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Python Tutorial 4 (Eigenvalue and Eigenfunction) 

Welcome to python tutorial 4 of the course Time Dependent Quantum Chemistry. In this 

tutorial, Python tutorial, we will learn how to represent a matrix in Python programming and 

then subsequently how to calculate eigenvalues and eigenvector corresponding to that matrix. 

With the help of this tutorial, we will be able to learn how to numerically calculate stationary 

states of quantum systems, stationary state wave function and stationary state energies for a 

quantum system. Technically, we are actually exploring the, we will be exploring the 

eigenvectors and eigenvalues associated with a particular Hamiltonian. So, we are solving 

Time Independent Schrodinger Equation. 
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So, we will take a look at it, what is the procedure to represent our matrix in Python 

programming. In module 4 of this course, we have already realized that mathematical 

language of quantum mechanics is linear algebra that we have already realized. And in 

addition to that, in the same module, where we have shown the connection between the 

quantum mechanics and linear algebra, we have presented the grid representation of the wave 

function. 

So, we said that the entire space can be divided into equally spaced grid and the wave 

function will be represented as a discretized function on this grid like this. So, within this grid 

presentation and using finite difference method and within the boundary condition, we have 

to use the boundary condition, boundary condition it means that the wavefunction value 

would be 0 at these boundaries, boundaries of the grid, so where the grid will be terminated. 

Theoretically, the wave function should be extending from minus infinity to plus infinity, but 

we cannot take such an infinite boundary grid in computation. So, we make it a finite 

boundary assuming that at the boundary the wave function takes 0 values. So, we use this 

boundary condition then finite difference method for the derivative and the discretized wave 

function, then what we get is that this is the kinetic energy operator of the, kinetic energy part 

of the Hamiltonian. 



 

That kinetic energy part of the Hamiltonian can be expressed in terms of a matrix form like 

this, this is a tridiagonal matrix that is we have already seen it. And this  is the difference 

between the grid points, this is the adjacent grid points and h cut m comes spontaneously 

directly from the definition of the kinetic energy operator. On the other hand, the potential 

energy part what we have seen that it construct the, it can also be represented in the matrix 

form and it gives me the diagonal matrix. 

 

So, potential energy is a diagonal matrix, kinetic energy is a tridiagonal matrix. And if we 

add them together, we get the total Hamiltonian, the Hamiltonian is nothing but the potential 

part and the kinetic energy part that we have seen. So, if I have the Hamiltonian and that can 

be represented in terms of matrix form, then we can immediately get the eigenvalue and 

eigenvector from that matrix. 

(Refer Slide Time: 04:52) 



 

So, we have also realized in the same module, module 4 of this course, where we have shown 

the connection between linear algebra and quantum mechanics, we have also realized that the 

eigenvalues and eigenvectors of a quantum system can be easily obtained by diagonalizing 

the Hamiltonian matrix. 

So, I have shown how to get the Hamiltonian matrix. Hamiltonian matrix will be obtained 

from adding these two matrices. Once we get this total Hamiltonian matrix in the grid 

presentation, we are following the grid presentation which is nothing but pseudo spectral 

representation of the wave function. And so, once we get the Hamiltonian matrix, then we 

can diagonalize the Hamiltonian matrix to obtain the eigenvalue and eigenvectors. 

And eigenvalues and eigenvectors of the spectrum of the quantum system. So, if it is a one-

dimensional box problem, then I have this, this is ground state, then excited state and then all 

the states can be explored and each state are actually corresponding to eigenvector and 

eigenvalues of the particular Hamiltonian representing the quantum system. 

So, we get the entire spectrum or we get the stationary states of the quantum system. That is 

why diagonalization process is very important in quantum mechanics. And how do you 

diagonalize it? In module 4, we have shown that diagonalization of a matrix, let us say I have 

a matrix A. So, in general operator is shown like this way with a hat on it and matrix is with 

the double line. 

So, if I have a matrix A like Hamiltonian matrix, then I can perform a linear transformation 

like this  

 



 

 

with the help of this unitary operator, this unitary operator has to be found. And if we 

perform this, then what will happen the role of this unitary operator is that it transforms the 

matrix into a new diagonal form, this is a diagonal form of the matrix in which the diagonal 

elements represent the eigenvalues of the matrix A and column of the matrix U represents the 

eigenvector of the matrix A. 

So, all eigenvectors will be clubbed inside this unitary matrix U and corresponding 

eigenvalues or eigen state energies will be given in this diagonal matrix which is . So, all 

information will be just clubbed together arranged together in these two matrices and if we 

perform this unitary matrix, what is the origin of this unitary matrix we have studied already. 

So, if we perform this unitary transformation linear transformation then we get this diagonal 

form or diagonalize the matrix and we get eigenvalues and eigenvectors. As an example, we 

have shown that we took an matrix A like this  

 

 

 this was the let us say as an example, we took it, this was the matrix and 2 * 2 matrix. 

And for this matrix in order to diagonalize this matrix we actually got this matrix, U matrix, 

unitary matrix as 

 

 

 So, this was the unitary matrix. So, if we diagonalize it immediately 

 

 So, one of the eigenvalues would be 1, another eigenvalue up would be 3 and corresponding 

eigenvectors this column and another eigenvector will be this column. 



So, this is the way we get that. And we have analytically shown how to get that but in this 

tutorial, we will check it numerically using Python programming. In general, the data 

structure which is used to present a mathematical matrix in computer programming is called 

an array. So, in order to represent this matrix in computer programming, we need to use this 

matrix if we want to represent then we need to use an array we need to put them in an array. 

So, this is the structure, we will use array structure to represent a matrix. An array can be n 

dimensional, but 2-dimensional array is called a matrix and a 1-dimensional array called a 

vector. So, these are, if we represent each column, then this is going to be a vector each 

column. And two-dimensional array which is (n*n) matrix we are presenting here, this is 2 by 

2 matrix. So, it is two-dimensional array is called the matrix.  

Python does not have any intrinsic or building functionality to deal with arrays. So, Python 

cannot be directly used, we have what we have to use we have to use its sub module that is 

called scipy, which is scientific, which is prepared. which is built to perform scientific 

computation with Python. So, we have to use that sub module to deal with the array and 

different numerical linear algebra techniques or routines we have to use from the 

functionalities of scipy. 

So, we have to write down to represent this matrix in Python, we have to import scipy and 

then represent in terms of array and remaining eigenvalue problem solving for the to find out 

the eigenvalues and eigenvectors, we have to use the scipy.linear algebra sub module, which 

is expressed as scipy.linalg. So, this sub module will be used to find out them eigenvalues 

and eigenvectors. 

All features of scipy linear algebra sub module one can actually look up the features in the 

scipy documentation. And all the routines are available in the scipy linear algebra sub 

module. This scipy dot linear algebra sub module is optimized linear algebra routine, then 

NumPy linear algebra sub module and that is why we are not using NumPy module here we 

will just keep using this scipy sub module of Python. 

And one more information can be useful to note down here is that the linear algebra sub 

module of scipy, it has a direct interface with the Fortran lapack library, which is very 

efficient and faster and most optimized linear algebra package developed in Fortran for 

several decades. So, that has an interface and that is why it is more efficient. So, we will 

come, we will use this linear algebra sub module of scipy to represent the matrix and to 

perform this, to calculate this eigenvalue and eigenvectors. 
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So, how to find out eigenvalues and eigenvectors? First, we have to represent them matrix. 

So, there are several approaches available currently in scipy linear algebra sub module to find 

out eigenvalues and eigenvectors of a square matrix. However, here we will follow these 

steps. There are many other ways one can do that, but we will consistently use the step 2 to 

represent matrix and then find out the eigenvalue eigenvectors of that matrix. 

So, what are the steps we are going to follow? First, we have to create an n-by-n square null 

matrix, this is something which you should remember. First, we will create the null matrix. 

Null matrix is the matrix where we have all elements 0, so this is I am writing a 3 by 3 matrix 

where all elements are 0. So, we will prepare the null matrix first, so we will prepare the null 

array first of the same dimension 3 by 3, 

 

 

 then we will replace or reassign the elements by desired value to create the final matrix. 

So, if I have to create this matrix, let us say 

 

 This is the matrix we have to create. So, then first we have to do 2*2 null matrix, we will 

prepare the null matrix first 2*2. And then we will replace each element value. So, we will 



instruct the program to replace the individual element like this way after creating the null 

matrix, 1 and then this is going to be 2. 

And then once we have constructed the desired matrix, we can find out the eigenvalues and 

eigenvectors by simply this functionality, eig functionality. What we do in eig functionality? 

We can just simply write down eig within bracket, if I name this matrix to be A, the array to 

be A, then I will get this. So, e comma v, this is the energy and the eigenvector, eigenvalues 

and eigenvectors will be given within this construct, it is a very simple way to do.  

In the background, linear algebra sub package or sub module of scipy will be performing all 

the numerical task for me, and then it will give me finally, these values and the vectors using 

this functionality, is very simple to do. So, we will take a look at it how to represent it. 
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We will go back to the laptop right now. And we will try to construct the matrix. So, first, as I 

have mentioned, I have to first construct the null matrix. And to construct the null matrix, 

what we have to do is that from scipy, we will import one functionality called zeros. So, zeros 

will be producing the array with every elements will be 0.  

And then I will name A as zeros within bracket. Now, I have to define the matrix dimension, 

I want to perform matrix 2*2. So, 2 comma 2 is my matrix dimension. So, what it does, it 

immediately creates, so if I go back to the slide, so it constructs 2*2 null matrix first, so 2*2 

matrix, it means that this zeros will give me 0 0 0 0. That is exactly what it is going to create. 

So, we will prove that it is what is going to create, I will go back to the laptop and I will now 

print this A, so I have created an all matrix and I will write down some instructions here 

which will be helpful with a hash character, a 2 *2 null matrix is constructed. Because the 

final matrix which I am going to create is going to be 2 by 2. And here I will write down 

zeros functionality is imported from scipy module. 

And I saved that with the name test 1 dot py. It is already saved. And now I would like to run 

the program. If I run the program, what we see here is that this is the way Python will show 

the the matrix or the array. In python programming, we will call it array, but when in 

mathematical language it is the matrix. So, in computer language we do not call it matrix. So, 

what we are seeing here is that we can create, if we go back to the slide right now, we can 

create this 0 0 0 0 matrix very easily with the help of these zeros functionality. 

In the zeros functionality, remember that we are using a comma here to separate the, to show 

the dimension and we have double bracket here one bracket for the zeros and another bracket 

for to show the dimension of the matrix. So, these are the two things we should remember, 

we should not get confused by the notation.  

An array data structure can be created using this built-in functionality of scipy and Python’s 

modules scipy has several functionalities to define an array of any dimension. For an 

example, these zeros, these zeros more specifically, the actual functionality is like the zeros, 

then within bracket N comma N, then comma dtype that is called data type. This is the actual 

functionality where we have not used this, this option datatype option because this datatype 

option, d type option is optional. 

And that is why we would not use it. But if we use that, then it is actually defining what kind 

of data type I need is a floating data type or integer data type, we can define it, but I am not 



using it. And that is why because it is optional functionality, I am not using it here. Next, 

what we will do now are according to the steps we have given once we have created the null 

matrix of the same dimension, so this is the matrix we would like to represent and then find 

out its eigenvalues and eigenvectors. 
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Next step would be to replace the elements to construct the target matrix. So, we have 

constructed the null matrix first and then we have to replace it. For the replacement when A 

represents, if A represents a N*N array. If A representing a N*N array, then A this construct 

A i comma j, this construct represents the element of ith row and jth column of that array. 

So, if it is so, then one can take some examples, let us say and these are indices and we know 

that indices will start from 0, it will start from 0 then 1 then 2 like this way it will go. So, A 

[0, 0] this construct will give me, it will return the element in the first row and first column 

which means first row first column element is this one. So, that one I am going to assign then 

if I write down A [1, 2], it means it is first row and second column. 

So, this is the first row and second column. So, this is going to be this one, and so on. So, that 

is the way we are going to assign. So, if we look at this is very simple to do. And similar 

assignment we have used for them list indexing, we have already seen that the pythons built-

in list indexing is similar kind. But here we have to just show the entire dimension for this 

because it is a two-dimensional so you have to give each element, each index corresponding 

to that particular element. 

So, what we are doing here is that first we have constructed the zero matrix null matrix and 

then individual element are reassigned now. So, A [0, 0] is corresponding to the first row first 

column, A [0, 1] is the first row and sorry this is A [1, 2], it means it is going to be second 

row and third column, [0,0] is the first row first column, [1, 2] is the second row and third 

column. 



So, similarly, A [0, 1] now it is going to be first row, second column, so that is going to be 

first row and second column, column is here so it is going to be here, this one. Then [1, 0] 

second row, first column, this one. And A[1, 1] is going to be second row second column this 

value. And that is the way we have assigned, we are assigning, reassigning it. And if we print, 

it will be able to see what we have assigned. So, let us go back to the laptop and find out how 

to do that. 
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So, I am going to now assign individual values, I am going to assign it like this way, I have 

created the zero null matrix, and then A, then 0 comma 0 is going to be now 1, sorry, 2, then I 

have 0, 1 is going to be 1, then 1, 0, this is going to be 1. And then 1, 1 is going to be 2. And 

if I print A, I will be able to see what I have constructed. What I have constructed is 2 1 1 2. 

That is the matrix which we have constructed. So, I will go back to the slide. 
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So, I have constructed now, this entire matrix 

 

 and the way Python shows it with the help of this arrays, this matrix will be represented in 

Python with the help of this double brackets. And we have constructed the matrix right now. 

On this note, I will just mention one thing, that if I write down A[;,j]. Or if I write down 

A[I;j]  it means that this will return, this will return me the entire jth column. 

So, if it is, let us say, 0, then I will get back the entire column and the entire column is going 

to be now 2, 1. Similarly, if this is going to give me an entire row. And if it is 0 comma 

colon, it means that I am going to get back the entire row and that is going to be 2, 1, the first 

row. And this is first column because zeroth index is indicating the first column. So, these are 

the ways one can collect the particular enter row and integer column of a matrix which has 

been represented in Python already. 
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So, we will move on and we will go to the third step which is very important step, finding the 

eigenvalues and eigenvectors of that created matrix. So, as we see that, from here to here is 

now known, I have created the matrix. Then after that I am giving a name, the first one is the 

eigenvalue, second one is the eigenvector. 

And if I keep the name separated by a comma, then it calculates the eigenvalue eigenvector 

of the matrix which has been formed. Here, a matrix has been constructed with the help of 

this eig bracket construct. So, we will print then E and V, and we will see how they are 

printing. So, we have already constructed we will go back to the laptop right now. 
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And we have already constructed A. Now, we will do one thing, I do not need to print it again 

because I know what I have created here constructed here, I will just go ahead with this E 

comma V. One can change the name and make it anything, eigenvalues, eigenvalues and one 

can name it eigenvector. 

So, any name is possible, but both has to be separated by comma and the first one has to be 

eigenvalue and the second one has to be eigenvector then this construct eig A, this construct 

eig within bracket A, this construct is indicating that Python has to find out the eigenvalues 

and eigenvectors. 

But before we do so, I have to import this feature from scipy linear algebra sub module, it is 

not available with scipy directly it is available with scipy linear algebra sub module because 

it is a linear algebra routine which we will be following. So, it is going to be scipy dot Linear 

alg. I am going to import and then I am going to print E and V, print E, print V, do not use 

capital letter in print because Python will not be able to recognize it is sensitive to the letters. 

So, now I will run this program. So, if I run the program, what I see is that the first it is 

printing two different arrays, it is printing to different arrays, the first array is this one and the 

second one is printing like this. So, E the eigenvalues are given in an array, the first 

eigenvalue, I will go back to the slide. 
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The first eigenvalue is given by this, this is j is the complex number, what we express is i in 

mathematics, Python will express as j. So, and zero multiplied by j means it is a real number 

it is actually showing, by default it is showing in the complex form. So, the first value 

eigenvalue is going to be 3 which means that E1 is going to be 3 and E2 another eigenvalue is 

going to be 1, this is going to be 1. 

So, these are the two eigenvalues we get and this is exactly we have found analytically, when 

we did this analytical solution, we have found it that this matrix has two different eigenvalues 

one is 3 and another one was 1. And we have discussed these things in module 4 of this 

course, already. So, numerical we are finding the same results and corresponding to the 

eigenvalues what we have found, we are seeing that this eigenvector is presented in terms of, 

in the again array form, this is another array which has been given. 

So, these vectors are given in the array and what it does actually this construct E comma V 

equals eig A, this construct computes the eigenvalues and normalized, it gives me normalized 

right eigenvectors, it gives me normalized right eigenvectors. So, right eigenvectors what 

does it mean? I have an operator acting on 𝚿 I get eigenvalue and multiply by the eigen 

function, the eigenvector. So, this is called right eigenvector.  

Another expression I can have where A is acting from the right, this can also give me an 

eigenvalue equation. When it does that then this is called left eigenvector. So, by default if I 

do not mention anything. So, actual construct of this evaluating eigenvalues is following, this 

is going to be, this should be eig, then name of the matrix, then we have to write left equals 

false and right equals true, that we have to write down false or true. 



So, generally, by default it is taking right as true. If I need to get specifically left eigenvector, 

then I have to write down left equals true, then all I will be able to get that, if I do not 

mention anything by default is taking giving me the right eigenvector and it is normalized 

form. So, normalized form and what we have got here is the normalized, this is this is one 

vector and another vector is this one. 

So, there are two eigenvectors we have which is clubbed together in this array. So, now this 

construct actually giving me normalized line right eigenvectors. And one can access the 

values of the eigenvectors like this because it is an array, and one can also access there are 

normalized right eigenvectors in the matrix form in which jth column corresponds to the 

normalized right eigenvector associated with jth eigenvalue. 

So, if the jth eigenvalue is this one then to get the eigenvector, so this is the eigenvalue and 

corresponding eigenvector is going to be, it has to be represented like this way colon comma 

j. So, actually I am taking the column. So, this particular column is associated with this 

eigenvalue and this particular column is associated with this eigenvalue. 

This is the way they are representing. So, if I need to pick up the eigenvector corresponding 

to a particular eigenvalue, then I have to pick up following this way, V has all the information 

hidden, I have to just pull up the particular column corresponding to that particular 

eigenvalue. 
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We will now move on and we will check what we have said right now, particularly. So, we 

have already calculated these things. So, what we will do we will continue this session in the 

next class. 


