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Electron and Vibrational Superposition States 

Welcome back to module 1, we have discussed a time dependence Schrödinger equation and 

then with the help of variable separation method, we have been able to get them wave function. 

We have got the idea of stationary state and superposition state. Superposition state is absolutely 

needed to observe the temporal change in the probability density, which is all about the quantum 

dynamics. Because that is the only way we can observe the motion of quantum particle. 

(Refer Slide Time: 00:55) 

 

Now, we have said that the phase is very important factor. And, because phase is an important 

factor, let us say I give an example here, p orbital, we often express as positive and negative 

lobes like this way. Now, if I consider this p orbital and express the orbital, the wave function 

total wave function, then I would express like this way, it is going to be this is 3 dimensional. So, 

instead of x I will consider r here as vector and x I will consider r here. 

And then its characteristic phase factor 
iEt

e
−

. So, what it suggests that if I, if I try to observe, it is 

with function p orbital wave function, and somehow if I can manage to get how does it look like 

as a function of time, I will see that after a certain time, it has changed its phase, again, after a 



certain time, it has changed its phase again, after certain time it change its phase. But total 

density does not change. And that is the meaning of the stationary state. 

This phase becomes important when we talk about combining two different wave functions for 

an example we know that this wave function if they are combining like this way, so they do not 

combine because of this negative and positive phase. They do not combine and that is why they 

form kind of anti-bonding state and bonding state is just the reverse one.  

So, phase becomes very important phase is a physical quantity, which describes it is the wave 

function motion. But its density may not depend on that phase, unless we create the 

superposition state. 
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We after having understood this ideas, one can now introduce more rigorous mathematical 

definition of the wave function, the time dependent wave function. Obviously, it is going to be a 

superposition wave function because that is exactly where we are interested in quantum 

dynamics, it has to be superposition state and or it has to be a wave packet. And the wave packet 

more general mathematical form is going to be this is expansion coefficient, it is time 

independent part and the time dependent phase factor. 

We are adding them infinite number of states if the states are discrete, like this, we can start from 

n equals 1 to infinite number of states, we can add them together and form this wave packet. This 

kind of mathematical expression, what is the origin of such superposition that we have described 



without superposition will not be able to see the change in density. So, anything in relevant in 

quantum dynamics which is practically relevant or which can be used for to observe 

experimental quantities, that is related to this kind of wave packet. 

And if the states are continuous, like I cannot distinguish all the states are available kind of 

continuous states, then I can use this integration directly. This is called continuous state in some 

kind of continuum let us say. So, in that case, I will be able to integrate from 0 to infinite over 

this dE states.  

So, these are the two more mathematically rigorous definition of the superposition states or wave 

packet. We will use this kind of expression later for the mathematical derivation, but the origin 

of such equation comes from those two state superposition states we have discussed in the earlier 

session. 
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The real test of understanding what is going on is to solve some of the problems and in next two 

examples will be given one is electronic superposition state how do we create electronic 

superposition state and another one will be given vibrational superposition states. So, we will 

start with electronics superposition state we will start with this example of H2
+, when H2 makes 

bond it actually coming from A and B we have given to visit to designate the particular hydrogen 

atom. 



So, two 1s orbitals, they linearly combined together this is called LCAO method linear 

combination of atomic orbital this linear combination of atomic orbitals when they combine 

positively they form this sigma bond and this sigma state is because it is an one electron system, 

this ground state can be represented by this where R0 is the distance between this two atoms is 

two atoms hydrogen atoms. 

We have fixed it at a particular fixed R0 we have linearly combine two atomic orbitals one is 

from each orbital and we get the ground state wave function of that H2
+ system. And the ground 

state wave function has a symmetric symmetry notation and that is given by 2

g

+

 . Group 

theory is related and using group theory one can find out how to give the symmetry 

nomenclature of a particular electronic state.  

This is not the scope of this course. So, we will not go over that part, we will assume that we 

understand how to give the name the symmetry notation for a particular electronic state. So, 

ground state has this symmetry and excited state. So, basically what is going on I have 1 electron 

so, electron can stay here, if electron is staying here I get ground state if electronic staying in the 

is here, then I get 1 excited state.  

And that excited state is nothing but the anti-bonding, sigma anti-bonding orbital which is given 

by negative combination of these 2, 1 is orbitals again and this is given by this wave function. 

So, there are two wave functions I have right now, to electronic states I have one here one here, 

both states and H2
+, can stay here H2

+ can stay here also.  

If H2
+ is staying only in this state that is called stationary state. If H2

+ is staying only in the 

excited state excited electronic state that is also stationary state. But somehow, if I managed to 

create a superposition state linearly combining both states what will happen? Interesting thing 

will show up. 

Now, how do we create such a superposition state, that is a different question we can use some 

kind of laser photoexcitation which can simultaneously excite these two states together that is 

possible, but that is not the discussion point of discussion here. The point of discussion here is 

we create the superposition state by linearly combining these two electronic states. So, if we 

linearly combine these two electronic states, then what will happen? 



Here I will mention that LCAO is also linear combination of two atomic orbitals. But, there is a 

difference between superposition state and LCAO scheme. LCAO scheme does not include the 

temporal phase factors of individual atom. So, superposition state, the superposition scheme is 

different from LCAO scheme in supervision scheme we have two states we will linearly combine 

these two states with its characteristic phase factor, phase factor is going to be 
giE t

e
−

and this one 

is going to be 
uiE t

e
−

its corresponding energy is Eg here is Eg and Eg and this is Eu. So, we will 

consider those corresponding phase factor and then linearly combine it. 
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What we will have is following I have this two states and I can write down because these two 

states are stationary states, I can write down it is time dependent states as 0( , ; )g r t R , then 

semicolon R0 when I say semicolon, it means that R0is constant internuclear distance has been 

kept constant and r is the is representing the electronic coordinate and R0 is representing nuclear 

coordinate which is kept to be fixed. 

So, that time dependent wave functions can be written as 

                                                    0 0( , ; ) ( ; )
giE t

g gr t R r R e 
−

=  

 Similarly, the excited state time dependent wave function can be written as with its 

corresponding phase factor.  

                                                 0 0( , ; ) ( ; )
uiE t

u ur t R r R e 
−

=  

So, we have assumed that this inter nuclear distance does not change it is kept to be constant, the 

equilibrium geometry R0, we have kept it constant. 

And so, what we will do is that we will create the superposition state right now, and the 

superposition state we will create by taking the total electronic wave function of the solution 

state is given by linearly combining these two states. These two states we have already written 

and if we linearly combine them, we get this wave function we create this wave function. Now, 

all we need to do is that this wave function is not an important thing we have to find out the 

density because in the end we have to check how the density is changing. 
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So, I will write down the density expression here  

                            
2 *

0 0 0( , ; ) ( , ; ) ( , ; )r t R r t R r t R  =  

which is nothing but 

                             * *

0 0 0 0( ; ) ( ; ) ( ; ) ( ; )
g gu u

iE t iE tiE t iE t

g u g ur R e r R e r R e r R e   
− −   

= +  +   
      

 

                          

( )
2 2 *

0 0 0 0( ; ) ( ; ) 2 ( ; ) ( ; ) . .
u gE E t

i

g u g ur R r R r R r R e c c   

−
−

= + + +  

                          
2 2 *

0 0 0 0

( )
( ; ) ( ; ) 2 ( ; ) ( ; )cos

u g

g u g u

E E t
r R r R r R r R   

− 
= + +  

 
 

Whenever I have ie   and ie − we basically get 2cos .  

                  
22 2 *

0 0 0 0 0( , ; ) ( ; ) ( ; ) 2 ( ; ) ( ; )cos
ug

g u g u

E t
r t R r R r R r R r R    

 
= + +  

 
 

So, we multiply this is just tedious multiplication that is all but it is very simple. So, if we 

multiply, then we get its individual components that is 0( ; )g r R  ground state plus 0( ; )u r R  



excited state plus cross term which is 0( ; )g r R   0( ; )u r R

( )u gE E t
i

e

−
−

plus is complex conjugate, 

the other part of this wave function.  

 So, this is the equation we get which is nothing but this delta energy difference Eu-Eg is going to 

be the energy difference of these two states. 

And because, this is as I mentioned before, this is going to be the real part these are all real part. 

So, this can be considered as real because, 

                                                ( )1 1

1

2
g sA sB  = +  

                                             ( )1 1

1

2
u sA sB  = −

 

 So, both are real atomic orbitals s orbitals are real that is why these are becoming real part and 

what we get is from this is that density will depend on time and it is oscillatory oscillation 

controlled by this cos function it is oscillatory with a period the period of the oscillation is going 

to be cos
ugE t 

 
 

. So, 

                                               2

2
2

Et
t

E

E E E

h h











=


=

  
= = =



 

So, this is the frequency with which density this density of this system will change. And that is 

exactly we have shown. 
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The probability density depends on cos
ugE t 

 
 

. This is the term which is going to control the 

change in density as a function of time. So, the moment I create the superposition at t = 0, we 

will see that the electron density is localized in a particular atom, it is not delocalized. After a 

certain time, the electron density will be delocalized over the 2 atoms and then after a certain 

time again electron density will be localized in the other part of the molecule and this will keep 

coming back like this way and it will keep oscillating.  

So, electron density if I have hydrogen atom, then electron density in the superposition state 

electron density is localized here, delocalized, then again localized here delocalized again, 

localized here delocalized. And this is the way, it is more like an electronic wave, the wave 

which we see in a sea beach or the waves coming to you. And going back is something like that 

electron density is now oscillating as a function of time. And that is exactly the simplest 

representation of the quantum dynamics, that electron density is moving. 

And when this electron density in the end moving, it depends on the period, or how fast is 

moving, it depends on the energy difference, because we have taken two different states and then 

linearly combine them. This was Eg and this was Eu, this two electronic states were linearly 

combined, when we linearly combine them, then the density will depend on this energy 

difference. For H2
+  the energy difference is 11.83 eV almost. 



And because of that, if we plug that in here, then we will be able to get the period of the time 

dependent electron density is 248 as attosecond is 1×10-18 s, extremely fast, this kind of 

oscillation can happen extremely fast. It is going to be 10-18 s, within this timescale is oscillating. 

But this oscillation will be controlled by this energy gap. And that is very important to 

understand in a superposition state. 
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We will be able to confirm that what kind of oscillation we get is that by the fact that because in 

the end, my density will be controlled by this simple equation, which is cos
ugE t 

 
 

. By this 

expression, we know that cos can take different values, cos can take 1 cos can take - 1 cos can 

take 0 values, and we will consider all these values to find out to prove that this kind of change 

in density will be going on in space as a function of time for this for the superposition state. 

So what we will do first, we will use cos equals 1 and that is, when we get cos equals 1, it means 

that I am at t equals 0, because cos 0 is actually 1. So, at t equals 0 time this is the time what will 

happen the total density is now can be written as- 

             ( ) ( ) ( ) ( )
2 2

2

0 1 1 1 1 1 1 1 1

1 1 1 1
( , ; ) 2.

2 2 2 2
sA sB sA sB sA sB sA sBr t R        = + + − + + −  

                                  
( )2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

2 2 2 2

1 1 1 1

1
2 2

2
sA sB sA sB sA sB sA sB sA sB

sA sB sA sB

         

   

 = + + + + − + − 

= + + −

 

So, it suggests that at t = 0 time, the density, total density will be localized only on the A part and 

that is exactly shown here. On the A side, what will happen if the, if we get cos equals 0, if I get 

this cos equals 0 term, then total wave function now, I will be writing like this way. 



                       ( ) ( )
2 2

2

0 1 1 1 1

1 1
( , ; )

2 2
sA sB sA sBr t R    = + + −   

Which gives me finally, if we simplify it, I am skipping one step. You can check it by rigorously 

doing this math is just tedious. 

                                                    
2 2

1 1sA sB = +  

 So, what it suggests that when 
2

t
E


= 


 when this time, that is this time, the density will be 

delocalized over A and B  and that is exactly what is shown here density is delocalized.  

Now, another part where cos term is taken to be minus 1 if we take cos to b minus 1, then t is 

going to be, 
ug

t
E

=


  and one can write down, 

( ) ( ) ( ) ( )
2 2

2

0 1 1 1 1 1 1 1 1

1 1 1 1
( , ; ) 2.

2 2 2 2
sA sB sA sB sA sB sA sBr t R        = + + − − + −  

So, if we simplify it finally,  

                         
2

12 sB=  

it means that the density at this time will be localized only on B this is where it is localized.  

So, this demonstration shows that this exercise shows that how the densities are changing as a 

function of time and different time. And what this periodic change in density is controlled by 

inversely controlled by the, this time period will be inversely proportional to this energy 

difference between the states which are involved in the superposition creating the superposition. 

So, this is a demonstration for electronic superposition state electronic supervision can be as fast 

as attosecond and how to observe that that is a different question. But, we can create electronic 

superposition state by linearly combining two electronic states. Next, we will go over quickly go 

over vibrational superposition state. 
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When you think about vibrational superposition state, we will again these are the vibrational 

state generally under harmonic oscillator approximation, we get different vibrational states like 

this and one can think about, what about if we consider V equals these two states if we linearly 

combine with this characteristic phase factor, what will happen to those states? But, before we 

get into these states, first we will remind few things and that will help one understand what is all 

about this diatomic vibration. 

One of the simplest examples of vibrational superposition state can be realized from a 

superposition of the ground and the first excited state of the diatomic quantum harmonic 

oscillator which we have shown here, we can linearly combine these 2 states. A quantum 

harmonic oscillator is a good model for a vibrating diatomic molecule. 

Under this model diatomic molecule can be represented by a spring, just like the one I have 

shown here, like a spring and this is vibrating when this is vibrating, it is vibrating like two balls 

are connected by a spring and spring is compressed, sometimes stretched, then compressed 

stretch and that is a good model for the harmonic oscillator. So, harmonic oscillator is a good 

model for the quantum vibration. 

And when we have that, we say that two atoms having mass m1 and m2 its equilibrium distance 

is R0 , which is here at the R0 distance this is your E and this is your R. So, this is called R0, 

when I say R0 it means that one atom is anchored here and another atom is here and that is why 



this is called R0. R0 is the equilibrium bond distance, but it can have different bond distances it 

can have I can have my I can have vibration like this way. So, this can be one distance that is that 

is the R distance I can have R distance. 

So, different it can be stretched it can be compressed, depending on what time of the vibration 

we are in. Equilibrium bond distances R0 and R represents the instantaneous bond length during 

the vibration. Now, when we do that, when we think about this one, this two body vibration like 

this way which we have presented, the mathematics gets little tedious and difficult to deal with 

so often for mathematical convenience, what do we do? 

We define another to express the same vibration, we define another physical quantity called x, x 

is the difference between the instantaneous bond distance and the equilibrium bond distance. 

That is the difference. So, we are defining x and we are defining so, we have defined an x 

coordinate which is represented by R- R0, which means that if x is positive, it means I have 

stretched it R is greater than R0 and if x is negative, it means that I have compressed it.  

So, that is the way we can think about it. And in this picture, this when we have changed the 

coordinate from R coordinate to x coordinate, we can also another change we can make we can 

make a reduce mass. So, we can say that, 

                                                                   
1 2

1 1 1

m m
= +  

 If we do that, then this whole two body problem becomes a one body problem given here.  

And if we perform the math with the help of one body problem, we can easily translate the 

information to the two body problem and that is what we do very often in dealing with two body 

or diatomic species in spectroscopy or quantum mechanics. Where in the one body if we 

consider the one body system, then the angular frequency which is governing this vibration in the 

x coordinate is given by 
k




=  ,  k is the force constant. 

So, just to remind ourselves that, we basically we have a diatomic molecule, but to deal with 

diatomic molecule I have to deal with this R coordinate and also two body instead of dealing 

with two body there is a mathematical convenience or mathematically you can convert this two 



body system to one body problem. And if we use this one body problem that I have only one 

body with reduced mass vibrating with respect to this wall in x coordinate, if we solve it, then we 

will be able to translate the information to the two body problem. 

So, it is basically seeing simplifying one complicated problem in one dimension and then solving 

it and discussing the diatomic vibration. 
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When you do that, we get the wave functions for the ground and the first excited, state 

vibrational state, where I have shown this wave function interesting thing to note that the ground 



vibrational state in simple harmonic oscillator is actually look like a Gaussian wave function 

2axe−  it is a Gaussian function. So, similar functions we are getting here also.  

A Gaussian function and the first excited state wave function looks like this, this wave functions 

we get from TISE Time Independence Schrödinger Equation which can be written as  

                                      

2 2
2

2

1
( ) ( )

2 2
kx x E x

m x
 

 
− + = 

 
 

We get a set of solutions, we get set of solutions just like this any TDT, TISE we solve, we get a 

set of solution. 

And each state is defined by this quantum number v where energy of that state is given by  

                                                              

1
( )

2
v

k
E v


= +  

which is nothing but yeah, this is the this is each state is given by this and they are non 

degenerate state in the simple harmonic oscillator and these are the two wave functions we get. 

So, it is giving an idea to approach a quantum dynamics fast at t equals 0 before the time 

evolution, we have to find out it is such as that we have to find out the stationary states. 

Once we find out the stationary states, then we have to create the superposition and then let it 

evolve through this TDSE, that is the basic approach. And that is exactly reflected here also. We 

have we are trying to find out with the help of TISE, we have found its possible energy states and 

then we are linearly combining these two states to find out its superposition the behavior of the 

superposition state. 
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So, what we do, what we will do here is that the superposition state will be expressed as this is 

the ground state ground vibrational state this is the first excited vibrational states explicitly 

written like this way where alpha we have already defined alpha,  

                                                        
2

k
 =  

system characteristic of the system is a constant for a particular vibrating diatomic species. 

So, this probability if we know the wave-function superposition state wave function, then we will 

be able to find out the probability density how it is changing, it is obviously changing like this 

way.  

                   

2 2 2 10
0 1 0 1( , ) ( ) ( ) 2 ( ) ( )cos

E t
x t x x x x    

 
= + +  

 
 

So, basically what we have is that this is the this is v=0, this is v=1, we have linearly combine 

these 2 states with his own characteristic phase factors, these are the phase vectors we have and 

the moment we do that, then the total wave function the total density the state, the particle is now 

in the superposition state created by two vibrational wave functions.  

And in that state, the density is changing as a function of time like this way, which can be 

expressed as explicitly can be expressed as  



2 2 2

11 1
3 3 42 42 24 4

( , ) 2 cos( )x x x Et
x t e x e e x     


   

− − −       
= + +      
      

 

this is between 1 and 0 states. 
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So, we get this expressions and once we get these expressions, then an interesting point here we 

can notice here that this total wave function this is a density total density will be evolving as a 

function of this term. And if we look at this term, this 10E
, this is the so, the this is going to be 

the omega frequency and this omega is the frequency of change in this density, this superposition 

state density this is created by v = 1 state and v = 0 state these two states so, what it suggest that 

omega is the frequency of the vibration. 

So, this two atoms are vibrating with a frequency omega, question is can I observe that 

vibration? Let us say the system is in the v = 0 state. If the system is v= 0 state we know that 

even at V equals 0 state molecules this diatomic species is vibrating all the time. Question is can 

I observe that vibration? No, if it is staying at V equals 0 state it means that it is wave function is 

going to be represented by. 

                                                             

0

0 0( , ) ( )
iE t

x t x e 
−

=   



And because it is wave function depends, because we function because the system is at v=0 state 

even if it is vibrating. There is no way experimentally I can observe this vibration, because in the 

end, this is a stationary state total density will not be sensitive to the time. Because total density 

depends on its densities depends on the psi star psi.  

So, in order to observe that frequency observe that vibration, what you need to do is that we can 

create the superposition between v =  0 and v =1 superposition. If we create that, then there is a 

change in density that change in density will also follow the same frequency. So, coherence the, 

we are creating superposition state with the help of coherence, this coherence is allowing me to 

observe vibration in a molecule.  

the molecule is staying only at v=0 state, that is a stationary state. I will not although it is 

vibrating all the time, but I will not be able to observe that vibration. The only way I can observe 

the vibration with the same frequency is by creating a superposition state between v = 0 and v = 

1.  

So, coherence is allowing me to observe the inherent vibration in the molecular system. This 

may not be true if you do a superposition between v = 0 and v = 2 states. Check what is the 

outcome? Check what kind of frequency you should observe for the density. How does it 

compare with its own frequency, that can be different. But if we create these v = 0 and v = 1.  

states proposition, then we will be able to observe the same frequency with which the molecule 

is vibrating. 
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We will now move to similar kind of derivation which we did for the electric superposition state, 

we will consider different cos values in the expression and we will try to find out what is going 

to happen to the total density. We will start with cos equals 1 which means that I am at t equals 0 

if we add t equals 0, then we can write down explicitly density is going to be  

                 
2 2 2

11 1
3 3 42 42 24 4

( , ) 2x x xx t e x e xe     


   

− − −      
= + +      
      

 

Which is nothing but, 

                                   

2

2

2
11

3 44
2

4
x

xe xe


 

 

−
−

 
   = +       

  

 

Which means that I have to add these two functions first and then square it. So, if I want to add 

these two function, these two functions, what is these two functions? These two functions was v 

= 0 wave function and v = 1 wave function, that is exactly I have plotted here, `   this one is v 

= 0 wave function, and then this one is v = 1 wave function. 

Now phase becoming an important issue, you see, on this side, this part will be added together, it 

will be magnified, but this part they are cancelling each other. So, they will be they will be 

diminished. And that is why finally, the density will be localized more on this part at the B 



position than this C position that is the effect we have right now. So, we see that there is a 

localized density in one part of the molecule. So, we will stop here and we will continue this 

module in the next session.  


