Time Dependent Quantum Chemistry
Professor Atanu Bhattacharya
Department of Inorganic and Physical Chemistry
Indian Institute of Science, Bengaluru
Module 03 Lecture 22
X-grid to k-grid

Welcome back to Python tutorial 3 of the course Time dependent Quantum Chemistry. So,
far we have presented how to, what is the basic theory behind this construction of the k-grid
and this is done based on Discrete Fourier transform, we are not getting into the details of
those theories, we are just using the final solutions and moving forward for the numerical

implementation.

(Refer Slide Time: 00:58)

Python Tutorial 3: Fourier Transform

Construction of Fourier Ak <m— :

ereLush/
Grid/Reciprocal Grid/k-Grid
L] | eeee | | L | eeee | |
! T i 14l

COl‘l‘espondence F’ I Cﬂf&) barreﬂoy,
']C > Uk Cawm)o:(_ BF&{,AJ M %
[0;1;7»; 7(,_ l) () ‘—H, J §N%

[o 4,2- (&), i”;] ({N")ﬂ%_,_,_(}w B4
@iﬂ@

Time dependent Quantum Chemistry

So, what we have seen here is that FFT algorithm, whenever I use this FFT algorithm for the
construction of the k-grid. When you will be constructing the k-grid, there is a particular
restriction based on which the k-grid will be constructed,

AKAX = 2—”
N

And with this restriction this FFT algorithm will give me a frequency component, a set of

frequency components, a list of frequency components.

And this list of frequency components are nothing but & =ﬁ f, where [0, 1, 2,..] these

numbers and we see that the number contains 0, positive values and negative values, all these

values are there. We will take examples and it will clarify more once we get this frequency

components, we will be able to get this k-grid points by k =27&. And the basic idea is that

then we get this k-grid points. We can convert this X-grid points to this k-grid points
following this procedure.

(Refer Slide Time: 02:10)

Python Tutorial 3: Fourier Transform

Construction of Fourier Y
Grid/Reciprocal Grid/k-Grid

X-Grid k-Grid

e v
z@il
e

X
T—) >
|

fz2

| | eeee | | [| | ope
[| |

Il
0

t

Correspondence

BET algoitim dtmil & wflometnbiar of DPT coney
a finde nequenee of ggally “hoced npien f Al e
domain Wo o Game fenftt nequene of qw\uj Vf“‘d
WL a% Guvier donrein,

i, 1= Gare ~ -

Time dependent Quantum Chemistry

So, what we have understood so far is that the FFT algorithm, FFT algorithm, Fast Fourier
Transform algorithm through its implementation of these Discrete Fourier Transform theory
converts a finite sequence of equally spaced samples of real space domain. So, often this X
position grid or position space is called the real space and the momentum space is called

reciprocal space.

So, these are the common terminologies which we use in the Fourier transform problem. So,
what you are seeing is that this FFT algorithm is going to convert the equally spaced samples
of your space domain into a same length, which means number of elements should be the
same, length sequence of equally spaced samples of Fourier domain. So, number of elements

would be the same.

And what we have seen, the first element in the list in the k-grid point list what we see, the
first element is going to be always 0, which means. What does it mean? It means that if it is
0 spatial frequency, so 0 which means it is related to the spatial frequency, spatial frequency
is 0 which means that | do not have at all any oscillation. So, it is more like a DC component,

that is why 0 oscillation.

Second element we have seen it is going to be 1, related to 1, so | am writing just spatial
frequency components related to 1. So, | should not see this one is a frequency component.

So, this is f0, this is f1, what is f1, we see that it is a, this 1 means. So, this 1, how we are
getting this, I will just show you, this is the frequency component 0, 1, 2, like these waves

moving on.

So, what does it mean by those numbers that frequency component is that the first frequency
component we are sampling is the DC component, which is 0, then second frequency
components, which are sampling is frequency 1, so | have only one single frequency, one

single oscillation in the entire space, this is the x space. This is again x space.

In the second one, we have seen that it is going to be 2, f2 equals 2. So, I have two complete
oscillations, and so on, that is the way it is moving forward. So, this is the meaning of
individual frequency components which are getting in the, when you are constructing the k-

grid.

(Refer Slide Time: 06:15)

Python Tutorial 3: Fourier Transform

Construction of Fourier
Grid/Reciprocal Grid/k-Grid

lo dwf
Prectise

o
01231456389) =

Example 1: X-Grid [0,1,2,3,4,56,7,89 Nzlot”
o Wy awon AT,
ﬁ@_ NAr@ @Y / [Qlf lo(/ o
:U;[\(_L [O/ 1—127"‘) ’f-[))ﬁ ’{)9 Q‘if(),----,%g

:0’5—[0/[)’)‘)?)}4)’5—) '4)'3)—7_}—]‘] @
fz/\?.q/{fa ;[0, 0y 01y 1404, ~0F, - 04, - 03, - 02, -04]
k-Grid k=2m¢

AT = otr[0,0:],02,03,0:4,-b7;-04,-03
T afeontt a5, e i

. eimy —o—c'znj

Time dependent Quantum Chemistry

We will take an example. And this example will clarify many of our doubts, and it will clarify
the procedure further. So, as | mentioned before, to construct the reciprocal space or Fourier
space, we need to start with the X-Grid. So, let us say | have an X-Grid first, which starts
with the 0, this is just an example, and ends at 9. So, ithas [1, 2, 3, 4, 5, 6, 7, 8, 9]. So, this is
thegrid[0,1,2,3,4,5,6,7,8,9].

I consider 9, after 9, because then | have 10 elements, so the window length is 10. So, N
equals now 10 for this problem. And N equals 10, it means that it is the even number. So, |

have shown that for even number, this f would be different for odd number, f could be

different. So, if it is even number, and then delta x, what we get is, is 1 in this x space. So,

these are the characteristic of the x space, X-Grid.

First, we have to do is that in this entire procedure, first we have to do is that this FFT
algorithm will give me this frequency components and this frequency components is going
to be for even number, so that is why | will be able to write down as 1 by N is known now,
N is known, delta x is known, I will write down this way, and then f components would be
0, 1, 2, like this. And then in N/2, N/2 - 1, then is going to be -N/2, then minus N/2 +1 up to

-1 as the we get.

So, we know that N equals 10. So, it is going to be 10 by 2. This is going to be 10. This is
going to be 10. And N is here 10. And Ax is going to be 1. So, for the given problem, | have
this situation where it is going to be then 0.1 multiplied by 0, 1, 2, 3. Now this part is going
to be 5 minus 1 which is 4, that is all. Then | have these negative values minus 5, then minus

4, minus 3, minus 2, minus 1, up to minus 1 we have to go minus 1.

So, these are the frequency components we get after the FFT, Fast Fourier Transform, what
we see here is that we have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Again | have these 10 windows, the
window remains to be the same. Here also | had 10 grid points in the x space. Now, | have
frequency components also, 10x space. So, finally what I get is that | get 0, then this is the
least what | get frequency component 0.1, then 0.2, then 0.3, then 0.4, then minus 0.5, then

minus 0.4, then minus 0.3, then minus 0.2, then minus 0.1.

This is what we get. So, once we get this xi, that is the spatial frequency components, once
we get that, then k-grid points can be very easily obtained. Same k-grid points, will be able
to obtain, this is the by multiplying by 2 pi, which means that 2 pi multiplied by this 0, 0.1,

0.2, 0.3, 0.4, minus 0.5, minus 0.4, minus 0.3, minus 0.2, minus 0.1.

So, if we multiply all and we get 0, and 7, we have to consider the pi value, 2 7 is going to
be 2 point, 2 7 is going to be 6.286. So, if we multiply, approximately, so if we multiply,
then we get this 0.6286, then 1.2571. And one can try this final 1 is going to be minus 0.6286.

So, this is what we get.

(Refer Slide Time: 11:51)

Python Tutorial 3: Fourier Transform

Construction of Fourier A
Grid/Reciprocal Grid/k-Grid

Example 1: Python Implementation

x-Grid =

[0» 12,3, 4.5, 6, 7,8, 9] from scipy import arange

from scipy.fftpack import fftfreq
d X-Grid ol
—> xmin=0
[| | eeee | | xmax=10
|

] gl dx=1
Grid Window: N x=arange(xmin,xmax,dx)
print(x)
¢ = fftfreq(N,dx) Nelen()
xi=fftfreq(N,dx)
print(xi)

Time dependent Quantum Chemistry

And we will see the implementation, Python implementation and we will confirm that this is
the list what we create. So, we will go back to the laptop first, we will try to write down the
program.

(Refer Slide Time: 12:06)

’é » This PC » 0S(C) > Program Fles (:86) » Python38-32 > v b /"\
(%
New fold \j]
WPTEL WS¢
Dlls
nchude
b
Saipts
[t}
Tool
freg
guus’
th
HHG
LICENSE
NEWS
ormaization 1

File pame; | tpy

Save as fype: Text Documents ()

A Hide Folders Ercoding: UTF-8 Sove Concel

8 Command Prompt
Microsoft Windows [Version 10.9.19843.1348]

(c) Microsoft Corporation. ALl rights reserved.
:\Users\Atanuxcd ..

\Usersy>ed ..

:\>cd "Program Files (x86)"

:\Program Files (x86)>cd Python38-32

+\Program Files (x86)\Python3s-32spython ft.py
0123456789)

:\Program Files (x86)\Python38-32>,

~
#Importing the Required Libraries (;}'é

|fr‘0m scipy import arange

WPTEL NSe

#Creating the X-grid
xmin=0

xmax=18

dx=1

x=arange(xmin, xnax, dx)

print(x)

Ln 10, Col§ 100% Windows (CRIF) UTF-8

First, we will import the required libraries. Importing the required libraries from, | will save
it. I will save in the correct directory as ft.py, .py extension needs to be given for the Python
programming. So, from SciPy import arange so that we need to first import then we are now

creating the X-grid. We know that how to create that xminimum is going to be 0, xmaximum

IS now going to wait 10 and dx is going to be 1.

So, then x equals, | can write down arange, | have to use this xminimum, arange functionality
does not include the stop which is x max 0.in the sequence. And that is why we are stopping
at 10. If we are stopping at 10 with an interval, I will print it so that I can, | know what | am
doing. So, if I run the program what | get is that [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. That is the grid

points. | come back to the slide now.

(Refer Slide Time: 14:00)

Python Tutorial 3: Fourier Transform

Construction of Fourier
Grid/Reciprocal Grid/k-Grid

Example 1: Python Implementation

x-Grid

[0,1,2,3,4,567389]

from scipy import arange KC
from sciEXAffteack import fftfreq

xmin=0
xmax=10
dx=1

Grid Window: N { 3 x=arange(xmin,xmax,dx)
Mﬂ print(x)

@ fftfreq(N,dx)

N=len(x)
é‘i=fftf(eq(N,dx)
print(li)

Time dependent Quantum Chemistry

So, I have this X-Grid points, which is presented [1, 2, 3, 4, 5, 6, 7, 8, 9]. And this part is now
representing the X-Grid with the help of importing arange functionality from SciPy. This is
we are pretty clear to; this part is clear to us. And the grid window, we call it grid window is
number of elements we have in the grid points, we have 10 grid points in the X-Grid. So,
once we have done that, first thing we will do is that we have to create this frequency,

frequency component xi frequency components.

And one can create the Zia frequency components with the help of this fftfreq functionality,
fftfreq functionality requires two inputs. The first input is that, what would be the grid
window. And second input it records is that what was the delta x, it records delta x
information because it will automatically take care of the entire algorithm for us to maintain

this delta k delta x equals 2 pi by N restriction in the Fourier transform of the grid.

So, it will take care for us, we do not need to worry about anything, we have to use this
fftfreq. So, fftfreq, | need two inputs, the first input is the, what is the window size that we
can get it, by selecting this N equals length of X. So, this len functionality gives me the length
of an array, length of an array. Previously, we have also used this functionality before, this is

python’s built-in functionality.

And | have to give the name of the array, that array name, here array name is Xx, this is the
array, so | have to put x here. So, immediately, it will give me how many elements | have.
And that is going to be 10, we know that we have 10 elements in this X-Grid, and another
input it requires, the second input is going to be dx. What is the difference between the

spacing between the adjacent X-Grid points?

So, these are the two information | need. Once | get that, then xi will be immediately created
and the Zia will be created. And we can print it and we can check what is going on. So, this
fftfreq this functionality is not available with Python, it has, it is available with SciPy.fftpack

sub module of the SciPy library. So, first, so we will go back to the laptop.

(Refer Slide Time: 17:15)

8 Command Prompt

Microsoft Windows [Version 10.0.19043.1348]

-

(c) Microsoft Corporation. All rights reserved. '#Impor‘ting the Required Libraries I#\
from scipy import arange j
C:\Users\Atanuxed .. from scipy.fftpack import fftfreq PTEL WS

C:\Userssed .. |#Creating the X-grid

C:\>cd "Program Files (x86)" |xmin=0
| xmax=10
C:\Program Files (x86)>cd Python3s-32 dx=1
x=arange(xmin, xmax, dx)
C:\Program Files (x86)\Python38-32>python ft.py print(x)
|

8123456789)

#Creating the k-Grid
C:\Program Files (x86)\Python38-32>python ft.py N=len(x)
[0123456789] Ixi=
(0. 0.1 0.2 0.3 0.4-0.5-0.4-0.3 8.2 -0.1] p-Litireq(fian)

i {print(xi)

C:\Program Files (x86)\Python38-32>

v‘ 1n 15, Col 10 100% Windows (CRLF) UTF-8

In order to use this fftfreq, | need to use the SciPy.fftpack. So, I will import the record
functionality from SciPy.fftpack import fftfreq. So, | am going to import this one, the moment
I import it, I will be able to now create the k-grid. So, I will create, creating the k-grid. When
I am creating the k-grid, the first information first input I need is the, so I will be able to
create the k-grid as | named this entire array, the k-grid array xi which is going to be now
fftfreq within bracket N comma dx, dx is already given here, dx is going to be 1, so we know
that dx.

But N is not given, N is the length of the X-Grid. That information I have to because the same
length will be maintained. This is the only two inputs | need to create the frequency
components xi, frequency components of the associated with the k-grid. And then I can print
it to check what | am calculating here. | can print and then | can run the program, what | see
is that the frequency components are following 0.1, 0.2, 0.3, 0.4, then minus 0.5, minus 0.4,

minus 0.3, minus 0.2, and minus 0.1. That is exactly, we will go back to the slide now.

(Refer Slide Time: 19:17)

Python Tutorial 3: Fourier Transform

Construction of Fourier I demdl;

Grid/Reciprocal Grid/k-Grid W W;
A

Example 1: XGrid [0,1,2,3,4,5,6,7,89] NzloL”
J)L:_j_
A0 & v v
g L[)t g
2 04 (0025475 -4, -%-ﬂ ()

Q/\T{L —[0,0l701;"3,04, -0-f, - 04,-03, - 0.2, -oﬂ

4 3 = =
/ kGrid k=22
by =agist 00040040
I ;(o,o.é'm o7 mn—_}—am -o. {J

Time de nnd(nl Quantum Chemistry

Construction of Fourier

Grid/Reciprocal Grid/k-Grid

Example 1: Python Implementation (0(\6‘iﬁ d;
x-Grid

[0, 1, 2» 3, 4’ 5, 61 7’ 8» 9] \/ ;rorﬁ’scipyiih;.)o‘rtarange &C

irom s‘crle‘ X.ff‘t‘E‘arc‘k M‘nport fftfreq l fx')

Required Librarie

de X-Grid 6
in=

|<_)| | eeee | | D xmax=10
B 1 dk=1

Grid Window: N { 3 x=arange(xmin,xmax,dx)

e

éi=fftfreq(N,dx)
print(xi)

Time dependent Quantum Chemistry

That is exactly what we have calculated here. The frequency component xi is given by 0 plus
0.1, 0.2, 0.3 like this. And once we know the xi, then one can calculate the k points very
easily and we will show how to calculate the k points.

(Refer Slide Time: 19:39)

Python Tutorial 3: Fourier Transform

Construction of Fourier
Grid/Reciprocal Grid/k-Grid

Example 1: Python Implementation

from scipy import arange
from scipy.fftpack import fftfreq

xmin=(0

q—>[0123456789] xmax=10
RS —>[0. 010203 04-05-04-03-02-0.1] dx=1
x=arange(xmin,xmax,dx)

/K = ').[T% print(x)
N=len(x)

xi=fftfreq(N,dx)
print(xi)

Time dependent Quantum Chemistry

Python Tutorial 3: Fourier Transform

Construction of Fourier
Grid/Reciprocal Grid/k-Grid

NPTEL WS¢

Example 1: Python Implementation

from scipy import arange, pi
from scipy.fftpack import fftfreq

[0123456789] xmin=(0

[00.62831853 125663706 1.88495559 251327412 xmax=10

-3.14159265 -2.51327412 -1.88495559 -1.25663706 - dx=1

0.62831853] Xx=arange(xmin,xmax,dx)
print(x)

N=len(x)

(DiZ_’P_i”fftfruq N,dx)

print(k)

Time dependent Quantum Chemistry

So, this is your X, this is the X-Grid, this is the X-Grid we have then we have xi components
we have. And note that the same number of, the window length is the same. And now we
have to find out the k, and Kk is nothing but 2 pi into xi. So, what we need to do is that, all we
have to do is that we have to now just multiply this entire xi array by 2 pi, then we get this k
values. And that is exactly what we are going to do right now. We are going to now move to

the laptop and in the program.

(Refer Slide Time: 20:38)

3 Comma

rompt

C:\Userssed ..

C:\>cd "Program Files (x86)"

8123456789)

[e. 0.1 0.2 8.3 0.4-0.5-0.4-0.3 -0.2 -0.1]

112 -3.14159265

[e. 0.62831853 1.25663706 1.88495559 2.513274

-

Microsoft Windows [Version 10.0.19043.1348] "

(c) Microsoft Corporation. All rights reserved. !#Importing the Required Libraries f’ *\
from scipy import arange,pi ¢ j

Esdlsersittaned st from scipy.fftpack import fftfreq WPTEL MSc

|#Creating the X-grid
| xmin=0

|xmax=10
C:\Program Files (x86)>cd Python3s-32 dx=1

‘x:arange(xmin,xmax,dx)
C:\Program Files (x86)\Python38-32>python ft.py (print(x)
0123456789)] ‘

#Creating the k-Grid
C:\Program Files (x86)\Python38-32>python ft.py N=len(x)

| xi=Fftfreq(N,dx)
[e. 0.1 @.2 0.3 0.4-0.5-0.4-0.3-0.2-0.1] k=2*pi*xi
C:\Program Files (x86)\Python38-32>python ft.py Iprint(xi)
[61234567389] print(k)

-2;51327412 -1.88495559 -1.25663706 -0.62831853]

C:\Program Files (x86)\Python38-32> ‘

100% Windows (CRLF) UTF-8

Python Tutorial 3: Fourier Transform

Construction of Fourier
Grid/Reciprocal Grid/k-Grid

Example 1: Python Implementation

dr> 4
(<] . I I
k—‘n A from scipy import arange,pi
= from scipy.fitpack import fftfreq

.
LG 0123456789

xmin=(
/K ! A)(1 0.62831853 1.25663706 1.88495559 251327412 xmax=10
= OO 75 14159265 251327412 -1.88495559 -1.25663706 - dx=1
0.62831853] d/L =0 é ug o Xx=arange(xmin,xmax,dx)
('3 —_— print(x)
th'—]-ﬂ“_{ K-gmA
™ N=len(x)

0 S .
(B2 pi*ftfreg(N dx)
<K 4L : NZ (0 Prfﬁtkt'k)

— —

Time dependent Quantum Chemistry

So, we will write down this k is going to be now, let us keep this xi, then we will just write
down k equals 2 multiplied by pi, but remember pi is not available with Python directly not
an inbuilt functionality or inbuilt mathematical function that needs to be imported from
SciPy. Built in arithmetic computation, which can be done with Python are just addition

subtraction, multiplication, division and exponentiation.

But remaining part cos, trigonometric, pi those mathematical function needs to be imported
from SciPy or NumPy. NumPy we are not at all using here we are consistently using only
SciPy. So, k equals 2 pi multiplied by this xi and we can also print k. So, finally, what we get
is we see that the first will go back to the, we have this k value, the first k value is 0, second

k value is 0.62. So, the k-grid has been prepared.

So, this is the k-grid we have prepared and this was the x-grid. So, x-grid and k-grid has a
correspondence, what is the correspondence we have this is x-grid, let us say. So, it is starting
from 0 and then the difference is 1 in the X-Grid, this is the X-Grid, but if we look at the k-
grid it is starting from 0O, then it has positive values and negative values and the difference,
so this is the k-grid and the difference the spacing is delta k. So, this is delta x equals to 1 and

this is delta k equals 0.62832 approximately.

So, if we see that the FFT algorithm, this FFT frequency algorithm coming from fftpack of
SciPy, it is actually taking care of this requirement delta k delta x is going to be 2 7 /N. And
that is exactly what we get, if we multiply this and 1, we get 2 7 /N, N equals, we know it is
going to be 10. So, it is taking care of that conversion, the requirement for the conversion.
So, this is what we have to do, it is very simple, we can construct the reciprocal grid with the

help of this script.

(Refer Slide Time: 24:03)

Python Tutorial 3: Fourier Transform

Construction of Fourier -k F)
Grid/Reciprocal Grid/k-Grid g4294¢(¢ J§8

Example 2 XGrid [0,1,2,3,4,5,6,7,8,9,10] Nzl

L) = e r X

:O‘ml[oxi)la%‘*:"—;"% -4, -3, -1, _j
z [o) 009, 0., 018, ... 000

wy ot

k-Grid k=2n¢
s oLtt[D, 007, 0dF 2 - - -o'vqj
‘;[\07 o'm, (44 e o,;‘gq/j
= e

Time dependent Quantum Chemistry

Python Tutorial 3: Fourier Transform

Construction of Fourier :’
Grid/Reciprocal Grid/k-Grid

Example 1: Python Implementation

4>
2 H . eR
x“b"‘ A from scipy import arange, pi
- from scipy.ftpack import fftfreq
=G T 10123456789) xmin=)
4(fA)(l 0.62831853 1.25663706 1.88495559 251327412 xmax=10
=N 75 14159265 251327412 -1.88495559 -1.25663706 - dx=1
0.62831853] 4 W= é ”g v x=arange(xmin,xmax,dx)
G —_— print(x)

t_—ﬁ_ﬁ) K-gmA il

@2‘ wi’fftrrcq N,dx)

—_—

Sm—

Time dependent Quantum Chemistry

We will take another example, the example for the odd number of odd window where we
have odd number of elements. Odd number of elements we have [1, 2, 3,4, 5, 6, 7, 8, 9, 10,
11]. So, we have 11 number of elements now, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. So, starting
from, so this is your x-grid now [0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10]. So, total number is 11, it
is odd, because it is odd, then this f function has slightly different, f is going to be now a list

for the odd number of N and that list is given by N Ax .

Now, it is going to be 0, 1, 2 then N minus 1 by 2, then minus N minus 1 by 2, then minus N
minus 1 by 2 plus 1 continue up to minus 1. So, we know that N is now 11 multiplied by
delta x is still 1. So, we have 1, then I have this N value is going to be now 11, this N value
is 11, this N value is 11. So, what | have is 0, 1, 2, 3, this part is going to be 5, so 4, then 5,
then | have minus 5, then | have minus 4, minus 3, minus 2, minus 1, we have 11 number of

frequency components.

And | have to now, multiply this 1 by 11 is going to be approximately 0.091. So, | have to
multiply. So, in the N this frequency component xi we get 0 then 0.091, then 0.182, then
0.273 like this, and it will end at minus 0.091. We have both 0 and positive and negative
frequency components. So, once we get the xi, we will be able to create the k-grid points by
just multiplying this the list of xi frequency components which is 0.091, 0.182, then so on up
to 0.091.

And if we multiply finally what we get 2 pi equals 6.286, 6.286 that is why we get a list of
k-grid points or an array of k-grid points 0.572. Note that, in Python programming, when
Python prints its array, it does not show the comma, we are showing the comma just to

separate visual clarity.

But when Python is printing, as | can show you, Python has printed like this, it does not have
any comma, it has only a space between two numbers. This is the convention Python follows.
But when we are presenting it for visual clarity, we are giving this common. So, do not get
confused by how Python is printing and how we are writing here. This is just for simplified
part we are following. So, this second part is going to 1.144 like this, and it is going up to

minus 0.572. So, plus 0.572 minus 0.572. Both are present. So, this is the x-grid points.

(Refer Slide Time: 28:32)

8 Command Prompt

:\Users\Atanuyed .. A o
!#Importing the Required Libraries ,v' N \
Rl from scipy import arange,pi ‘j
‘from scipy.fftpack import fftfreq NPTEL MSe

1\>cd "Program Files (x86)"

:\Progran Files (x86)>cd Python38-32 |#Creating the X-grid

| xmin=0
+\Program Files (x86)\Python38-32>python ft.py |xmax=11
0123456789)] dx=1
x=arange(xmin, xmax, dx)
:\Program Files (x86)\Python38-32>python ft.py

print(x)
[0123456789] ‘

(e 0.1 0.2 0.3 0.4-0.5-0.4-0.3-0.2-0.1] #Creating the k-Grid

. N=len(x)
[é\;rgz;all ;lée; gxgs)\?ython!wbpythan ft.py |xi=Fftfreq(N,dx)
2%ni%xi
(0. 0.1 0.2 0.3 0.4-0.5-0.4 -0.3 -0.2 -0.1] }k‘? pi*xi
(o 0.62631853 1.25663706 1.88495550 2.513274 |Print(xi)
2 -3,14159265 print(k)

-2.51327412 -1.88495559 -1.25663706 -0.62831853]

:\Program Files (x86)\Python38-32>python ft.py ‘
2345678910
[e. 0.89990909 ©.18181818

0.27272727 0.363636

-8.45454545 -0.36363636 -8.27272727 -0.18181818 -0.090909
1.71359599

1.14239733 2.284794

-2,85599332 -2.28479466 -1.71359599 -1.14239733 -0.571198
6]

:\Program Files (x86)\Python38-32>, 100% Windows (CRU) UTF-8

Construction of Fourier
Grid/Reciprocal Grid/k-Grid

Example 2: Python Implementation

]
- - - c ; 1
r—“—(X" %’Y’}\ from scipy import arange, pi
o' ' drok

from scipy.ftpack import fftfreq

xmin=(0

[012345678910]
[0 0.09090909 0.18181818 027272727 0.36363636 ymax=11
045454545 -0.45454545 -0.36363636 -0.27272727 - | 4x=1
0.18181818 -0.09090909) x=arange(xmin,xmax,dx)
[0 0.57119866 1.14239733 1.71359599 2.28479466 print(x)
2.85599332 -2.85599332 -2.28479466 -1.71359599 - | (reating Fourier (
1.14239733 -0.5711 986611 N=len(x)
L1 Fhell Lq NedtiegNdy
K- % print(xi)
Dl = - k=2*pi*xi
K’ Olj&[[7 print(k)

Time dependent Quantum Chemistry

We will go over now. And this time we will be able to modify will change to laptop, and we
will be able to modify the program accordingly. So, now we have xmax is going to be now

11. And we know that arrange functionality does not include in the sequence this maximum,

the stop point. So, if we use xmax equals 11, and it will stop at 10. And that is exactly what

we want. And then we will be creating the X-grid points and remaining part is the same.

So, we will just run the program, if we run the program, we see that we have created 0, 1, 2,
3,4,5,6,7,8,9, 10. So, this is the X-grid point, we have created. Second one second list,
representing 0, then 0.09, then 0.18, there is the list of the xi, the possible frequency
components, once we get the possible frequency components, then we get the k-grid points
as 0, 0.57, 1.14. So, we will go back to the slide right now.

And we see that we have been able to, so this is your x-grid point where it is starting from 0
then this is 1 and so on. And this is your Kk-grid, where it starting at O then 0.57119
approximately and it has also negative of that value also, the same value. So, we see again
the delta k is given by 0.57119 And here delta x is given by 1. So, again, we have this delta
k delta x equals 2 pi by N fulfilled and this is taken care by this fftfreq, this entire functionality
of scipy.fftpack sub module.

(Refer Slide Time: 31:12)

Python Tutorial 3: Fourier Transform

Construction of Fourier 7
Grid/Reciprocal Grid/k-Grid
N = window lerg
& dy spesing.

Grid Window: N

)

A\ :
Ak @ Import froubmodul
“—

I I vee { I k= 2*pi*fftfreq(N,dx)

o

2r
- AkAr=—

Time dependent Quantum Chemistry

So, what we see is that the Fast Fourier Transform, this Fast Fourier Transform pack, this
scipy.fftpack sub module, one can use this sub module to convert the x space to k-grid. So,
we are just simply converting the X-grid to k-grid, we have not converted the function yet.
Function has not been converted it is just the grid point has been converted then function will

be represented on those grid points with the help of a certain procedure.

So, what we have seen is that this fftfreq functionality of scipy.fftpack can actually convert

X-grid to k-grid and is taking care of all the necessary requirement imposed by Discrete

Fourier Transform, DFT. Discrete Fourier Transform has certain requirement is fulfilling the
requirements, doing the job in the background for me for us and is giving me the x-grid

points.

So, this is the final equation to get the k-grid points and as an input what | needed an input,
input is taken from the nature of decay grid point. The first nature is the N, which is the
window length and dx is the spacing in this X-grid point. So, once we know this to include
inputs will be able to construct k-grid points by with the help of this simple functionality,

fftfreq functionality.

(Refer Slide Time: 33:11)

Python Tutorial 3: Fourier Transform

LWO Fourier Transform a Cosine Function
/ el) : Python Implementation
from scipy Imporf arange, p1,cos N
from scipy.fftpack import fftfreq fft through fft(Y) of
from matplotlib.pyplot import plot,show,xlim scipy.fftpack L8
xmin=-100 fz/m U!SCM
xmax=100 ';Q—C{) On e X-5v4
dx=0.001 —
x=arange(xmin,xmax,dx) oxr Sab . %{'ke\bk
(/% y=cos(20*X ‘ J

{N=Icn(\) - 'l (38
k=2*pifitfreq(N,dx) 75 « ry [V j yop(e Jdw

fft(y) \
(abs(y_k)) 5(,\’&9” C@M <& ek b)
xlim(-30,30) <
show() §—' L)l

Time dependent Quantum Chemistry

Will move on. And as | have previously pointed out that there are two steps in the Fourier
transform, first step is that we have to get the k-grid, we have to construct the k-grid and then
we have to convert the function. So, this program shows that, this is an example where we
are going to now transform, Fourier transform a cosine function, a cosine function in the X-

axis, if the cosine functions if | take on the X-Grid, it should have this oscillation.

And question is in the k-grid how it should look like, that is the thing we are going to take a
look at. So, the first thing is that create the X-Grid, this is what we have done, creating the
X-Grid, then we have to create the k-grid, this is the k-grid, we know that we are now familiar
with this, then we have to define the function in the X-Grid. And that is the definition of the

function you are giving.

We know that in a mathematical function when you use an array, we get back an array as a
function values. So, Y is again an array of the function values. So, this is we are defining the

cosine function in the position space grid. Once we have defined a function in the position
space grid, then the Fourier transforming the cosine function is very simple, we have to just
use fft of Y. So, fft functionality, this is the function in the X-Grid, the function on the X-
Grid, so on the X create the function | have defined.

Here, the name of the function is Y, that is why we are giving fft Y, that is all. So, this is
discretized function, and this FFT functionality of the same package scipy.fftpack can
actually convert give me the discretized function in the k domain. So, that is going to be, |
am giving the name as y-k. So, we will we will take a look at it. One more point which we
would like to mention here is that when you do this FFT, the Fast Fourier Transform, Fast

Fourier Transform when you are doing it always there is an complex part.

So, we are multiplying. So, basic idea is that if we look at the integration part, although this
is based on Discrete Fourier Transform, we are not following this integration part, but
integration is the general form. We have a function in the position space domain, we are
multiplying by minus i k x. Some complex function will be multiplied always to get the

Fourier transform, this is going to be phi k t.

So, because it is multiplied by a complex function, always this y k after the Fourier
transforming space domain function to position momentum domain function, this function
will be always a complex function. And because it is a complex function, which means that
it will have always this form a plus ib, i is square root of minus 1. So, because it is a complex
function, we will try to plot taking its absolute value of the function, which means it will be

plotting a square plus b square, square root of a square plus b square.

So, this part we have to remember, after we are transforming a function from position domain
to the momentum domain always will get a complex function and that complex function,
either we can plot the real and complex parts separately or to get an idea what kind of
functions | have in the k domain now, it is going to be I can use the absolute value. Absolute
value is the absolute magnitude which you can get from abs within bracket the function name
and that is available in the pythons built in library. So, one can use it very quickly. So, we

will go back to laptop right now.

(Refer Slide Time: 38:19)

@
94 95 i o AL /
% 97 9% 9] |#Importing the Required Libraries \%\
from scipy import arange,pi,cos j
:\Program Files (xR&)\Pvthan3R-32snvuthan ft.nv Fem i erbenat fnnont FEtfreq, Fft Ry
[-100 -99 Nriguer - 0 X 4 2 A
s sl Aot import plot,show,xlim
-86 -85 i
5 - -7 i
12 =14
T
-58 -57
W7 -4 -5 O dx)
-4 -43
B - 31 0%
=30 =29 i i
1e Function on the X-grid
g -18 -7 0 £
-16 -15

o2 =1
9 10 11 -025

9 1 id
@3 24 25 -0s0
% 27)
B7 38 38 o5
b “sz 4153 the Cosine Function
-1.00
54 55
65 66 67 -100 -75 -5 -25 0 25 S0 5 100
8 69
79 8 81 | A= o
2 5 A€ M 7
3 94 95 . |
9% 97 98 99]
1n16,Col 7 100% Windows (CRLF) UTF-8
B Command Prompt
I#Importing the Required Libraries (%
+\Program Files (x86)\Python3s-32>python ft.py from scipy import arange,pi,cos ('
[-100 -99 -98 -97 -96 -95 -94 -93 -92 -91 -90 - ‘fr‘om scipy.fftpack import fftfreq,fft WPTEL USe
9.8;88_3;87.” 43 82 8L 80 <70 -8 TT <76 - | from matplotlib.pyplot import plot,show,xlim
5 -74 -73 : ¢
72 71 70 -69 -68 -67 -66 -65 -64 -63 -G - |¥Creating the X-grid
1 60 -59 |xnin=-100
-8 -57 -56 -55 -54 -53 -52 -51 -50 -49 -48 - |Xmax=+100
7 -46 -45 iﬂX=1
-44 -43 -4 -41 -49 -39 -38 -37 -36 -35 -34 - | x=arange(xmin,xmax,dx)
30 =32 =31 ‘print(x)
-30 29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -
fo -18 -17 #Defining the Cosine Function on the X-grid
'5‘16—4-15_3-14 1312 -1 <18 -9 <8 -]" <6 |y=cos(20*x)

2 a0l 1 2 3456 @ “’1"‘("'”

9 1 1 show()
12 13 14 15 16 17 18 19 20 21 2 |
D3 4 25 iy #Creating the k-Grid
2 27 28 29 3@ 31 32 33 34 35 36 N=len(x)
B7 38 39 k=2*pi*fftfreq(N,dx)
4 41 42 43 4 45 4 47 48 49
pL 52 53 #Fourier Transforn the Cosine Function

54 55 56 57 58 59 60 61 62 63

®

y_k=fFt(y)

5 66 67
68 69 70 71 72 73 74 75 76 71 78
80 81

82 8 84 8 8 87 8 89 9 91 9

:\Program Files (x86)\Python38-32>, 1n16,Col 7 100% Windows (CRLF) UTF-6

3 0 9
% 97 B %) \

And we will try to implement this what we have learned scipack from scipy.fftpack will
import fftfreq from the k-grid construction and also FFT functionality for converting the
function. So, these are the two functions we will be importing. Now, here in this SciPy, we
need another functionality, sorry, mathematical function, which is cos function because cos
function is also not available with the, in the pythons built in library, we have to import it
from SciPy. So, you are importing it because we have to define the cos function.

So, once we have now this X-Grid definition remains to be the same. Here, we will just
change the values from minus 100 to plus 100, it is just convenience. Depending on what
functions we are going to represent, we can create this X-Grid, then we are going to define

the cosine function on the X-Grid, we are first defining it.

Definition is very simple y equals cos X, the moment we take and then we will multiply by
20, why I will explain. cos 20x, 20 multiplied by Xx. So, X is an array, which is the X-Grid.
So, y is going to be again an array and our next step is to create the k-grid. So, k-grid has

been created. 1 will now we do not need & always we need do need to show xi. We can

directly use k equals 27& which is fftfreq. So, we have created the k-grid.

Now, we will do one thing, we will just Fourier transform the function, Fourier transform the
cosine function. And the way we are going to Fourier transform is very simple, we are going
to give the name y k equals just fft within bracket, the discretized function in the x space, that
is y and that is all. This will do the job. Next what we will do instead of printing we will just

take a look at the, what we are getting.

So, first we will plot this X function and for plotting, we have to import again because the
plot functionality does not come directly from Python in built library, we have to import it
from matplotlib.pyplot sub module, this is we are now familiar with matplotlib.pyplot | have
to import plot functionality, then show functionality and then I will make use of x limit

functionality, I will just control the limit of that x.

So, first we will plot this x versus y. We will see what is going on, we will run the program
and we will see what x versus y is giving me. We have to always, whenever we are plotting,
we have to show the plot, otherwise it will not show anything. So, now | have this x versus y

plot.

(Refer Slide Time: 42:28)

L ft- Notepad - O
3 94 95 Al File €68 Format View Help B
% 97 9% 9] | ¥Importing the Required Libraries ‘lft(?\
2 from scipy import arange,pi,cos j
:\Program Files (xRA)\PuthondR-32snuthan £t nv fron scipy.Fitpack import FFtfreq, Fit e
[;10?85.”87 from matplotlib.pyplot import plot,show,xlim
86 -85 ; -
5 74 -73 #Creating the X-grid
2 -m xmin=-100
1 -6 5§ O Xmax=+100
-58 -57 o dx=0.001
7 -46 -45 P x=arange(xmin, xmax, dx)
-43 print(x)
3 -2 31 0% [I
30 -2 #Defining the Cosine Function on the X-grid
19 -18 -17 02 3 &
y=€0s(20*x)
-16 -15
5 -4 -3 000 plot(x,y)
2 A show()
9 10 11 -025
2 13 #Creating the k-Grid
23 24 25 -0s0 N=len(x)
% 27 k=2*pi*fftfreq(N,dx)
B7 38 38 _o5
- 4052 ‘153 #Fourier Transform the Cosine Function
-1.00 k=fft
o i y_k=Fft(y)
65 66 67 -00 -5 -5 =25 0 25 %0
68 69
79 80 81 o
0 5 M€ HAlx ‘
03 94 95
9% 97 98 99]
n9,Col8 100% Windows (CRLF) UTF-8

=1¢ Srigwe1 O X few tep "3
the Required Libraries {%g_
X import arange,pi,cos A"
fftpack import fftfreq,fft WPTEL WS¢
VT itlib.pyplot import plot,show,xlim
5 075 the X-grid
| oso
025 1in, xmax, dx)
0.00
the Cosine Function on the X-grid
-025
-0.50
912 e k-Grid
-100
‘req(N,dx)

-100 -75 -50 25 0 25 50 75 100

€9 0= B

3
% 97 %8 %)

sansform the Cosine Function

+\Program Files (x86)\Python38-32>python ft.py
-100. -99.999 -99.998 ... 99,997 99.998 99.999

v 1n9,Col8 100% Windows (CRLF) UTF-8

And dx also we have to change here, dx we are going to use 0.001, we will change it because
then it will be, otherwise you see there is a slight change in the absolute amplitude. And that
is because the sampling problem. So, if you reduce the spacing in the X-Grid, it will give you

the values. So, what we see is almost nothing, we have to control the x limit.

(Refer Slide Time: 42:59)

-] t rj‘l Notepod - o X
9 -88 -87 Alfile €4t Format View Help o5
-86 -85 -84 -83 -82 -81 -89 -79 -78 -77 -76 - |#Importing the Required Libraries ii)‘;%
5 -74 -3 from scipy import arange,pi,cos
1'72“‘7159‘79 69 -68 -67 -66 -65 -64 -63 -62 - |fop scipy.fftpack import fftfreq,fft WPTEL USe
5B 57 56 55 54 53 52 51 -50 -49 -48 - from matplotlib.pyplot import plot,show,xlim
47 -46 -45 A 5
SHA i g et R | #Creating the X-grid
3 -32 -31 xmin=-100
E;a« 229 <28 -27 -26 -25 -24 -23 -22 -21 -20 - |Xmax=+100
-18 -17 dx=0.001
<16 -15 -14 -13 -12 -11 -16 -9 -8 -7 -6 x=arange(xmin, xmax, dx)
R print(x)
Sy I R M) B I R SRS I A)
9 1 1 #Defining the Cosine Function on the X-grid
12 13 14 15 16 17 18 19 20 21 22 =c05(20%x)
B ou B -
% 7 B % N R B B B [P
7 3 30 xlim(-5,5)|
4 41 4 43 4 45 46 47 48 49 sp | show()
b1 52 53 b)
54 55 56 57 58 59 60 61 62 63 64 #Creating the k-Grid
F 66 67 N=len(x)
68 69 70 71 72 73 74 75 76 71 78 | k=2fpi*fftfreq(N,dx)
79 8 81
b 32“ 3395 8 8 8 87 88 8 %9 51 9 #Fourier Transform the Cosine Function
% 97 98 9] YA
C:\Program Files (x86)\Python38-32>python ft.py
-109. -99.999 -99.998 ... 99.997 99.998 99.999
I
:\Progran Files (xB6)\Python38-32>, v 1n16.Caltt 1006 Windows (R UTF8

1B Comenand Promgt - python ftpy - O X | Be-Notepd =i

= AlFie Edit Fomat View Help
#Importing the Required Libraries @
V= 7 t arange,pi,cos
ck import fftfreg,fft WPTEL WS
pyplot import plot,show,xlim

grid

ax, dx)

sine Function on the X-grid

Grid

dx)

4 rm the Cosine Function

n6,Col 11 100% Windows [(RLF) UTF-8.

x limit equals, x limit, we place x limit to be minus 5 to plus 5. If we set the x limit, very
small region we are trying to look at, then we see that the cosine function has been plotted.

(Refer Slide Time: 43:20)

T Command Prompt - python fpy

% | 3 ft- Notepad =R

Al Fie E61 Fornat View Help
#Inporting the Required Libraries % A
@ from scipy import arange,pi,cos
~from scipy.fftpack import fftfreq,fft WPTEL S
from matplotlib.pyplot import plot,show,xlim

|
“#Creating the X-grid

1o xnin=-100
| Xmax=+100
o dx=0.001
050 x=arange(xmin, xmax, dx)
print(x)
025
#Defining the Cosine Function on the X-grid
000 y=c05(20*x)
plot(x,y)
-025 x1in(8,2)
show()
-050
#Creating the k-Grid
-0.75 N=len(x)
o k=2*pi*fftfreq(N,dx)

oA 2 0 2 #Fourier Transforn the Cosine Function
y_k=fft(y)

1n16,Col9 100% UTF-8

44743 AR <30 385336 T3 S e o ot e S
3 -32 -31 !Hlmporting the Required Libraries {’%\
=30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 - |from scipy import arange,pi,cos \

fo -18 -17 from scipy.fftpack import fftfreq,fft HPTEL iS¢

2 e Wiy bR & ey I b B LR I O A

Lenam matalatlih nunlat |
L e (tlmport plot, show, x1im
2 -1 ¢
9 1 11
2 1B u
B3 4 25
% 27 % 10
B7 38 39)
49 4 4 o1
51 52 53
54 55 5¢ 050 Function on the X-grid
B5 66 67
68 69 7 o025
79 80 81
82 8 8 0
B3 94 95

% 97 % o

C:\Program Fﬂe 050
[-100.
L -075
e Cosine Function
C:\Program File 100
[-100 99, ~ .
1 000 025 050 075 100 125 150 175 200
C:\Program File
[-100. -99. @ Q= B
i sl ==
1n 16,Col9 100% Windows (CRLF) UTF-8
-] ' - Notepad - o X
B3 -32 -31 Al File €t Format View Help P
=30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 - |#Importing the Required Libraries (%
9 -18 -17 from scipy import arange,pi,cos
316101415 :<187213 V=120 =110~ 101 20l =8 2l =6 from scipy.fftpack import fftfreq,fft WPTEL USe
B4 4 3 o 4 2 & 4 5 6 78 from matplotlib.pyplot import plot,show,xlim
9 18 11 . &
1 13 14 15 16 17 18 19 20 21 2 | #reating the X-grid
3 4 5 xmin=-100
2 27 28 29 30 31 32 3 34 35 36 | Xmax=+100
37 38 39 | dx=0.001
4 41 42 43 44 45 46 47 48 49 50 | x=arange(xmin, xmax, dx)
51 52 53 lprint(x)
54 55 56 57 58 59 60 61 62 63
B 66 61 #Defining the Cosine Function on the X-grid
68 69 706 71 72 73 74 75 76 71 78 |y=cos(20*x)
79 80 81
6 9
by 8294 3395 84 8 8 87 8 8 9% 91 92 #reating tle k-Grid
% 97 %8 %) N=len(x)
| k=2*pi*fftfreq(N,dx)
C:\Program Files (lﬁ&)\Python!B 32>python ft.py
-100. -9, A #Fourier Transform the Cosine Function
[-100 99,999 -99.998 . 99,997 99.998 99.999 |#Fourier Transf he Cosine F i
1l y_k=Fft(y)
| plot(k,y_k)
C:\Program Files (xss)\PythonJB 32>python ft.py xlim(-;e 30)
[-1e0. -99.999 -99.998 . 99.997 99.998 99.999 show() ’
il
C:\Program Files (186)\Pythan38 32>python ft.py |
[-100. -99.999 -99.998 . 99.997 99,998 99.999
il
C:\Program Files (x86)\Python38-32>

1n 24, Col & 100% Windows (CRLF) UTF-8

We can also change the x limit from 0 to, let us say, 2 that will be much clearly shown, then
we see that the cosine function has been plotted on the X-Grid, and we have the X-Grid, this
function. So, once we have confirmed, this part, | can now delete from here, we do not need
it. And we can check after the Fourier transform what we are getting. So, now X is not, x here,
it has to be now k, I am going to plot k versus y k. This is what | am going to plot right now.
And x limit we will set to be minus 30. This is just for our convenience. So, conveniently one

can select this x limits.

(Refer Slide Time: 44:12)

W Conmnd gt ppben 1) = [T - 0
Sriguet = 0 X fewtiép
the Required Libraries *
import arange,pi,cos
fftpack import fftfreq,fft WPTEL S
t1ib.pyplot import plot,show,xlim
40000
he X-grid
20000
0 1in, xmax, dx)
~20000
he Cosine Function on the X-grid
~40000
he k-Grid b
~60000
req(N,dx)
il ansform the Cosine Function
-30 -20 -10 0 10 2 k]
A €9 $az J
<
v 1024 Gol§ 100% Windows (R UTF8
W Conmand Prompt- pythan ftpy =0 X [@k vowed T
g i 8 Formt View Help
#Inporting the Required Libraries *
from scipy import arange,pi,cos
from scipy.fftpack import fftfreq,fft WPTEL S
from matplotlib.pyplot import plot,show,xlim
40000
#Creating the X-grid
xmin=-100
1000 xnax=+180
dx=0.001
0 x=arange(xmin, xmax, dx)
print(x)
=t #Defining the Cosine Function on the X-grid
y=C05(20*x)
-40000
#Creating the k-Grid
-60000 N=len(x)
k=2*pi*fftfreq(N,dx)
bl J“#Fourier Transforn the Cosine Function
= y_keFft(y)
plot (K, abs(y_k))
x1im(-30,30)
i o)
1n22,Gol16 100% UTFE
B Command Prompt - pyihon ftgy = O X | @n-nowpsd o |
A |Fie £ Formt View e
#Importing the Required Libraries *,
from scipy import arange,pi,cos
eessSeslessas—=iainport fftfreq, it WETEL S
Siguer =% Jlot inport plot,show,xlim
d
80000
70000
dx)
60000
50000 e Function on the X-grid
40000 s A
30000
)
20000
the Cosine Function
Al (.
%0 0 0 0 '
€3 Ha= B

v Ln 22 Col 16

100 Windows (CRIF UTF8

So, if we do that, then what we see here, we cannot plot this x k because x k has both real
and the complex part. So, as we have mentioned it is going to be absolute value of y k we are

going to plot. So, if we plot the absolute value of y k, what we see here is that, there are two
peaks we see at the 20 position.

(Refer Slide Time: 44:40)

Python Tutorial 3: Fourier Transform

0);SO Fourier Transform a Cosine Function 4
/ iy Python Implementation
from scipy import arange,pi,cos ¢
from scipy.fftpack import fftfreq,fft through fft(Y) of
from matplotlib.pyplot import plot,show,xlim sCipy.fftpaCk LS
fom

xmin=-100

xmax=100 ﬁ“:@{) on fe)L'SYM

dx=0.001

x:arango(\min,xma\,d,\) < 04 gc:h? %Hr&bk_
t/{"yzcos(lﬂ*ﬁ\ ‘ J

N=len(x) - ‘ 7 lkl
k:"‘pi’m{rcq{\l dx) ‘ %@[y j K'P (X/‘f’)

WL Jae Connl (M\b

xlim(- 1.>l

show() k—— L=

Time dependent Quantum Chemistry

Python Tutorial 3: Fourier Transform

Fourier Transform a Cosine Function

Python Implementation
through fft(Y) of
scipy.ftpack

(a) 100 1||||l||||1~|ll|lu(b'mg
|

\ EIAnd \ a0
I ‘M“\ «w‘w
‘H ‘ ‘ 60000
M \‘M

50000

sl AARAAAA ‘ ‘M\
‘ \

. ‘H“H\H
(TN

,asg‘ Il ‘ | ‘ ‘ ‘ 20000

o1 ‘\‘\‘H\ | \\\H [100

-100 lutllllumlul'

2000

Py S—

0 1 2 3 -3 -2 -10 0 10 20 »

Time dependent Quantum Chemistry

So, I will go back to the slide right now, and we will clarify some of the points here. We will

stop here, and we will continue this session in the next class.

