Time Dependent Quantum Chemistry
Professor Atanu Bhattacharya
Department of Inorganic and Physical Chemistry
Indian Institute of Science Bengaluru
Module 03 Lecture 23
Fourier Transform using fft

Welcome back to Python tutorials three, what we have presented is what is the very basic
concept behind this Discrete Fourier Transform, which will be implemented in terms of
Fast Fourier Transform algorithm in Python, and we have seen how to create the x-grid. So,
there are two steps in Fourier transforming a function, first we have to create the k-grid and
with the help of fftfreq functionality of scipy.fftpack and then we have to convert the
function with the help of FFT.

(Refer Slide Time: 01:05)

Python Tutorial 3: Fourier Transform

Fourier Transform a Cosine Function

¢
=

C
o (ls %) Python Implementation
. e through fft(Y) of

@53_(3_@ 9) —  ao e)

(b) 800

(3) 100]

YR i O W R

LGS UL nry By

— 1

vard Y

Time dependent Quantum Chemistry

So, what we have seen here is that the cos function. So, this is your x-grid and this is your
k-grid. On this k-grid, we are representing it and we had cos(20x), this was the function and
once we have Fourier transforming, this is we have defined as y and once we have Fourier
transforming we are taking absolute value of this y_k, plotting the absolute value of y_k

because y_k is Fourier transform function.

Once we Fourier transform it is always going to be complex function and to visualize a
complex function it is convenient to use the absolute value of that complex function, so that

we can get an idea what is going on. What do you see that once we have converted this cos

function we know that cos(e,t), in the time domain we are very much familiar with it, this

is the frequency and frequency is related to the Fourier domain.



So, similarly on the x-axis, this is the relative spatial frequency 20 and that 20 is now
showing up here, this ko value this is actually cos(kox) and the spatial frequencies defined
by this ko. So, this ko value is not now showing up. So, we have single frequency 20. But it

has, it is showing up in the negative regime also.

This negative and positive part is just the consequence of the Fourier transform, it has
nothing to do with the practical reality. So, in the practical purpose we can only take note
down this positive part of the frequency and we can take a look at it the frequency
components we are getting already Ko, that should be, because cos function is oscillating
over the space. Cos function are oscillating with the spatial frequency 20, and that is
showing up after the Fourier transform, we have only one frequency component which is 20

on the x-grid. So, this is the meaning of the Fourier transform of this function.

(Refer Slide Time: 03:30)

Python Tutorial 3: Fourier Transform

Fourier Transform a Gaussian Function

S
#Importing the Required Libraries Python lmplementaﬁon
from scipy import arange, pi,cos,exp through fft(Y) Of

from scipy.fftpack import fftfreq,fft

from matplotlib.pyplot import plot,show,xlim
#Creating the x-grid

xmin=-100

xmax=100

dx=0.001

x=arange(xmin,xmax,dx)

#Defining a Cosine Function in Position Space Grid —

y=exp(-x**2)*cos(20"x) K /K
#Creating Fourier Grid (or k-grid)

N=len(x)

k=2*pi*ftfreq(N,dx)

y_k=fft(y)

plot(k,abs(y_k))

xlim(-30,30)

show()

scipy.fftpack

Time dependent Quantum Chemistry




Python Tutorial 3: Fourier Transform

Fourier Transform a Gaussian&we&w

et
#Importing the Required Libraries Python Implementation
from scipy import arange, pi,cos,exp through fft(Y) of
from scipy.fftpack import fftfreq,fft fovftback
from matplotlib.pyplot import plot,show,xlim Scipy.Ifipac
#Creating the x-grid
@ Qon

xmin=-100

xmax=100

dx=0.001
x=arange(xmin,xmax,dx)
#Defining a Cosine Function in Position Space Grid
y=exp(-x**2)*cos(20*x)

#Creating Fourier Grid (or k-grid)
N=len(x)

k=2*pi*fftfreq(N,dx)

y_k=tft(y)

plot(k,abs(y_k))

xlim(-30,30)

show()

Time dependent Quantum Chemistry

We will move on and we will check what is going on with the Gaussian function and we
know that Fourier transform of a Gaussian is another Gaussian. So, if | have a Gaussian
function in the x domain, then in the k domain I will get another Gaussian function. But
then question is at what point the Gaussian function will be centered? That depends on, so

this is not a simple Gaussian function it is actually a traveling Gaussian function.

So, it is a Gaussian pulse, let us say. So, it does not look like this, e cos(20x), this is a

fast-moving component. So, this is more like a Gaussian wave packet. So, we should make
it a Gaussian wave packet. So, this is the fast component(cos function), this is the slow
component(gaussian function) which is considered to be an envelope function (see slide).
So, how does it look like in the x domain, it should have an envelope function, but it is an
oscillatory part. So, this is the x domain function look like this. And we need to find out

what is the k domain function looks like. So, we will move to the laptop now.



(Refer Slide Time: 04:58)

8 Command ot —

51 52 53 BN =
54 55 56 57 58 59 60 61 62 63 64 #Importing the Required Libraries ' N
p3 L I6HRET from scipy import arange,pi,cos,exp
b9 6880 6981 A B IR L from scipy.ff‘Fpack impoljt fftfreg, fft ) WPTEL WS¢
8 8 84 8 8 8 8 8 9 91 92 from matplotlib.pyplot import plot,show,xlim
P 9594 9795 9% 9] #Creating the X-grid
xmin=-100
c \Pf‘ogral Files (x%)\MhonSB 32>python ft.py | Xmax=+100
[-100 -99.999 -99.998 . 99,997 99.998 99.999 |dx=0.801
)| x=arange (xmin, xmax, dx)
print(x)
C:\Program Files (x%)\PythonSB 32>python ft.py
el -99.999 -99.998 ... 199.997 99.998  99.999 |anerining the Gaussian Wavpacket on the X-grid
b y=exp(-x**2)*cos(20*x)
c: \Progral Files (X%)\Pﬂhonsa 32>python ft.py pll?t(x,y]
[-100 -99.099 -99.098 ... 99.997 99.998 99.999 |Xlin(-30,30)
] i show()
|

C:\Program Files (x86)\Python38-32>python ft.py
[-100. -99.999 -99.998 ... 99.997 99.998 99.999

#Creating the k-Grid
N=len(x)
k=2*pi*fftfreq(N,dx)

)

C:\Users\Atan ite-packag :
es\nunpy\core\_asarray py:85: Coq;lmiarnmg Casting comp
llex values to real discards the imaginary part

#Fourier Transform the Cosine Function

return array(a, dtype, copy=False, order=order) y_k=fft(y)
C:\Program Files (x86)\Python38-32>python ft.py |
[-1e0. -99.999 -99.998 ... 99.997 99.998 99.999
I
C:\Program Files (x86)\Python38-32>python ft.py 1015, Cal 10 0% Windows ((RF)  UTF-8
. r
u |
£ $rig - O X PN
9 the Required Libraries ;’%\i
¢ import arange,pi,cos,exp
3 | fftpack import fftfreq,fft WPTEL WS
1 100 itlib.pyplot import plot,show,x1lim
[-}: 075 ‘he X-grid
il
050
H
[-% 02 1in, xmax, dx)
il
000
A\ the Gaussian Wavpacket on the X-grid
5-1( 025 1)*cos(20*x)
o -050 )
5'1‘ -0.75 1]
A\ the k-Grid
;e -
ex -30 -20 -10 0 10 20 30 ‘req(N, dx)
re
A €D (. .) .*. Q: | ‘ansform the Cosine Function
[-108. R X +T991997" 997998 99.999 "‘"““”
i |
+\Program Files (x86)\Python38-32>python ft.py ‘
[-1e0. -99.999 -99.998 ... 99.997 99.998 99.999
il
‘ v Ln 15, Col 10 100%  Windows ((RLF)  UTF8

And in the laptop, in the program, we will make some changes, we keep the x-grid to be the
same, we do not make changes here, depending on the convenience one can change it, but
for the time being we will not change it. We will define, when you will define the Gaussian
wave packet on the x-grid, we have to multiply it by exponential function and this

exponential function is going to be x?, that is the function.

Now, exponential function is not again available with a built-in library in Python. So, we
have to import it again from the SciPy and then the k-grid formation is remains to be the
same, it does not have any change, then the Fourier transform of the functions remains to be

the same and plotting part is remains the same.



But before we plot that, we will try to plot the function itself first. To find out what kind of

functions we are considering here. So, plot x versus y and the limit, we have to select, I will

check whether this limit will work or not. So, let us run the program. If we run the program,

we see that there is a pulse localized
but the limit which we are selecting

that wave packet very clearly.

(Refer Slide Time: 06:55)

it, is not a pulse. So, wave packet which is localized,

-30 to +30, it is not convenient to look at the inspect

= | = o
t g Fle Edit Fomat View Help
9 #Importing the Required Libraries ‘/%:i
¢ from scipy import arange,pi,cos,exp __j
3 | from scipy.fftpack import fftfreq,fft WPTEL USe
T 100 from matplotlib.pyplot import plot,show,xlim
[_}: 075 #Creating the X-grid
i xmin=-100
050 Xmax=+109
HY dx=0.001
[ o025 x=arange(xmin, xmax, dx)
! print(x)
000
A\ #Defining the Gaussian Wavpacket on the X-grid
5-1( -025 y=exp(-X**2)*cos(20*x)
plot(x,y)
" 0.50 xlin(-5J5)
L o iyl
A #Creating the k-Grid
s\t o N=len(x)
ex -30 -20 10 0 10 20 k=2*pi*fftfreq(N,dx)
re
\iﬂ (_H & Q S‘ “qu;ier Transform the Cosine Function
77999 99998 .. ggrgeg |- FEO)

:\Program Files (x86)\Python38-32>python ft.py
[-100. -99.999 -99.998 ...

s )

. 99.997 99.598 999’99]

99.997 99.998 99.999

Windows ((RLF)  UTF8

r

=
% 97 98 9] -
I#Importmg the Required Libraries ,'%
€:\Progra™ me"""“"“ = o tarange,pi,cos,exp j
[-1e0. i ck import fftfreq,fft WPTEL e
I pyplot import plot,show,xLim
C:\Progra .
[-100. 100 grid
I}
075
C:\Progra
5-196 050 ax, dx)
s 025
[.};ogra ussian Wavpacket on the X-grid
g- : 000 +————nt\/ (o (20*x)
i
C:\Users\ b
s\numpy\ 025 U
llex value
return 0.50
Grid
C:\Progra -0.75
5-199- ,dx)
-1.00
k- \progra A 2 0 2 s rm the Cosine Function
[-100.
I aled vasm
1
C:\Program Files (xﬁ&)\PythonBB 32>python ft.py
[-100. -99.999 -99.998 . 99.997 99.998 99.999
I}
tn16,Cal 10 0% Windows ((RF) T8

So, we will set the limit to be -5 to +5. We run the program and we see that it is centered at

0-position and x-position. And it is like a wave packet, the wave packet has been at the

position. So, at this time, if the wave packet looks like this, what are the frequency



components it is carrying, that is exactly the information we will get from the Fourier

transform. So, this entire function will be Fourier transform now.

(Refer Slide Time: 07:34)

B Command Prompt - o x)
| —— 7~
C:\Program Files (x86)\Python38-32>python ft.py #Importing the Required Libraries ‘:’%\i
[-160.  -99.999 -99.998 ... 99.997 99.998 99.999 |from scipy import arange,pi,cos,exp ‘j
1 from scipy.fftpack import fftfreq,fft WPTEL iSe
C:\Progran Files (486)\Python3s-32spython t.py from matplotlib.pyplot import plot,show,xLim
-100. -99.999 -99.998 ... 99.997 99.998 99.999 - 0
E #Creating the X-grid
xmin=-108
C:\Program Files (x86)\Python38-32>python ft.py | Xmax=+160
[-180. -99.999 -99.998 ... 99.997 99.998 99.999 ;dx=ﬂ.ea]
1 x=arange(xmin, xmax, dx)
print(x)
C:\Program Files (x86)\Python38-32>python ft.py
E‘m' ~99.999 -99.998 ... 99.997 ngm 99.999 |apefining the Gaussian Wavpacket on the X-grid
o . = -x**2)*cos(20*
C:\Users\Atanu\AppData\Roaming\Python\Python38\site-packag Al I
es\numpy\core\_asarray.py:85: ComplexWarning: Casting comp . )
lex values to real discards the imaginary part #Creating the k-Grid
return array(a, dtype, copy-False, order-order) (N=len(x)
k=2*pi*fftfreq(N,dx)
C:\Program Files (x86)\Python38-32>python ft.py
[-160. -99.999 -99.998 ... 99.997 99.998 99.999 |#Fourier Transform the Cosine Function
1 y_k=Fft(y)
plot(k,zbs(y k))
C:\Progran Files (x86)\Python38-32>python ft.py [tin(-30,38)
[-188. -99.999 -99.998 ... 99.997 99.998 99.999
i shou()
C:\Program Files (x86)\Python38-32>python ft.py |
[-180. -99.999 -99.998 ... 99.997 99.998 99.999
1
C:\Program Files (x86)\Python3s-32>, ¥ 123 o2 W Windows | UTFS |
= =
u |
] " =
) #Importing the Required Libraries xl*
C:\Program Files (x86)\Python38-32>python ft.py from scipy import arange,pi,cos,exp
[-1e0. -99.995 -99.998 ... 99.997 99.998 99.999 |gop scipy.fftpack import fftfreq,fft WPTEL WSe
i from matplotlib.pyplot import plot,show,xlim
C:\Program Files {{;“ T T SR
[-100.  -99.99¢ > 2
i)
C:\Program Files |
[-168.  -99.99¢
I}
C:\Users\Atanu\dp; 800
es\numpy\core\_ast N lavpacket on the X-grid
llex values to real
return array(a, 600
C:\Program Files |
[-160.  -99.9%
i 400
C:\Program Files ( ‘osine Function
[-160.  -99.9%¢
i 200
C:\Program Files (
[-168.  -99.9¢
] 0
C:\Program Files ( X =2 s 0 2 X
[-160.  -99.99¢
& |
I # €3 +Q= B
vl 023 Col 2 0% Windows [(RF)  UTF8

And if we do the Fourier transform, we will now plot the Fourier transform function, so that
we can get an idea of what we are having here. So, k then absolute values of y_k and limit
will change again, because this limit will help us to see everything what we see is that if we
run the program, we see that again there are negative and positive part of the spectrum. We

go back to the slide now.



(Refer Slide Time: 08:09)

Python Tutorial 3: Fourier Transform

) . . 3
¥ / Fourier Transform a Gaussian Function A4
*
ﬂ) Python Implementation
~ l} through fft(Y) of
éL - (;w x) scipy.fftpack
() .ﬂ\,\ " (b)
075 S /.’ \\
050 Al \ il |
| i
: -1 0 1 2 3 -30 -20 -10 o 0 LZE : kY l
Y- domain = L-dorasr

What we see here is that this is the x domain which is representing an wave packet, this is

the Gaussian envelope, this is the Gaussian envelope and the fast wearing component is cos
(20x). So, this is the let us say wave function | have and this wave function, if we convert it

to the k domain, so this is the k domain.

On the K domain, we see that there is always negative and positive part because the nature
of the Fourier transform makes that but for practical purpose, we can just take the positive
part of the Fourier transform spectrum. What we see is that the center it is centered at 20

and that should be because we know that from the wave packet discussion if | have an wave

packet represent wave Gaussian packet represented by e cos(k,X)

It means that this sent the average component average the spatial frequency component is
going to be k. So, the frequency components is distributed around this ko. So, I have this kg
and then around this ko all this frequency components, the spatial frequency components are
available.

So, that is the way we have understood the Gaussian wave packet before and that is
representing here. So, one thing is quite clear from this demonstration that Gaussian,
Fourier transform of a Gaussian is another Gaussian and it is centered at ko, which is the

average frequency component, the spatial frequency component for the wave packet.



(Refer Slide Time: 10:37)

Python Tutorial 3: Fourier Transform

Summary

scipy.fftpack submodule

k= 2*pi*fftfreq(l\[ij(>§

Fourier Transform fft(Y)

Time dependent Quantum Chemistry

So, with this we have come to the end of this Python tutorial, what we have learned from
this tutorial is that there are two simple functionalities already given in scipy.fftpack sub
module, one functionality will help us construct the k-grid and other functionality will help
us Fourier transform the discretized wave function from space domain to the Fourier

domain.

In the fftfreq | need an input, the input is the window length, which is the number of
elements in the present in the x-grid and delta x (or dx) is the spacing in the x-grid. And
when you are doing Fourier transform the function the discretized function, this function
name needs to be given. So, we this we will conclude this tutorial. We will meet again in

the next module and tutorial.



