation with the help of variable separation method, we have used 

this variable separation method before. And in this method, the eigenvector and 

corresponding eigenvalues of the quantum system before the onset of time evolution, they are 

called stationary states. We can get those eigenstates and eigenvectors from this time-

independent Schrodinger equation. 

 

So, the basic idea is that to in order to solve this TDSE we have to first get the stationary 

states and stationary state wave function and stationary state energies from the time-

independent Schrodinger equation and that is the state before the onset of the time evolution. 

In this, and we get a set of solutions, we have understood that think about particle in one-

dimensional box when you have solved the time independent Schrodinger equation, you have 

got multiple solutions like this way. 

Similarly, for any quantum system, its time-independent Schrodinger equation will give you a 

set of solutions. And here, n denotes the nth eigenstate. So, n is the nth eigenstate and once 

we get that solutions from here we can get the time dependent eigenstates which is nothing 

but multiplying the stationary states with the help of by this time dependent phase factor that 

we have understood. 

 

 

And as a general solution, which means that if the time evolution is going on between 0 to t 

time. So, at any time t, let us t1 time. Within this timescale, within this time interval, let us 

say time evolution is going on. Within this time at any time t if I have to present the wave 

function that will be presented by the linear combination of these states 



 

 and where cn is the time dependent expansion coefficient which will control what is the 

contribution of each of these functions to the total wave function, time evolving wave 

function. 

So, that is the way we have seen variable separation method and its usage in time dependent 

in solving TDSE. But we have to remember that if the potential has an explicit dependence 

on time, if the potential is let us say V(x,t) here and instead of V(x), we have let us say V(x,t). 

In that case, variable separation method cannot be used anymore. In addition to that, so this is 

one concern we have, second concern we have is that obtaining the solution to the TDSE via 

eigenvalues and eigenvectors may not be always practical. 

So, because, so if I want to get a solution of TDSE with the help of eigenvalues and 

eigenvector in terms of that, it may not be practical because a very large number of states are 

needed or because calculation of these states are too expensive. And in that case, it is 

convenient to compute the time evolution of a given initial state directly without making use 

of a large number of eigenstates. 

So, variable separation method is a good idea, but it may not be practical all the time. So, we 

need more general approach to solve this TDSE. And the general approach to solve this 

TDSE is to use the time evolution operator,  

 

this is called time evolution operator, this U(T) is representing the time evolution operator. 

What it does? It is actually, we start from an initial state which is 𝚿(x,0), that is at t equals 0. 

What is the state is? This is t equals 0 state, at the initial state. 

And then we monitored the system as a function of time with the help of this time evolution 

operator, which is an exponential operator. And in this module, we will find out what are the 

properties of this time evolution operator and how numerically one can implement this idea 

so that using Python programming one can find out at different time how the wave function is 

evolving. 

Once we know the wave function at a particular time, we will be able to find out its average 

position and many experimental observables. We remind here that this form this time 

evolution operator, this form that this is a general solution of TDSE actually. In the last 



module in module 4, we have seen that how we have got this expression for the time 

evolution operator. So, let us proceed. 
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And before we represent the numerical implementation of time evolution operator, we will go 

over the general property, some of the general properties of time evolution operator, because 

that will help us understand the meaning of this time evolution operator, different properties 

will help us understand or numerical implementation also will be much easier to do once we 

understand the meaning of this expression. 

So, this expression following, I have 𝚿(x,t) anytime I would like to find out the wave 

function that can be done, if I know the initial wave function and then employ one time 

evolution operator on it.  

 

This is the time evolution operator. So, the first property of time evolution operator is that 

this  

 

 

is called time propagator because it propagates the wave function in time. 

So, if I know the wave function, if the initial wave function that is at t equals 0, if initial 

function is known and its Hamiltonian is also known, if both are known, then one can find 

out the wave function at any later time, so that is what it means. This is an exponential 

operator and we have already seen that in chapter in the previous module 4, we have seen that 

this equation  



 

This equation comes from as a solution to the TDSE. Because, remember at some point, we 

said that 

 

And this part came from TDSE in the derivation and that has been explicitly shown in 

module 4. This is an exponential operator and because it is an exponential operator it has to 

be expressed using a Taylor series expansion, which we have used already in module 4, but 

here we are just mentioning to collect all the general property. 

So, how do I express this exponential operator, this is going to, 

 

So, that is the way we are going to express this exponential operator. 
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Time evolution operator is reversible in time. And this reversibility is a unique property in 

quantum mechanics. We will prove that how it is reversible. If I consider , time 

advancement, then that has to be written as 

 

And if I want to go back in time, then it is going to be 

 



 

So, if I try to evaluate what will happen, if I first go back, and then come back acting on  

𝚿(x,0)= 

So, I am just taking the product of these two time-evolution operators. If I do that, then I will 

be able to get 

𝚿(x,0)  𝚿(x,0)  𝚿(x,0) 

So, what it suggest? It suggest that first, I am making an time advancement, then what I get, I 

am making one backward propagation in time. So, one forward propagation one backward 

propagation in the end giving me back this wave function, that is why it is reversible in time. 

This is quite different from our real-life experience. In real life experience, we cannot go 

back in time, we have to always move forward. But here, I can go back in quantum 

mechanics with the help of this time evolution operator, I can go back in time. So, my system 

will again evolve to the initial state. Time evolution operator is an unitary operator, which 

means that I will be able to write down, I will prove it. 

But before I proved that, I will be able to write down this expression this equality, inverse is 

going to be equal to its adjoint. That is the definition of unitary operator which you have seen 

in module 4 in the previous module. 

 

So, what it means? Its inverse is equal to its module 4. So, we will prove that, one can prove 

it very easily. 

If I try to find out 

 

 

we will be able to write down, this inverse of this operator. Now, here I mentioned one 

important thing, this is nothing but one, but we are giving with a cap to show that the entire 

addition entire term is representing an operator. 



So, this is not one operator, one operator is nothing but multiply by 1. And to make the 

notation correct here, every term we have made to be an operator. That is why we are giving 

this cap otherwise is just 1. So, we will now look at the adjoint, how does it look like,  

 

 

whole square plus like this. 

So, entire term, I have to consider adjoint. And we have learned from the previous module 

that if I make adjoint it is going to be 

 

And because H is an Hermitian operator, H is an Hermitian operator, H is actually an 

Hermitian operator, so I can write down it is self-adjoint which means that it will be equal. 

 

 

 

So, this term, this adjoint sign will go away because they are equal. And the moment it goes 

away, this term, and what I have got here, this term are equal that is why this equality holds. 

So, time evolution operator is a unitary operator. 
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We will see that, we have been seeing in many occasions in this course that to explore 

quantum dynamics, we need to have wave function which is normalised initially, and it will 

remain normalised over all the time when we are exploring the quantum dynamics and that is 

called norm preserving.  

So, first thing we have to check, because we are evolving time, we are evolving, we are 

monitoring the evolution of wave function in time we have to understand that whether when I 

employ this unitary operator on this function, whether I am preserving the norm or not, that is 

the most important part of quantum dynamics before exploring quantum dynamics. So, we 

will check it first. 

So, we will see that if  

 

then I can consider its absolute value square, square of its absolute value 

 

So, what we see is that it is at t equals 0 its norm and at t equals t time anytime t any arbitrary 

time t during the time evolution its norm is going to be equal. 

So, that is why we can say this a norm preserving, we can explicitly prove it as follows 

 



 

that is the norm, definition of the norm. Now, I employ time evolution here. So, that is going 

to be  

 

 

Here, I have removed this negative sign because this is of complex conjugate part of the wave 

function. So, this part is represented here So, I will rewrite, a little bit mathematical trick will 

have help me get to the point we are trying to make here,  

The entire thing I have clubbed them together and then placed it under this star, which means 

that entire thing has to be complex conjugate of this term 

 

 

So, this is I can write down because I can take the adjoint. So, if I take the adjoint of this 

 

 

So, this is nothing but I have now 

 

So, we are using, making use of unitary property, unitarity property of the propagator. So, 

what is going on, its norm is preserved, because it is an unitary operator. And which step we 

have used this unitary property, in this step. You see this term has been taken here, how did 

we get that, because we said that this we have proved that this time evolution operator, 

inverse of the time evolution operator is actually its adjoint. 

And adjoint, the definition of adjoint being an adjoint, I can take this operator from here to 

the other side. And if we did that, then that is going to be inverse of that operator. And that is 



exactly we have taken this part and this part is inverse of one another. And so, because it is an 

unitary operator, its norm is preserving. So, that is something which we should remember.  

So, as a result, normalisation constant does not change during dynamical evolution of the 

quantum system. So, these are the 5 properties we have shown so far. And we will stop here 

and we will present the numerical implementation of time evolution operator in the next 

session. 


