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Stationary Gaussian Wavepacket 

Welcome back to Module 3, of the course Time Dependent Quantum Chemistry, we have been 

discussing how to represent a particle in quantum mechanics and we have seen that the wave packet 

is the correct representation of a particle in quantum mechanics. And in terms of wave packet, we 

have got an analytical approach to solve the dynamics of wave packet. And for that first thing we 

need is that the initial Wavepacket has to be known. To find out how that known Wavepacket will 

move forward, or in other words how the particle will evolve.   

(Refer Slide Time: 01:06) 

 

If I start with a Gaussian Wavepacket, then at different time it may so happen that it is moving but 

at the same time is broadening, when the particle is moving, which means that the shape of the 

particle is changing while it is moving, while it is freely moving, and that is something which we 

are going to now prove that what will happen with this analytical approach.  
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So, as we have mentioned before, at t equals 0, I have to make a good case for the Wavepacket. 

And here I have considered our normalized Stationary Gaussian Wavepacket. So, we are first 

looking at the Stationary Gaussian Wavepacket where I do not use eikx part. 
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So, then the particle would be presented by these Gaussian functions, which looks like this is just 

a Gaussian function which is centered at x equals 0. There is no fast oscillation, because oscillation 



comes because of this eikx term, this term is missing. And that is why it is representing stationary 

Gaussian function.  

Why It is Stationary Gaussian function, it is Stationary Gaussian function because of that missing 

part that plane wave part here. And we have taken normalized Gaussian function that is also an 

requirement, we have to always begin with a normalized function in quantum dynamics. So, this 

is called normalized Stationary Gaussian function.  

And then this is the final form of the Gaussian, final form of the Wavepacket at different time I 

will be able to find out. So, if I know at t equals 0 time, what I have, I will be able to find out at t 

equals at any time and any later time, I will be able to find out what is the typical shape of the 

wave function.  
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So, for that I need to know A(k), and we have seen that A(k) can be calculated from this  
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Where this initial wavepacket is given by this. So, I have to find out A(k) then we have to plug 

that in here I will be able to get the final form of the Wavepacket analytical form of the 

Wavepacket. And I will be able to get the time evolution how Wavepacket is evolving as a function 

of time, or in other words how the particle is evolving it is shape is changing where it is going 

every information, we will be able to get that. So, let us get this integration done first. So, if I plug 

that in here is going to be  
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Where E is the kinetic energy given by  
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I will rearrange this one, so that I can use the standard Gaussian integral.  
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We can write down, 
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We can write down this way. So, if we can write down I will be able to write down  

                                                       

2

1
2

14

. ,

2 1
( , )

2
1

ax

i t

m

w p

a
x t e

i ta

m




−
 
+ 

  
=  

   + 
 

 

That is the final expression for the stationary wave packet at any time t. And finally, we are 

interested in density because that can be connected to the experiment.  

(Refer Slide Time: 12:00) 



 



 

 

So, will get the density also. And for getting the density what we will do. So, this part can be 

represented in terms of b, this part also can be represented in terms of b, and that is the 

representation we have.  
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So, we have not reached there yet. So, first we have to represent in terms of b. So, we will represent 

it wave function, this wave function in terms of b  
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So, the density is going to be  
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So, we get this expression. So, what we have presented is that this is the density, probability density 

distribution of that particle at t equals any time later time and initial density distribution was this. 

So, this is a two different expressions, we have four different time, this is the initial time and this 

was the final this was the initial time and this was the final time the density distribution.  

One thing is quite clear from here is that if I start with a Gaussian Wavepacket. A particle which 

is represented by a Gaussian Wavepacket, if we start with this Gaussian Wavepacket this was at t 

equals 0, this is Gaussian, we see that after even many times when the particle has propagated, it 

is still remaining to be Gaussian there are some changes going on we have to find out what kind 

of changes.  

But still this form e to the power minus something multiplied by x square form is still maintained. 

So, it is still a Gaussian function so, good thing about this is that an initial stationary Gaussian free 

particle Wavepacket remains Gaussian when it is allowed to time evolve freely. It will maintain 

that the Gaussian form even after certain time.  
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So, next what will do, we will try to understand what are the changes will expect for that Gaussian, 

for that we will find out the width of the Gaussian. So, I started with this which is centered at x 

equals 0 and the wave function this was the density maximum is 
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was 0x that was the initial width.  

Let us say at t equals 0, we had an initial width of the Gaussian 0x and 0x is defined as the full 

width at half maximum of the Gaussian probability density profile. It is not the wave function it is 

the probability density full width half max. We have to remember that it is not the wave function 

full with half max.  

It is not that it is the full with half max of the density profile. And if it is so, then I can find out this 

a-value because by definition, it is going to be half full width at half maximum. So, half of its 

maximum value that is 
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I get the a value, why I need this a value. Because I have to then plug that in here, so, that I can 

get the final expression for the later time.  
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What is going on at the later time, for the later time here I will do the same thing this profile can 

be plotted let us see, this profile is something like this, which is centered again x equals 0, and it 

is width, I will call it tx , because at time t it is width and I will compare with it is width which I 

have got at this is again 
2

( , )x t density plot.  

And this is also 
2

( ,0)x , density plot this was 0x . So, I started with 0x I will check what is 

going on width tx width after the time evolution for t-time. So, by definition of full width half 



max, again half of it is intensity, maximum intensity, this is the maximum intensity half of its 

maximum intensity is obtained.  

When the 
2

tx x=   

Because this is 
2

tx .  
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And we know that b  
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We know a, we can plug that in. So, finally, if we insert all these values b value then I get this 

expression  
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Final expression for the width this delta x t at particular time t. 
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 So, what we observe from here is that tx is proportional to it will depend it is not directly 

proportional, but it will depend on time.  



So, more time it spends during the evolution it will just spread out more. It is just increasing tx

it will increase the width of the Stationary Gaussian. So, let us say I started with this Gaussian 

slowly it will spread out it will more spread out and when it is spreading out its amplitude will go 

down definitely.  

Because total integration has to be 1, so area under the curve has to be constant. So, width this 

slowly increasing and amplitude will go down amplitude going down can also be proved.  
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This part is the amplitude of the Wavepacket at time t What we see here is that amplitude will be 

inversely proportional with t and width is directly proportional width t.  

So, as we increase the t amplitude will go down just what we have presented here amplitude will 

go down slowly and its width will slowly increase. So, that is the basic idea of Stationary Gaussian 

Wavepacket Motion. We will continue this session and we will see how this wave packet will 

behave if it is traveling Wavepacket so far we have said that the Wavepacket which is present is a 

stationary Wavepacket.  

So, the Wavepacket which is staying in a place it is not changing, the position is staying at the 

same position. But if it is staying here as the time progresses it will just spread out and its amplitude 

will go down that is the behavior of a particle in quantum mechanics we will meet again in the 

next session.  

 


