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X-grid to k-grid 

Welcome back to Python tutorial 3 of the course Time dependent Quantum Chemistry. So, 

far we have presented how to, what is the basic theory behind this construction of the k-grid 

and this is done based on Discrete Fourier transform, we are not getting into the details of 

those theories, we are just using the final solutions and moving forward for the numerical 

implementation. 
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So, what we have seen here is that FFT algorithm, whenever I use this FFT algorithm for the 

construction of the k-grid. When you will be constructing the k-grid, there is a particular 

restriction based on which the k-grid will be constructed,  
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And with this restriction this FFT algorithm will give me a frequency component, a set of 

frequency components, a list of frequency components. 

And this list of frequency components are nothing but 
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, where [0, 1, 2,..] these 

numbers and we see that the number contains 0, positive values and negative values, all these 

values are there. We will take examples and it will clarify more once we get this frequency 



components, we will be able to get this k-grid points by 2k = . And the basic idea is that 

then we get this k-grid points. We can convert this X-grid points to this k-grid points 

following this procedure. 
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So, what we have understood so far is that the FFT algorithm, FFT algorithm, Fast Fourier 

Transform algorithm through its implementation of these Discrete Fourier Transform theory 

converts a finite sequence of equally spaced samples of real space domain. So, often this X 

position grid or position space is called the real space and the momentum space is called 

reciprocal space. 

So, these are the common terminologies which we use in the Fourier transform problem. So, 

what you are seeing is that this FFT algorithm is going to convert the equally spaced samples 

of your space domain into a same length, which means number of elements should be the 

same, length sequence of equally spaced samples of Fourier domain. So, number of elements 

would be the same. 

And what we have seen, the first element in the list in the k-grid point list what we see, the 

first element is going to be always 0, which means. What does it mean? It means that if it is 

0 spatial frequency, so 0 which means it is related to the spatial frequency, spatial frequency 

is 0 which means that I do not have at all any oscillation. So, it is more like a DC component, 

that is why 0 oscillation. 

Second element we have seen it is going to be 1, related to 1, so I am writing just spatial 

frequency components related to 1. So, I should not see this one is a frequency component. 



So, this is f0, this is f1, what is f1, we see that it is a, this 1 means. So, this 1, how we are 

getting this, I will just show you, this is the frequency component 0, 1, 2, like these waves 

moving on. 

So, what does it mean by those numbers that frequency component is that the first frequency 

component we are sampling is the DC component, which is 0, then second frequency 

components, which are sampling is frequency 1, so I have only one single frequency, one 

single oscillation in the entire space, this is the x space. This is again x space. 

In the second one, we have seen that it is going to be f2, f2 equals 2. So, I have two complete 

oscillations, and so on, that is the way it is moving forward. So, this is the meaning of 

individual frequency components which are getting in the, when you are constructing the k-

grid. 
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We will take an example. And this example will clarify many of our doubts, and it will clarify 

the procedure further. So, as I mentioned before, to construct the reciprocal space or Fourier 

space, we need to start with the X-Grid. So, let us say I have an X-Grid first, which starts 

with the 0, this is just an example, and ends at 9. So, it has [1, 2, 3, 4, 5, 6, 7, 8, 9]. So, this is 

the grid [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. 

I consider 9, after 9, because then I have 10 elements, so the window length is 10. So, N 

equals now 10 for this problem. And N equals 10, it means that it is the even number. So, I 

have shown that for even number, this f would be different for odd number, f could be 



different. So, if it is even number, and then delta x, what we get is, is 1 in this x space. So, 

these are the characteristic of the x space, X-Grid. 

First, we have to do is that in this entire procedure, first we have to do is that this FFT 

algorithm will give me this frequency components and this frequency components is going 

to be for even number, so that is why I will be able to write down as 1 by N is known now, 

N is known, delta x is known, I will write down this way, and then f components would be 

0, 1, 2, like this. And then in N/2, N/2 - 1, then is going to be -N/2, then minus N/2 +1 up to 

-1 as the we get. 

So, we know that N equals 10. So, it is going to be 10 by 2. This is going to be 10. This is 

going to be 10. And N is here 10. And x is going to be 1. So, for the given problem, I have 

this situation where it is going to be then 0.1 multiplied by 0, 1, 2, 3. Now this part is going 

to be 5 minus 1 which is 4, that is all. Then I have these negative values minus 5, then minus 

4, minus 3, minus 2, minus 1, up to minus 1 we have to go minus 1. 

So, these are the frequency components we get after the FFT, Fast Fourier Transform, what 

we see here is that we have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Again I have these 10 windows, the 

window remains to be the same. Here also I had 10 grid points in the x space. Now, I have 

frequency components also, 10x space. So, finally what I get is that I get 0, then this is the 

least what I get frequency component 0.1, then 0.2, then 0.3, then 0.4, then minus 0.5, then 

minus 0.4, then minus 0.3, then minus 0.2, then minus 0.1. 

This is what we get. So, once we get this xi, that is the spatial frequency components, once 

we get that, then k-grid points can be very easily obtained. Same k-grid points, will be able 

to obtain, this is the by multiplying by 2 pi, which means that 2 pi multiplied by this 0, 0.1, 

0.2, 0.3, 0.4, minus 0.5, minus 0.4, minus 0.3, minus 0.2, minus 0.1. 

So, if we multiply all and we get 0, and  , we have to consider the pi value, 2  is going to 

be 2 point, 2  is going to be 6.286. So, if we multiply, approximately, so if we multiply, 

then we get this 0.6286, then 1.2571. And one can try this final 1 is going to be minus 0.6286. 

So, this is what we get. 
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And we will see the implementation, Python implementation and we will confirm that this is 

the list what we create. So, we will go back to the laptop first, we will try to write down the 

program. 
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First, we will import the required libraries. Importing the required libraries from, I will save 

it. I will save in the correct directory as ft.py, .py extension needs to be given for the Python 

programming. So, from SciPy import arange so that we need to first import then we are now 

creating the X-grid. We know that how to create that xminimum is going to be 0, xmaximum 

is now going to wait 10 and dx is going to be 1. 

So, then x equals, I can write down arange, I have to use this xminimum, arange functionality 

does not include the stop which is x max 0.in the sequence. And that is why we are stopping 

at 10. If we are stopping at 10 with an interval, I will print it so that I can, I know what I am 

doing. So, if I run the program what I get is that [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. That is the grid 

points. I come back to the slide now. 
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So, I have this X-Grid points, which is presented [1, 2, 3, 4, 5, 6, 7, 8, 9]. And this part is now 

representing the X-Grid with the help of importing arange functionality from SciPy. This is 

we are pretty clear to; this part is clear to us. And the grid window, we call it grid window is 

number of elements we have in the grid points, we have 10 grid points in the X-Grid. So, 

once we have done that, first thing we will do is that we have to create this frequency, 

frequency component xi frequency components. 

And one can create the Zia frequency components with the help of this fftfreq functionality, 

fftfreq functionality requires two inputs. The first input is that, what would be the grid 

window. And second input it records is that what was the delta x, it records delta x 

information because it will automatically take care of the entire algorithm for us to maintain 

this delta k delta x equals 2 pi by N restriction in the Fourier transform of the grid. 

So, it will take care for us, we do not need to worry about anything, we have to use this 

fftfreq. So, fftfreq, I need two inputs, the first input is the, what is the window size that we 

can get it, by selecting this N equals length of X. So, this len functionality gives me the length 

of an array, length of an array. Previously, we have also used this functionality before, this is 

python’s built-in functionality. 

And I have to give the name of the array, that array name, here array name is x, this is the 

array, so I have to put x here. So, immediately, it will give me how many elements I have. 

And that is going to be 10, we know that we have 10 elements in this X-Grid, and another 

input it requires, the second input is going to be dx. What is the difference between the 

spacing between the adjacent X-Grid points? 

So, these are the two information I need. Once I get that, then xi will be immediately created 

and the Zia will be created. And we can print it and we can check what is going on. So, this 

fftfreq this functionality is not available with Python, it has, it is available with SciPy.fftpack 

sub module of the SciPy library. So, first, so we will go back to the laptop. 
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In order to use this fftfreq, I need to use the SciPy.fftpack. So, I will import the record 

functionality from SciPy.fftpack import fftfreq. So, I am going to import this one, the moment 

I import it, I will be able to now create the k-grid. So, I will create, creating the k-grid. When 

I am creating the k-grid, the first information first input I need is the, so I will be able to 

create the k-grid as I named this entire array, the k-grid array xi which is going to be now 

fftfreq within bracket N comma dx, dx is already given here, dx is going to be 1, so we know 

that dx. 

But N is not given, N is the length of the X-Grid. That information I have to because the same 

length will be maintained. This is the only two inputs I need to create the frequency 

components xi, frequency components of the associated with the k-grid. And then I can print 

it to check what I am calculating here. I can print and then I can run the program, what I see 

is that the frequency components are following 0.1, 0.2, 0.3, 0.4, then minus 0.5, minus 0.4, 

minus 0.3, minus 0.2, and minus 0.1. That is exactly, we will go back to the slide now. 
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That is exactly what we have calculated here. The frequency component xi is given by 0 plus 

0.1, 0.2, 0.3 like this. And once we know the xi, then one can calculate the k points very 

easily and we will show how to calculate the k points. 
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So, this is your x, this is the X-Grid, this is the X-Grid we have then we have xi components 

we have. And note that the same number of, the window length is the same. And now we 

have to find out the k, and k is nothing but 2 pi into xi. So, what we need to do is that, all we 

have to do is that we have to now just multiply this entire xi array by 2 pi, then we get this k 

values. And that is exactly what we are going to do right now. We are going to now move to 

the laptop and in the program. 
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So, we will write down this k is going to be now, let us keep this xi, then we will just write 

down k equals 2 multiplied by pi, but remember pi is not available with Python directly not 

an inbuilt functionality or inbuilt mathematical function that needs to be imported from 

SciPy. Built in arithmetic computation, which can be done with Python are just addition 

subtraction, multiplication, division and exponentiation. 

But remaining part cos, trigonometric, pi those mathematical function needs to be imported 

from SciPy or NumPy. NumPy we are not at all using here we are consistently using only 

SciPy. So, k equals 2 pi multiplied by this xi and we can also print k. So, finally, what we get 

is we see that the first will go back to the, we have this k value, the first k value is 0, second 

k value is 0.62. So, the k-grid has been prepared. 



So, this is the k-grid we have prepared and this was the x-grid. So, x-grid and k-grid has a 

correspondence, what is the correspondence we have this is x-grid, let us say. So, it is starting 

from 0 and then the difference is 1 in the X-Grid, this is the X-Grid, but if we look at the k-

grid it is starting from 0, then it has positive values and negative values and the difference, 

so this is the k-grid and the difference the spacing is delta k. So, this is delta x equals to 1 and 

this is delta k equals 0.62832 approximately. 

So, if we see that the FFT algorithm, this FFT frequency algorithm coming from fftpack of 

SciPy, it is actually taking care of this requirement delta k delta x is going to be 2 /N. And 

that is exactly what we get, if we multiply this and 1, we get 2 /N, N equals, we know it is 

going to be 10. So, it is taking care of that conversion, the requirement for the conversion. 

So, this is what we have to do, it is very simple, we can construct the reciprocal grid with the 

help of this script. 
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We will take another example, the example for the odd number of odd window where we 

have odd number of elements. Odd number of elements we have [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

11]. So, we have 11 number of elements now, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. So, starting 

from, so this is your x-grid now [0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10]. So, total number is 11, it 

is odd, because it is odd, then this f function has slightly different, f is going to be now a list 

for the odd number of N and that list is given by N x . 

Now, it is going to be 0, 1, 2 then N minus 1 by 2, then minus N minus 1 by 2, then minus N 

minus 1 by 2 plus 1 continue up to minus 1. So, we know that N is now 11 multiplied by 

delta x is still 1. So, we have 1, then I have this N value is going to be now 11, this N value 

is 11, this N value is 11. So, what I have is 0, 1, 2, 3, this part is going to be 5, so 4, then 5, 

then I have minus 5, then I have minus 4, minus 3, minus 2, minus 1, we have 11 number of 

frequency components. 

And I have to now, multiply this 1 by 11 is going to be approximately 0.091. So, I have to 

multiply. So, in the N this frequency component xi we get 0 then 0.091, then 0.182, then 

0.273 like this, and it will end at minus 0.091. We have both 0 and positive and negative 

frequency components. So, once we get the xi, we will be able to create the k-grid points by 

just multiplying this the list of xi frequency components which is 0.091, 0.182, then so on up 

to 0.091. 

And if we multiply finally what we get 2 pi equals 6.286, 6.286 that is why we get a list of 

k-grid points or an array of k-grid points 0.572. Note that, in Python programming, when 

Python prints its array, it does not show the comma, we are showing the comma just to 

separate visual clarity. 



But when Python is printing, as I can show you, Python has printed like this, it does not have 

any comma, it has only a space between two numbers. This is the convention Python follows. 

But when we are presenting it for visual clarity, we are giving this common. So, do not get 

confused by how Python is printing and how we are writing here. This is just for simplified 

part we are following. So, this second part is going to 1.144 like this, and it is going up to 

minus 0.572. So, plus 0.572 minus 0.572. Both are present. So, this is the x-grid points. 
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We will go over now. And this time we will be able to modify will change to laptop, and we 

will be able to modify the program accordingly. So, now we have xmax is going to be now 

11. And we know that arrange functionality does not include in the sequence this maximum, 



the stop point. So, if we use xmax equals 11, and it will stop at 10. And that is exactly what 

we want. And then we will be creating the X-grid points and remaining part is the same. 

So, we will just run the program, if we run the program, we see that we have created 0, 1, 2, 

3, 4, 5, 6, 7, 8, 9, 10. So, this is the X-grid point, we have created. Second one second list, 

representing 0, then 0.09, then 0.18, there is the list of the xi, the possible frequency 

components, once we get the possible frequency components, then we get the k-grid points 

as 0, 0.57, 1.14. So, we will go back to the slide right now. 

And we see that we have been able to, so this is your x-grid point where it is starting from 0 

then this is 1 and so on. And this is your k-grid, where it starting at 0 then 0.57119 

approximately and it has also negative of that value also, the same value. So, we see again 

the delta k is given by 0.57119 And here delta x is given by 1. So, again, we have this delta 

k delta x equals 2 pi by N fulfilled and this is taken care by this fftfreq, this entire functionality 

of scipy.fftpack sub module. 
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So, what we see is that the Fast Fourier Transform, this Fast Fourier Transform pack, this 

scipy.fftpack sub module, one can use this sub module to convert the x space to k-grid. So, 

we are just simply converting the X-grid to k-grid, we have not converted the function yet. 

Function has not been converted it is just the grid point has been converted then function will 

be represented on those grid points with the help of a certain procedure. 

So, what we have seen is that this fftfreq functionality of scipy.fftpack can actually convert 

X-grid to k-grid and is taking care of all the necessary requirement imposed by Discrete 



Fourier Transform, DFT. Discrete Fourier Transform has certain requirement is fulfilling the 

requirements, doing the job in the background for me for us and is giving me the x-grid 

points. 

So, this is the final equation to get the k-grid points and as an input what I needed an input, 

input is taken from the nature of decay grid point. The first nature is the N, which is the 

window length and dx is the spacing in this X-grid point. So, once we know this to include 

inputs will be able to construct k-grid points by with the help of this simple functionality, 

fftfreq functionality. 
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Will move on. And as I have previously pointed out that there are two steps in the Fourier 

transform, first step is that we have to get the k-grid, we have to construct the k-grid and then 

we have to convert the function. So, this program shows that, this is an example where we 

are going to now transform, Fourier transform a cosine function, a cosine function in the X-

axis, if the cosine functions if I take on the X-Grid, it should have this oscillation. 

And question is in the k-grid how it should look like, that is the thing we are going to take a 

look at. So, the first thing is that create the X-Grid, this is what we have done, creating the 

X-Grid, then we have to create the k-grid, this is the k-grid, we know that we are now familiar 

with this, then we have to define the function in the X-Grid. And that is the definition of the 

function you are giving. 

We know that in a mathematical function when you use an array, we get back an array as a 

function values. So, Y is again an array of the function values. So, this is we are defining the 



cosine function in the position space grid. Once we have defined a function in the position 

space grid, then the Fourier transforming the cosine function is very simple, we have to just 

use fft of Y. So, fft functionality, this is the function in the X-Grid, the function on the X-

Grid, so on the X create the function I have defined. 

Here, the name of the function is Y, that is why we are giving fft Y, that is all. So, this is 

discretized function, and this FFT functionality of the same package scipy.fftpack can 

actually convert give me the discretized function in the k domain. So, that is going to be, I 

am giving the name as y-k. So, we will we will take a look at it. One more point which we 

would like to mention here is that when you do this FFT, the Fast Fourier Transform, Fast 

Fourier Transform when you are doing it always there is an complex part. 

So, we are multiplying. So, basic idea is that if we look at the integration part, although this 

is based on Discrete Fourier Transform, we are not following this integration part, but 

integration is the general form. We have a function in the position space domain, we are 

multiplying by minus i k x. Some complex function will be multiplied always to get the 

Fourier transform, this is going to be phi k t. 

So, because it is multiplied by a complex function, always this y k after the Fourier 

transforming space domain function to position momentum domain function, this function 

will be always a complex function. And because it is a complex function, which means that 

it will have always this form a plus ib, i is square root of minus 1. So, because it is a complex 

function, we will try to plot taking its absolute value of the function, which means it will be 

plotting a square plus b square, square root of a square plus b square. 

So, this part we have to remember, after we are transforming a function from position domain 

to the momentum domain always will get a complex function and that complex function, 

either we can plot the real and complex parts separately or to get an idea what kind of 

functions I have in the k domain now, it is going to be I can use the absolute value. Absolute 

value is the absolute magnitude which you can get from abs within bracket the function name 

and that is available in the pythons built in library. So, one can use it very quickly. So, we 

will go back to laptop right now. 



(Refer Slide Time: 38:19) 

 

 

And we will try to implement this what we have learned scipack from scipy.fftpack will 

import fftfreq from the k-grid construction and also FFT functionality for converting the 

function. So, these are the two functions we will be importing. Now, here in this SciPy, we 

need another functionality, sorry, mathematical function, which is cos function because cos 

function is also not available with the, in the pythons built in library, we have to import it 

from SciPy. So, you are importing it because we have to define the cos function. 

So, once we have now this X-Grid definition remains to be the same. Here, we will just 

change the values from minus 100 to plus 100, it is just convenience. Depending on what 

functions we are going to represent, we can create this X-Grid, then we are going to define 

the cosine function on the X-Grid, we are first defining it. 



Definition is very simple y equals cos x, the moment we take and then we will multiply by 

20, why I will explain. cos 20x, 20 multiplied by x. So, x is an array, which is the X-Grid. 

So, y is going to be again an array and our next step is to create the k-grid. So, k-grid has 

been created. I will now we do not need   always we need do need to show xi. We can 

directly use k equals 2 which is fftfreq. So, we have created the k-grid. 

Now, we will do one thing, we will just Fourier transform the function, Fourier transform the 

cosine function. And the way we are going to Fourier transform is very simple, we are going 

to give the name y k equals just fft within bracket, the discretized function in the x space, that 

is y and that is all. This will do the job. Next what we will do instead of printing we will just 

take a look at the, what we are getting. 

So, first we will plot this X function and for plotting, we have to import again because the 

plot functionality does not come directly from Python in built library, we have to import it 

from matplotlib.pyplot sub module, this is we are now familiar with matplotlib.pyplot I have 

to import plot functionality, then show functionality and then I will make use of x limit 

functionality, I will just control the limit of that x. 

So, first we will plot this x versus y. We will see what is going on, we will run the program 

and we will see what x versus y is giving me. We have to always, whenever we are plotting, 

we have to show the plot, otherwise it will not show anything. So, now I have this x versus y 

plot. 
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And dx also we have to change here, dx we are going to use 0.001, we will change it because 

then it will be, otherwise you see there is a slight change in the absolute amplitude. And that 

is because the sampling problem. So, if you reduce the spacing in the X-Grid, it will give you 

the values. So, what we see is almost nothing, we have to control the x limit. 
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x limit equals, x limit, we place x limit to be minus 5 to plus 5. If we set the x limit, very 

small region we are trying to look at, then we see that the cosine function has been plotted. 
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We can also change the x limit from 0 to, let us say, 2 that will be much clearly shown, then 

we see that the cosine function has been plotted on the X-Grid, and we have the X-Grid, this 

function. So, once we have confirmed, this part, I can now delete from here, we do not need 

it. And we can check after the Fourier transform what we are getting. So, now x is not, x here, 

it has to be now k, I am going to plot k versus y k. This is what I am going to plot right now. 

And x limit we will set to be minus 30. This is just for our convenience. So, conveniently one 

can select this x limits. 
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So, if we do that, then what we see here, we cannot plot this x k because x k has both real 

and the complex part. So, as we have mentioned it is going to be absolute value of y k we are 

going to plot. So, if we plot the absolute value of y k, what we see here is that, there are two 

peaks we see at the 20 position. 
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So, I will go back to the slide right now, and we will clarify some of the points here. We will 

stop here, and we will continue this session in the next class. 

 


