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Welcome to Module 4 of this course Time Dependent Quantum Chemistry. In this module, 

we will try to find out the connection between quantum mechanics and linear algebra. And 

realisation of that connection will help us build the platform to obtain numerical solution to 

the time dependent Schrödinger TDSE. 

Why we need numerical solution? Because I have been telling you Since last module that 

always you may not get the analytical solution. For free particle wave packet dynamics, we 

have been able to get the analytical solution and we have got the general solution also for 

that wave packet. But let us say the wave packet does not have a Gaussian form, it has 

entirely different very complicated form, how do you deal with those kinds of form, let us 

say I have a Gaussian form, but the particle is experiencing very complicated potential. 

So, in that case, we will not be able to get them analytical solution, we need to rely on the 

numerical solution and to reach there, to understand how numerical implement 

implementation will be done of TDSE we need to understand the basic connection between 

quantum mechanics and linear algebra. So, that is exactly what we are going to do in this 

module. 
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In the previous module, where we have discussed this wave packet dynamics, we have 

analytically solved dynamics of a free particle. And in the tutorial, we will see that the 

Gaussian wave packet dynamics can also be solved with linear and quadratic potential as 

well. So, for many aspects of Gaussian wave packet dynamics, one can use analytical 

approach to solve the problem. 

But for any arbitrary potential this analytical approach will fail and we have to rely on 

numerical approaches. In fact, a number of quantum dynamics problem that can be solved 

analytically is very limited. Therefore, it is quite instructive that we begin a discussion on 

the numerical approaches, which will enable us to explore quantum dynamics for any 

arbitrary potential. So, that is the motivation here. 

Numerical solution to the TDSE is a gigantic subject. It is a huge subject and but it is 

fundamentally developed based on matrix representation of quantum mechanical equation. 

This numerical approach we need, for this numerical approach we need matrix presentation 

of quantum mechanical equations. So, numerically we will be dealing with matrices. 

That is why we need to represent quantum mechanical equations in the matrix form. And 

these numerical methodologies is developed based on the realization that mathematical 

language of quantum mechanics is actually linear algebra, So, in this module what we will 

do, we will develop a coherent sense of wave function and operator. 

See these are the two key constituents of quantum mechanics. So, if I want to implement 

numerical, so if I want to obtain numerical solution to quantum mechanical problem, first I 



have to learn how do I numerically represent this wave function and operators because 

these are the two things, we will be dealing with in quantum mechanics. 

And that is why, what we will do, we will develop a coherent sense of the meaning and the 

properties of the wave function and the operators from linear algebra point of view in this 

module. We will begin with reviewing intriguing general properties of quantum 

mechanically acceptable wave functions and operators from linear algebra point of view, 

then we will present basis set approach to quantum mechanics, which will give us a matrix 

representation of the wave function and the operator. 

And in the end, after briefly reviewing matrix algebra, we will present methods to obtain 

Eigen value and Eigen functions of a quantum system making use of grid representation, 

we will show that also what does it mean by grid representation. So, in the end, the 

discussion in this module will lead us to the place where we will be able to perform 

numerical, we will be able to get the numerical solution to the TDSE. 
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So, let us begin with the general properties of wave function from linear algebra viewpoint. 

All well behaved wave function which is acceptable in quantum mechanics must be Square 

Normalizable, this is something which we have without noticing it, we have used it, we 

have used normalization condition we have said that before the time evolution , we must 

take the normalized wave function always. 

So, all well behaved or physically acceptable, any function I cannot accept physically in 

quantum mechanics, those functions which can be accepted in quantum mechanics is called 



physically acceptable wave function that must be Square Normalizable. And what does it 

mean by this Square Normalizable? that means that if I have the wave function to be ( )x , 

for the time being I can think about, okay forget about this time dependency right now, we 

are just thinking about the space dependency because time part comes as a phase factor, so 

it is not an issue. 

So, if we look at this wave function, then this Square Normalizable, it has to be Square 

Normalizable, what does it mean? If I want to check whether this wave function is usable in 

quantum mechanics, then immediately I have to find out this integral 

2* 1dx dx  
 

 

    

This is called normalization condition, but when it is 1,   is normalized, but always   

may not be normalized we have to make it normalized and in that case if it is not 

normalized still it is acceptable in quantum mechanics as long as this integral 

2* dx dx  
 

 

   becomes real positive constant and must be less than infinity,   . 

So, first question is that if somebody is proposing that okay let us assume that this wave 

function is a solution for a particular quantum system, then immediately we have to check 

whether this wave function, the proposed wave function is acceptable as a solution in 

quantum mechanics. And how do I check that, I can check it by taking this integration and 

finding out whether this integration giving me a real positive constant value, if it is not 

giving real positive constant value, if it is becoming 0, if it is becoming let us say real 

constant positive, finite constant positive value. If it is becoming infinite, so, I cannot 

accept it, I cannot accept that wave function. 

So, for an example, this is just an example, we have seen that a Gaussian function this is an 

example, we have already seen this example. A Gaussian function  
2

,axe    this 

function within this   to  limit it is a well-behaved wave function, this is acceptable 

function in quantum mechanics. 

But we have already seen that  ,ikxe   , when you try to normalize it, when you try to 

get this square normalization condition, we have found that within this limit   to  , 

this is not acceptable because, within this limit we have got infinite value, if we take this 



integration ikx ikxe e dx







 is square modulus, this is going to be infinite. So, this 

integration becoming infinite. 

So, this function cannot be used in quantum mechanics. So, one thing we have to remember 

that I can propose a wave function, but I have to in the end definitely need to check whether 

that wave function is acceptable in quantum mechanics and whether it will be acceptable or 

not that can be checked by taking this integration and finding out whether I am getting a 

real constant positive value. 

One interesting mathematical fact about all Square Normalizable wave function is that they 

all follow property of linear vector space. And the reason why it should be this is that if we 

take only wavefunction which is Square Normalizable then those were functions acceptable 

wave functions will follow the property of linear vector space. And that is why we can use 

linear algebra. 

So, in order to use linear algebra or this linear vector space also called sometimes called 

Hilbert space, both are, this is just mathematical language, we say that okay, those wave 

functions which can be acceptable in quantum mechanics, they live in Hilbert space. Hilbert 

spaces a mathematical space, is a hypothetical space, let us say where these wave functions 

are living, it is more like we are living in solar system and if any living being is living in 

solar system, they will follow the similar property. 

So similarly, if the wavefunction is living in a Hilbert space or linear vector space, it means 

that it must be Square Normalizable. There is a consequence and that is the reason why I 

can use linear algebra. Otherwise, I cannot use linear algebra. So, I have to start with 

always Square Normalizable wave function. 



(Refer Slide Time: 14:34) 

 

Second property of wave function from linear algebra viewpoint is that if 1 and 2,  are 

square integrable, which is Square Normalizable functions which means that I have a vector 

space linear vector space let us say this is a space, this is called Hilbert space let us say. 

And in this Hilbert spaces 1 2, 3, ,....   all are living then we have to remember that in the 

same Hilbert space their linear combination any linear combination will also live in the 

same Hilbert space. 

So, if 1 2, 3, ,....   many other functions square integrable, all square integrable functions 

are living in the Hilbert space. Any linear combination of these wave functions are also 

square integrable, Square Normalizable. So, what it is suggesting that as long as the wave 

functions are sitting or living in the Hilbert space their linear combination will also live in 

the same Hilbert space. And we know that anything which is living in Hilbert space would 

be Square Normalizable, I can normalize it. 

Which means I can accept it as a solutionm to the solution in quantum mechanics. Because, 

one defining condition of Hilbert space is that both functions and their linear combinations 

should be part of that Hilbert space. And, if it is so, then if I have an individual solution of 

1 2, 3, ,....   and each one is Square Normalizable then I should have another solution 

1 2( )   that is also would be Square Normalizable. 

I can take different kinds of combination. 1 2 3( )     ..this is also Square Normalizable. 

I can take 1 4( )  , this is also Square Normalizable, all linear combination will be Square 



Normalizable. So, this is also if they are acceptable in quantum mechanics then they are 

also acceptable in quantum mechanics. And this is something which without noticing it we 

have used it already. 

In the first module we have checked the linear combination. In the third module where we 

have proposed the wave packet, we have already taken linear combination of different 

plane wave of solution. So, these were the plane wave solutions and we have taken linear 

combination to make this acceptable solution. So, this is quite common thing in quantum 

mechanics and the reason why we can do that is that is the property of the Hilbert space, the 

mathematical space we have defined. 
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Third one, third property of the wave function is going to be inner product. What is inner 

product? I will just show, inner product of two wave functions living in a Hilbert space is a 

measure of their overlap in that Hilbert space. So, inner product is nothing but the overlap 

of the wave function which is given 

*

* *

1 2 2 1dx dx   
 

 

 
  
 

  . So, what is the meaning of 

it? It means that in the Hilbert space, if I have two wave functions 1  and 2, , and if we 

find out this integration, then this integration shows how much overlap they have, let us 1  

and 2, is represented by these two ellipse, this kind of function, 1 here and 2, here, So, 

overlap means how much space it is occupying and sharing the space that is called overlap. 

This is the overlap part. And this integration will show how much overlap we have between 

two wave functions in the Hilbert space. What it suggests? It suggests that the inner product 



always exist as long as both functions live in Hilbert space, because these two functions are 

living in Hilbert space, their inner product will definitely exist, it will not happen that this 

integration will become infinite, it will not happen as long as this wave function is sitting in 

the Hilbert space. 

So, the basic idea mathematical background for this is that the inner product always exist as 

long as both functions live in the Hilbert space. So, that is the property of the Hilbert space. 

This is inner product. And another property of the wave function is going to be the norm of 

the wave function is given by this integration 

1
2

* dx  




 
  
 
 , this is the normalization 

constant. 

So, if I want to normalize a wave function, all I have to do is that 
Normalized





 , norm of 

tthis I will get the normalized wave function. This is the way one can get the normalized 

wave function. And if this part, this integration is 

*

* *

1 2 2 1 0dx dx   
 

 

 
  
 

  becoming 

0, it means that these two functions are orthonormal. 

So, these are the properties which we have already used, orthonormal wavefunction already 

we have used, but we have not noticed that we are using it as a consequence of the Hilbert 

space, the property of the Hilbert space and this is something which we are pointing out. 
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Now, we will move forward to the operator, but before we move forward to the operator, 

one interesting point will be raising here. Let us assume that I have a function 
1

2( )x x  to, 

this is a wave function. And question is whether this wave function lives in Hilbert space. 

Because, if it is living in Hilbert space, it will be useful in quantum mechanics whether it 

can leave in Hilbert space for the interval  0, 1 . So, all we need to do, we need to check 

that what we need to do we have to find out this integration 

11 1 2
1 1

2 2

0 0 0

1

2 2

x
x x dx xdx

 
   

 
   

Different limit may have a different Hilbert space. So, within this limit, I would like to 

check whether I can construct the quantum mechanics within this limit. So, limit is not 

minus infinity to plus infinity here, we are considering 0 to 1 limit. And we see that this 

value is going to be half, this is a finite constan,t positive constant. So, this function can live 

in Hilbert space and if it is living in Hilbert space for this limit, I can use it in quantum 

mechanics only for this limit, I did not take for other limit. 

So, I will construct the Hilbert space, this is my Hilbert space. It is more like, I told you, 

more like a solar system let us say, all human are living in solar system. This is your solar 

space, let us say. So, no matter which human you pick up, they will have similar kind of 

property they have two hands, two legs, one head, similar kind of property. 

Similarly, in this mathematical space, Hilbert space, if one wavefunction is sitting here, 

then that will follow the property of the Hilbert space and the property of the Hilbert space 

suggest something and that suggestions we are actually using in quantum mechanics. So, 



that is the connection between quantum mechanics and linear algebra. So, we have already 

seen that this within this limit, this wave function, 
1

2x is living in Hilbert space, so it will be 

useful in quantum mechanics. Very nice. 

Now in quantum mechanics, we know that some operator will be acting on it, let us assume 

that my operator is 
d

dx
, derivative operator, very simple derivative operator, which will act 

on this 
1

2x , let us say. When operator acting on the derivative operator, 
1

2x what will 

happen? Immediately I will get 
1

2x


, 

And the limit is to define this Hilbert space I have considered the limit is going to be 0 to 

+1. That is the defining condition for the Hilbert space, for this particular Hilbert space not 

for all Hilbert space, I can define another Hilbert space for a different limit. But within this 

limit, I am defining this Hilbert space. What I see is now I have got another wave function, 

so an operator acting on wave function, and I am getting another wave function. 

And I have to check whether this new wave function which we call  , whether that also 

live in the same Hilbert space or not, that is the first thing we will check and in order to 

check that what we need to do, we have to again carry out this integration, 

 
1 1

1 1 1
2 2

0

0 0

1
ln( )x x dx dx x

x

 
      

Whenever I have this integration to be infinite, then we cannot say that this wave function 

is living in Hilbert space. So, what is going on, I had a wave function which was happily 

living in Hilbert space and operator acting, acted on it and it made the function to be out of 

Hilbert space, that function cannot stay in the same Hilbert space anymore, it is going out 

of the Hilbert space. 

This causes a problem because if a function is going out of the Hilbert space due to an 

action of an operator, then I cannot use it in the same quantum mechanics. In order to use 

the wave function in quantum mechanics, I need to have the wave function living in the 

Hilbert space all the time, does not matter whether any operator acting on it, it can act, an 

operator can act on it. 

The defining condition of using that Hilbert space is that anytime the function which I am 

using as a solution of the quantum system, that should stay in the Hilbert space. In addition 



to that, if an operator acting on that wave function, the new wave function should also stay 

in the same Hilbert space that is the defining condition. 

So, what we see that there are certain kinds of mathematical operators such as derivative 

operator which use can actually take an operator and wave function living in Hilbert space 

out of the Hilbert space and that is not acceptable. So, this kind of operator cannot be used. 

So, there are restriction in what kind of operated I should use in quantum mechanics, it 

should be restricted. It should not be a function living outside the Hilbert space does not 

carry statistical interpretation anymore and this is why it becomes useless in quantum 

mechanics. 

So, the basic idea is that when I am selecting a wave function that should stay in the Hilbert 

space, because it will then carry statistical interpretation and that is the only interpretation I 

have for the wave function in the standard interpretation in quantum mechanics, statistical 

interpretation. If the statistical interpretation is gone. So, then there is no wave function, 

meaning of the wave function, and if there is no meaning of the wave function, there is no 

quantum mechanics anymore. 

So, that is why the wave function has to be living, has to live in the Hilbert space. And if an 

operator acting on that wave function living in the Hilbert space, if it is taking out of the 

Hilbert space, then that is also a problem then we have lost the interpretation of the 

quantum mechanics again. So, everything has to be in the Hilbert space and that is why 

operator space needs to be restricted, we cannot use any operator to control to work in 

quantum mechanics. 
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So, let us find out what kind of operators we can use and what are the operations of 

operators we can think of from linear algebra viewpoint. Inverse of an operator will be 

given by let us say A , inverse of A  is defined by A inverse, 
1

A


. So, what happens A 

acting on   giving me another wave function, A  . In that case, inverse of A on   is 

giving me  , this is more like a reversible process, 
1

A  


 . 

From this point of view, quantum mechanics is reversible. If this operator is acting on   

and giving me  , then inverse of this operator can act on   and I can get  . So, this is one 

property of the operator which will be using in quantum mechanics and that is directly 

coming from the property of linear vector space, linear algebra or Hilbert space. 

Or in other words, I can write down A acting on   is  , ( )A   or  
1

( )A A  


 and this 

is only possible when this 
1

1AA


 . So, this is an operator which is suggesting that we 

multiply by 1. So, this is another property of the inverse of an operator. Adjoint of an 

operator, what does it mean? Adjoint is defined, adjoint of A  is defined by 
†

A such that 

†

A will be considered to be adjoint of A when this will hold 
†

* *( ) ,A dx A dx   
 

 

   

When this relation will be satisfied, then we can say that 
†

A is adjoint of A . So, we have to 

take few examples to show that adjoint of an operator and we will take one example. Let us 

say we find out adjoint of an operator x, 
†

x . If we take x operator, x , then what will 

happen? So, let us say I start with x operator, x operator, x  is nothing but multiply by x. 



*x dx 




 . Now, x is a multiplication operator. So, I can place x anywhere. Remember 

when you are dealing with an operator, let us say I am dealing with this differential operator 

acting on  . And on this side, I have  . If I am dealing with this kind of operator, 

derivative operator, this derivative operator means it is operating only on  , it cannot be 

just, the position cannot be changed without any constraint, I cannot write down this 

,
d d

dx dx
   , it is not possible, operator acting on this. 

But if it is a multiplication operator then I can replace it anywhere it is just multiply. So, I 

can place this conveniently, here x it is the same value, because it is a multiplication 

operator. So, I can, and x is real, so I can also write down 

* * *( )x dx x dx x dx     
  

  

    . We have now, this is fulfilled. This form is equal to 

this form because it is fulfilled, I can see that 
†

x x . 

Now, we will check our derivative operator, let us stick with the derivative operator 

whether we get what kind of results we get for derivative operator. So, we have already, I 

will write it down,
†

x x . For the derivative operator, let us say I have an operator which is 

d/dx, 
d

A
dx

  if this is the operator then I can try to find out 
†

* *( )A dx A dx   
 

 

  . 

Now, I cannot just position this operator anywhere without any constraint, it is not possible. 

This operator only acting on this. So, I have to go for integration by parts and integration by 

parts if I do that, then 

*
†

* * * * *( ) , 0 ,
d d d

A dx A dx dx dx dx
dx dx dx

           
    




    

 
        

 
      

this is integration by parts. And the general formula of integration by parts I will just 

remind it is  
b b

b

a

a a

uv dx uv u vdx    , that is the general formula of integration by parts and 

that is exactly what we have done here. 



And so, what I can write and now * 



   this part is going to be 0, why? Because I said 

that   and   are in Hilbert space and if they are in Hilbert space, there has to be Square 

Normalizable in order to be Square Normalizable, at infinite their values should be 0, at 

 , 0, 0   . This is all coming from the property of the Hilbert space. 

So, this part, this integration will be, this part * 



    will be 0, then I have 

*

,
d

dx
dx
 





 
 
 
 , I have now, the relation fulfilled. This one, this part is here and this part 

is here. But what is the difference right now, I have now, 
† d

A
dx

   

So, what we see here is that if it is derivative operator d/dx,
d

A
dx

 , then 
†

A A . So, it is 

not necessary that adjoint would be the same as the operator always, it depends on the 

operator, what kind of operator I have, one can very easily prove that if the operator, 

†

,
d

A i A A
dx

  ,one can prove this. 

So, with this idea what we are seeing is that adjoint can be found analytically with this 

expression with this integration and one can find out different operators whether that will 

be adjoint, what would be the adjoint and sometimes I may have a situation where its 

adjoint would be equivalent to its own operator form. We will stop here and we will 

continue this session in the next class. 


